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Abstract

Model order reduction (MOR) is one of the most appealing choices for real-time
simulation of non-linear solids. In this work a method is presented in which real
time performance is achieved by means of the off-line solution of a (high
dimensional) parametric problem that provides a sort of response surface or
computational vademecum. This solution is then evaluated in real-time at
feedback rates compatible with haptic devices, for instance (i.e., more than
1kHz). This high dimensional problem can be solved without the limitations
imposed by the curse of dimensionality by employing Proper Generalized
Decomposition (PGD) methods. Essentially, PGD assumes a separated
representation for the essential field of the problem. Here, an error estimator is
proposed for this type of solutions that takes into account the non-linear
character of the studied problems. This error estimator allows to compute the
necessary number of modes employed to obtain an approximation to the solution
within a prescribed error tolerance in a given quantity of interest.

Keywords: Error estimation; real time; model order reduction; Proper
Generalized Decomposition

1 Introduction
Real-time simulation of non-linear solids is always a delicate task due to the heavy

computational cost associated with the linearization of the equations. Applications

are ubiquitous, ranging from industrial uses [1] to surgery planning and training [2]

[3] or movies [4].

Probably, the field in which more effort has been paid to the development of real-

time simulation techniques is that of computational surgery [5] [6] [7] [8] [9] [10].

This is because surgery training systems are equipped with haptic peripherals, those

that provide the user with realistic touch sensations (force feedback). Just like some

25 pictures per second are necessary for a realistic perception of movement in films,

haptic feedback needs for some 500 Hz to 1 kHz in order to achieve the necessary

realism. The difficulty of the task is thus readily understood: to perform 500 to

1000 simulations of highly non-linear solids (soft tissues are frequently assumed to

be hyperelastic), possibly suffering contact, cutting, etc.

Among the very few truly non-linear surgery simulators developed so far, one can

cite [11] [10] [12] [13]. Essentially, the former employ some type of explicit, lumped

mass, Lagrangian finite elements to perform the simulations, possibly including an

intensive usage of GPUs. However, in previous works of the authors, see [14] [13]

[15] [16], a different approach has been studied by employing model order reduction

techniques, see Fig. 1.
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Figure 1: Surgical simulator. Prototype of surgical simulator developed by the

authors. On the left, the haptic peripheral is shown.

Basically, our approach to real-time simulations consists on the off-line computa-

tion of a sort of high-dimensional solution to the problem at hand,

u = u(x, t, q1, q2, . . . , qp), (1)

where u represents the essential field of the problem (usually, the displacement

field of the solid), x the coordinates of each physical point, and q1, q2, . . . , qp a set

of parameters that could affect the solution and whose meaning will be clear in

brief.

Eq. (1) thus represents a sort of response surface in the sense that it provides with

the solution for any physical coordinate, time instant and value of the p parame-

ters. Instead of response surface, and to highlight the fact that no set of a priori

experiments will be necessary to obtain such a response in our method, we prefer

to call Eq. (1) a computational vademecum [17], inspired by the work of ancient en-

gineers (such as Bernoulli, for instance [18]), who compiled sets of known solutions

to problems of interest.

The problem with an approach such as that introduced in (1) is that such an

expression is inherently high dimensional. If we try to discretize the governing equa-

tions of the problem so as to obtain an approximation to Eq. (1), and do it by a

mesh-based method such as finite differences, volumes or elements, we will soon

realize that the complexity of the problem will make us run out of computer mem-

ory very soon. This is due to the well-known exponential growth of the number

of degrees of freedom (nodes of the mesh) with the number of dimensions of the

problem. In other words, the well-known curse of dimensionality [19].

In order to overcome the curse of dimensionality, the authors proposed some years

ago a technique inspired by Proper Orthogonal Decomposition methods (POD) that

generalizes its properties to high dimensional spaces and operates a priori. Such a

technique has been coined as Proper Generalized Decomposition (PGD) [20] [21]
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[22] [23] [24] and its main characteristic is to assume that the essential field (1) can

be approximated in a separated form, i.e.,

u(x, t, q1, q2, . . . , qp) ≈
n∑

i=1

F i(x) ◦Gi(t) ◦Q1
i (q1) ◦Q2

i (q2) ◦ . . . ◦Qp
i (qp), (2)

where the symbol “◦” appears for the Hadamard, Schur or entry-wise product of

vectorial functions. Since functions F i(x),Gi(t),Q
1
i (q1),Q2

i (q2), . . . ,Qp
i (qp) are a

priori unknown, one readily recognizes the inherent non-linear character of the prob-

lem of finding such an approximation (even if the governing equations are linear).

PGD operates through a greedy algorithm, in which usually a fixed point alternating

directions algorithm is used. More details will be given in the Section 2.

One crucial problem related to such an approximation, see Eq. (2), is the choice

of the number of terms n employed in the approximation. Being the main objetive

of a simulator to provide the user with a realistic force feedback, the aim of the

work presented herein is to develop a suitable error estimator that allows us to fix

the number of functional products n necessary for a given tolerance in the error of

the transmitted force. The literature on error estimation for model order reduction

is vast, see [25] [26] [27] [28] [29] [30] [31], to name but a few. In Section 2 we recall

the basics of the PGD approach to the problem at hand. In Section 3 we revisit

one of the possible linearization of the problem and, finally, in Section 4 we develop

the sought error estimator for the force feedback. The paper is completed with two

different numerical examples in Section 5 that show the performance of the method.

2 Formulation of the problem in a PGD setting
As a model non-linear problem hyperelasticity has been chosen. This constitutes

a sufficiently general theory, with important implications in the simulation of soft

living tissues [32] [33], for instance, and therefore in surgical simulators as an ubiq-

uitous example of the restrictions placed by real-time constraints.

In what follows we follow closely the explicit linearization procedure first devel-

oped by the authors in [13], although more sophisticated approaches were developed

in [15]. For the sake of simplicity, consider a particularly useful instance of the vade-

mecum given by Eq. (1),

u = u(x, s),

i.e., a generalized solution of the displacement field of a solid undergoing a load

at any possible point of its boundary, s. Therefore, the loading point s acts here

as the parameter q1 in (1). For simplicity, we assume the acting force t as vertical

and of unity module (a more general setting can be established by letting t itself

be an additional vectorial parameter). Under this rationale, the weak form of the

static equilibrium equations of the solid can be established as find the displacement

u ∈ H1 such that for all u∗ ∈ H1
0:∫

Γ̄

∫
Ω

∇(s)u∗ : σdΩdΓ̄ =

∫
Γ̄

∫
Γt2

u∗ · tdΓdΓ̄ (3)
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where Γ = Γu ∪ Γt represents the boundary of the solid, divided into essential

and natural regions, and where Γt = Γt1 ∪ Γt2, i.e., regions of homogeneous and

non-homogeneous, respectively, natural boundary conditions. ∇(s) stands for the

symmetric part of the gradient. Γ̄ ⊆ Γt2 represents the possible loading area within

the exposed surface of the body and is actually a choice of the analyst. In surgery

simulators, it is often taken as the portion of the organ surface accesible for the

surgeon. Here, t = ek · δ(x− s), where δ represents the Dirac-delta function and ek
the unit vector along the z-coordinate axis.

In the spirit of PGD techniques, the external load is then decomposed (by applying

SVD techniques, for instance) as

tj ≈
m∑
i=1

f ij(x)gij(s)

where m represents the order of truncation and f ij , g
i
j represent the j-th component

of vectorial functions in space and boundary position, respectively. Following Eq.

(2), the high dimensional solution of the problem will be sought as

unj (x, s) =

n∑
k=1

Xk
j (x) · Y k

j (s), (4)

where the term uj refers to the j-th component of the displacement vector, j = 1, 2, 3

and functions Xk and Y k represent the separated functions used to approximate

the unknown field.

PGD techniques proceed by finding iteratively new terms improving this approx-

imation in a greedy framework. Therefore, if a new functional pair R(x) ◦ S(s) is

sought,

un+1
j (x, s) = unj (x, s) +Rj(x) · Sj(s), (5)

a linearization algorithm is compulsory, since the unknown is now a pair of func-

tions. This is usually accomplished by iterative fixed point, alternating directions

algorithms that proceed as follows.

2.1 Computation of S(s) assuming R(x) is known

If standard assumptions of variational calculus are applied,

u∗j (x, s) = Rj(x) · S∗j (s). (6)

This admissible variation of the (high dimensional) displacement field, indicated by

the star symbol, is then injected into the weak form of the problem, Eq. (3), thus

giving

∫
Γ̄

∫
Ω

∇(s)(R ◦ S∗) : C : ∇(s)

(
n∑

k=1

Xk ◦ Y k +R ◦ S

)
dΩdΓ̄ =

∫
Γ̄

∫
Γt2

(R ◦ S∗) ·

(
m∑

k=1

fk ◦ gk
)
dΓdΓ̄, (7)
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or, ∫
Γ̄

∫
Ω

∇(s)(R ◦ S∗) : C : ∇(s)(R ◦ S)dΩdΓ̄

=

∫
Γ̄

∫
Γt2

(R ◦ S∗) ·

(
m∑

k=1

fk ◦ gk
)
dΓdΓ̄−

∫
Γ̄

∫
Ω

∇(s) (R ◦ S∗) · RndΩdΓ̄,

(8)

where Rn represents:

Rn = C : ∇(s)un. (9)

Since the symmetric gradient operates on spatial variables only, we arrive at:∫
Γ̄

∫
Ω

(∇(s)R ◦ S∗) : C : (∇(s)R ◦ S)dΩdΓ̄

=

∫
Γ̄

∫
Γt2

(R ◦ S∗) ·

(
m∑

k=1

fk ◦ gk
)
dΓdΓ̄−

∫
Γ̄

∫
Ω

(
∇(s)R ◦ S∗

)
· RndΩdΓ̄

(10)

where all the terms depending on x are known and hence all integrals over Ω and

Γt2 (support of the regularization of the initially punctual load) can be computed

to arrive at an equation for S(s).

2.2 Computation of R(x) assuming S(s) is known

Proceeding in an entirely similar way,

u∗j (x, s) = R∗j (x) · Sj(s), (11)

which, substituted in the weak form of the problem, Eq. (3), gives

∫
Γ̄

∫
Ω

∇(s)(R∗ ◦ S) : C : ∇(s)

(
n∑

k=1

Xk ◦ Y k +R ◦ S

)
dΩdΓ̄ =

∫
Γ̄

∫
Γt2

(R∗ ◦ S) ·

(
m∑

k=1

fk ◦ gk
)
dΓdΓ̄. (12)

Again, all the terms depending on s (load position) can be integrated on Γ̄, thus

giving an elasticity-like problem to obtain the function R(x).

3 One possible explicit linearization of the formulation
The simplest hyperelastic constitutive model is the Kirchhoff-Saint Venant (KSV)

model. Despite its well-known instabilities in compression, KSV provides with a very

neat formulation in which to apply the developments that are to come. Therefore,

for the sake of simplicity, we assume that the energy density functional is given by

Ψ =
λ

2
(tr(E))2 + µE : E (13)
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where λ and µ are Lame’s constants. The Green-Lagrange strain tensor, E, is

classically defined as

E =
1

2
(F TF − I) = ∇(s)u+

1

2
(∇u ·∇uT ) (14)

where F = ∇u + I is the gradient of deformation tensor. Correspondingly, the

second Piola-Kirchhoff stress tensor can be obtained by

S =
∂Ψ(E)

∂E
= C : E (15)

in which C is the fourth-order constitutive (here, linear elastic) tensor.

The simplest linearization of the resulting problem comes from an explicit assump-

tion in which load is applied in a series of pseudo-time increments ∆t, producing

displacement increments ∆u(x, s). At each time increment, the previously described

PGD fixed point alternating directions algorithm is employed. So, by introducing

the non-linear strain measure given by Eq. (14), into this incremental framework,

the following expression is obtained:

Et+∆t = ∇s

(
ut + ∆u

)
+

1

2

(
∇(ut + ∆u) ·∇T (ut + ∆u)

)
. (16)

Equivalently, admissible variations of strain take the form

E∗ = ∇(s)(∆u∗) +
1

2
(∇(∆u∗)) ·∇T (ut + ∆u) +

1

2
∇(ut + ∆u) ·∇T (∆u∗)

= ∇(s)(∆u∗) + ∇(∆u∗) ·∇T (ut + ∆u) (17)

By substituting into the weak form of the equilibrium equation, Eqs. (16) and

(17) the following left hand side term of Eq. (3) is obtained

∫
Γ̄

∫
Ω(t)

E∗ : C : EdΩdΓ̄ =

=

∫
Γ̄

∫
Ω(t)

(
∇(s)(∆u∗) + ∇(∆u∗) ·∇T (ut + ∆u)

)
: C

:

(
∇s

(
ut + ∆u

)
+

1

2

(
∇(ut + ∆u) ·∇T (ut + ∆u)

))
dΩdΓ̄. (18)

To linearize Eq. (18), in [13] a strategy is proposed by keeping in the formulation

only constant terms and those linear in ∆u. The resulting weak form is composed
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by the following long albeit simple collection of terms:∫
Γ̄

∫
Ω(t)

E∗ : C : EdΩdΓ̄

=

∫
Γ̄

∫
Ω(t)

∇(s)(∆u∗) : C : ∇(s)utdΩdΓ̄

+

∫
Γ̄

∫
Ω(t)

∇(s)(∆u∗) : C : ∇(s)(∆u)dΩdΓ̄

+

∫
Γ̄

∫
Ω(t)

∇(s)(∆u∗) : C :
1

2
∇ut ·∇TutdΩdΓ̄

+

∫
Γ̄

∫
Ω(t)

∇(s)(∆u∗) : C : ∇ut ·∇T (∆u)dΩdΓ̄

+

∫
Γ̄

∫
Ω(t)

∇(∆u∗) ·∇Tut : C : ∇(s)utdΩdΓ̄

+

∫
Γ̄

∫
Ω(t)

∇(∆u∗) ·∇Tut : C : ∇(s)(∆u)dΩdΓ̄

+

∫
Γ̄

∫
Ω(t)

∇(∆u∗) ·∇Tut : C :
1

2
∇ut ·∇TutdΩdΓ̄

+

∫
Γ̄

∫
Ω(t)

∇(∆u∗) ·∇Tut : C : ∇ut ·∇T (∆u)dΩdΓ̄

+

∫
Γ̄

∫
Ω(t)

∇(∆u∗) ·∇T (∆u) : C : ∇(s)utdΩdΓ̄

+

∫
Γ̄

∫
Ω(t)

∇(∆u∗) ·∇T (∆u) : C :
1

2
∇ut ·∇TutdΩdΓ̄. (19)

Despite the apparent complexity of these equations, a very simple scheme results

that has provided, however, very good results.

However, a critical issue remains in this case (or, in general, when dealing with

PGD approximations of non-linear problems), which is that of selecting the number

of terms n composing the approximation, see Eq. (4). This must be done on the

basis of predictions given by a suitable error estimator, which is the main objective

of this work and will be detailed in the following section.

4 An error estimator based on the dual formulation
What Eq. (19) represents in fact is an incremental, explicit linearization of the

originally non-linear problem. Thus, by using a compact notation, we can say that

at pseudo-time step p the weak form of the problem looks like

ap(∆u,∆u∗) = bp(∆u∗).

Errors in the PGD solution of this linearized equation come from two sources. First,

the separated representation of the solution, given by Eq. (2), involves a truncation

of the sum at a number n of terms. Secondly, the sought functions F i, Gi, ..., are

actually expressed by projecting them onto a finite element mesh of size h. In brief,

the following diagram depicts the situation:



Alfaro et al. Page 8 of 19

un
h(x, s) un=∞

h (x, s) = uh

un
h=0(x, s) u(x, s)

ePGD

eFEM eFEM

ePGD

e

where we have denoted ePGD = ‖un=∞
h − un

h‖ = ‖u− un
h=0‖ and eFEM = ‖un

h=0 −
un
h‖ = ‖u−uh‖. Finally, the sought, total committed error would be e = ‖u−un

h‖.
It is noteworthy to mention that, if the FE mesh size, h is not chosen judiciously,

the total error in the simulation, composed by the sum of the FEM error plus

the PGD error, will never get below a prescribed tolerance despite the number of

modes added to the PGD approximation. Therefore, care must be paid not only to

the number of terms n in the PGD approximation, but to the mesh size, h.

The objective of this paper is to determine the number of terms necessary to

reach some error threshold in the non-linear problem given by Eq. (3), equipped

with the non-linear constitutive equations (13). This error assessment is performed

by establishing a (here, linear) functional `o(·), used to extract certain quantity

of interest. For the application we are pursuing (surgery simulators with haptic

feedback), this quantity of interest would be the perceived reaction force at the pe-

ripheral. The main advantage of the linearization introduced in Eq. (19) is precisely

that within each time step the increment in the reaction force is a linear function of

the increment of (vertical, for simplicity) displacement (at the loading point), i.e.,

`o(∆un
h) = ∆uz(x0, s0),

in other words, the increment of vertical displacement at x0 provoked by the load

acting at s0. In our approach, since we interested in estimating the error on the

force value, we simply take x0 = s0, with x0 a particular point on the loading

surface.

Following [34] (although other approaches are equally feasible for PGD, see [35],

[36] or [37]), the error in the quantity of interest is obtained through an auxiliary

problem, often referred to as dual or adjoint problem. In [34], the exact solution

of the auxiliary problem is replaced by a more accurate solution, which in a PGD

context can naturally be obtained by performing some extra enrichment increments

(i.e., letting n grow sufficiently to a value N).

Therefore, the dual or adjoint problem will now look like

a(∆u∗,ϕ) = `o(∆u∗), (20)

with ϕ the dual unknown. The error in the quantity of interest could therefore be

computed by

`o(e) = b(ϕ)− a(un
h,ϕ),

or, equivalently,

`o(e) = a(e, ε) ≤ |e| · |ε|,
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with ε = ‖ϕ − ϕh‖. As mentioned before, the exact solution of the dual problem,

ϕ is not often available, so that it is approximated as

ϕ ≈ ϕN�n
h .

Although different possibilities exist, see for instance [31], in [34] different strategies

were analyzed to determine the necessary value of N . For instance, results taking

N = n+ 5, N = 2n or, simply, N = n were analyzed. In general some extra terms,

say 5, are enough to determine a good dual solution.

In what follows, we show two examples of application of the proposed methodol-

ogy for two non-linear problems, formulated under the framework of the theory of

hyperelasticity.

5 Numerical examples
5.1 Cantilever beam

We consider the example of a cantilevered Kirchhoff-Saint Venant beam whose

geometry is shown in Fig. 2. Beam nodes are assumed fixed at one of the ends, while

the rest of the degrees of freedom are assumed to be free. The mesh is composed

by tetrahedral elements, with 3× 3 nodes in the 40× 40 mm2 cross-section and 21

nodes in the longitudinal direction, 400 mm long. Material parameters were Young’s

modulus E = 2 × 1011 Pa and Poisson’s coefficient ν = 0.3. The applied force is

assumed to be always vertical and its value taken as 108 N.

X
Y

Z

Figure 2: Model for the beam bending problem.

The deformed configuration of the beam for one particular location of the load is

shown in Fig. 3. The four first modes Xk(x), k = 1, 2, . . . , 4 are shown in Fig. 4.
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X
Y

Z

Uz

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 3: Deformed beam for a particular location of the point load.

For this example we have considered that the load could be applied at any of the

24 farthest nodes of the upper face of the beam (nodes within the black rectangular

area in Fig. 2). For this admissible loading region, the resulting first four modes

Y k(s), k = 1, . . . , 4, are depicted in Fig. 5.

The loading process was solved by taking p = 8 pseudo-time steps, both for the

primal and dual problems. The dual problem was solved by applying a stopping

criterion such that ‖ϕn+1 − ϕn‖ ≤ 10−8. With such a criterion, the computation

of ϕ involved eight modes, one per time step. The evolution of the predicted error

with the number of modes n employed in the computation of the primal variable is

shown in Fig. 6.

Remark 1 It is important to note that, despite the fact that we have considered

24 possible positions for the load vector, the fact of finding up to 60 modes to express

the solution is not an inconsistency. One could think that obtaining a singular value

decomposition of the 24 displacement vectors corresponding to the distinct 24 possi-

ble load positions would give up to 24 possible modes to express the high-dimensional

solution u(x, s). However, in this case we have performed an explicit, incremental

solution of the non-linear problem, by dividing it into p = 8 pseudo-time steps.

Therefore, in none of the examples shown the limit number of 24 modes has been

reached. The highest number of modes for a particular load increment was 11, thus

very far from 24. This is consistent with our previous experience in the development

of computational vademecums by PGD techniques.

Remark 2 In addition, modes for the different load steps are not mutually orthog-

onal. An additional compression of the modes with the so-called PGD-projection, see

[38], provides with a very restricted number of modes. In this case, the modes could
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be compressed so as to consider less than 12 modes for the whole loading process

without further increase in the error in the approximation.

5.2 Palpation of the liver

In this example we apply the dust developed error estimator to the simulation of

liver palpation. The liver model, already shown in Fig. 1, is essentially the same

developed in previous references by the authors, see details in [14] [13].

The model, see Fig. 7, is composed by 2853 nodes and 10519 linear tetrahedra.

For the ease exposition, a Kirchhoff-Saint Venant constitutive law with E = 160000

Pa and ν = 0.48 is considered. More sophisticated constitutive laws are equally

possible, see [7] and references therein. In Fig. 7 the region Γ̄ in which the load

can be applied has been highlighted in red. Only 66 nodes have been chosen as

candidates for loading, but of course even the entire surface of the organ can be

chosen, as in [13], for instance.

As in the previous example, the first four spatial and loading modes Xk(x) and

Y k(s), k = 1, . . . , 4, are depicted in Figs. 8 and 9, respectively. A load of 30 N

was applied in a sequence of three pseudo-time steps (a quasi-static process is here

considered, see [16] for details on the dynamic problem).

The dual problem was solved by applying a stopping criterion such that ‖ϕn+1−
ϕn‖ ≤ 10−8. The evolution of the predicted error with the number of modes n

employed in the computation of the primal variable is shown in Fig. 10.

6 Conclusions
In applications with haptic response the development of a suitable error indicator

of the force being transmitted to the user is of utmost importance, as can be readily

understood. In this paper we have developed a method for the error estimation in

such a quantity of interest for a real-time simulator based on the use of reduced

order models. In particular, Proper Generalized Decomposition techniques have

been employed.

Based on previous developments of the authors, an explicit linearization of the

originally non-linear constitutive equations in the framework of PGD has been em-

ployed. This renders the problem in the form of a sequence of linear problems, for

which an error estimator in the spirit of [34] has been employed. It is based on the

employ of the so-called dual problem as a stopping criterion for the original (or

primal) one.

The result is the first example (up to our knowledge) of an error estimator for non-

linear problems in the framework of PGD methods in general, and haptic simulators

in particular.
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Figure 4: First four spatial modes Xk(x), k = 1, . . . , 4.
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Figure 5: First four spatial modes Y k(s), k = 1, . . . , 4.



Alfaro et al. Page 16 of 19

10 20 30 40 50 60

10−2

10−1.5

Number of PGD modes, n

`o
(e

)

Figure 6: Convergence of the error with the number of modes n.
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Figure 7: Model for the liver palpation problem. In red, the region in which loading

is allowed.
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Figure 8: First four spatial modes of the liver problem, Xk(x), k = 1, . . . , 4.
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Figure 9: First four spatial modes of the liver problem, Y k(s), k = 1, . . . , 4.
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Figure 10: Convergence of the error with the number of modes n for the liver

problem.


