
Zlotnik et al.

RESEARCH

Effect of the separated approximation of input
data in the accuracy of the resulting PGD
solution
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Abstract

The Proper Generalized Decomposition (PGD) requires separability of the input
data (e.g. physical properties, source term, boundary conditions, initial state). In
many cases the input data is not expressed in a separated form and it has to be
replaced by some separable approximation. These approximations constitute a
new error source that, in some cases, may dominate the standard ones
(discretization, truncation...) and control the final accuracy of the PGD solution.

In this work the relation between errors in the separated input data and the
errors induced in the PGD solution is discussed. Error estimators proposed for
homogenized problems and oscillation terms are adapted to asses the behaviour
of the PGD errors resulting from approximated input data. The PGD is stable
with respect to error in the separated data, with no critical amplification of the
perturbations.

Interestingly, we identified a high sensitiveness of the resulting accuracy on the
selection of the sampling grid used to compute the separated data. The
separation has to be performed on the basis of values sampled at integration
points: sampling at the nodes defining the functional interpolation results in an
important loss of accuracy.

For the case of a Poisson problem separated in the spacial coordinates (a
complex diffusivity function requires a separable approximation), the final PGD
error is linear with the truncation error of the separated data. This relation is
used to estimate the number of terms required in the separated data, that has to
be in good agreement with the truncation error accepted in the PGD truncation
(tolerance for the stoping criteria in the enrichment procedure). A sensible choice
for the prescribed accuracy of the PGD solution has to be kept within the limits
set by the errors in the separated input data.

Keywords: Proper Generalized Decomposition; Error assessment; Separable
functions

1 Background

The Proper Generalized Decomposition (PGD) [1, 2] is an a priori reduced ba-

sis technique designed to deal efficiently with highly-dimensional Boundary Value

Problems (BVP). Differently from other discretisation techniques such as Finite

Elements of Finite Differences, PGD avoids the exponential growth of the number

of degrees of freedom with the number of dimensions. This is achieved by using

of a separated representation of the solution. A separable function f with rank q,
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separated on n dimensions has the form,

f(x1, x2, . . . , xn) =

q∑
m=1

Fmx1
(x1)Fmx2

(x2) . . . Fmxn
(xn) =

q∑
m=1

n∏
p=1

Fmxp
(xp). (1)

In addition to the separability of the solution, PGD requires the separability of input

data that depends on several separated dimensions, for example physical parameters

varying on space or time. Theoretically, separability of input data is not necessary;

although, in practice it is required to avoid an exponential growth of the number of

operations in obtaining the PGD solution.

Input data is in general not separable and therefore it is in practice replaced by

separable approximations of it. For example, in following sections a Poisson problem

is solved using PGD. The solution u is separated into two spatial dimensions as

u(x, y) =
∑q
m=1 F

m
x (x)Fmy (y). A diffusivity function k(x, y) varying in space is

introduced:

k(x, y) = sin
(
0.5(x+ y)2

)
+ 1.5 (2)

This function does not admit an exact separated representation and therefore it is

replaced by an approximation

k(x, y) ≈ ksep(x, y) =

nk∑
l=1

Glx(x)Gly(y), (3)

having nk terms.

The PGD solver, therefore, introduces new errors into the solution that are not

present in a standard Finite Element (FE) solution: first, a truncation error due to

the finite number of terms (nk) used to describe ksep and, second, a discretization

error in the spatial representation of the functions Glx(x) and Gly(y). The goal of

this work is to understand how these errors affect the accuracy of the PGD solution.

The relation between the errors in ksep and the error of the PGD solution can be

used in practice to determine the nk required to achieve a certain accuracy by PGD.

Moreover, this relation can also be used as stopping criteria for the PGD enrichment

process, as the PGD solution will not be able to achieve an accuracy under that

imposed by ksep.

1.1 Motivation examples

The errors introduced when imposing separability to input data ultimately control

the maximum accuracy that a PGD solution may achieve. The evolution of the error

with the number of terms of the solution (e.g. Figure 5) show clearly a flattening of

the curves and a limit in the accuracy the PGD could obtain for a certain accuracy

of the separated data. This behaviour was observed in some practical examples

briefly presented next.

A first example is the solution of a BVP whose domain depends on a set of pa-

rameters, µ. These control the geometry of the domain or the location of internal

interfaces. An example is shown in Figure 5 where two parameters control the shape

user
Resaltado

user
Resaltado



Zlotnik et al. Page 3 of 10

of an airfoil and a flow problem is solved far any geometry within the parameter

range. The methodology to solve the geometrically parameterized problems is pro-

posed in [3] and later extended in [4]. It is based on expressing the Jacobians of the

elements, Je(µ), as a function of the parameters. For example, the weak form of

the bilinear operator arising from a Poisson problem reads,

a(u, v) =

∫
Ωe(µ)

∇u · (k∇v) dΩ =

∫
T
∇x̂ue · (k |Je(µ)|Je(µ)

−T
Je(µ)

−1︸ ︷︷ ︸
De(µ)

∇x̂ve) dx̂

where x̂ are some reference coordinates and the matrix De(µ) accounts for the geo-

metrical parameterization. The analytical expression of the coefficients of De(µ) is

known but, in a general case, it is not separable. Therefore, a separable approxima-

tion of its coefficients is utilized and, consequently, a truncation error is introduced.

A second example presented in [5] is a real-time integration scheme for the equa-

tions of solid dynamics. It is based on a combination of POD–PGD approaches. The

method is based upon the formulation of solid dynamics equations as a parametric

problem depending on their initial conditions (that need to be separated). This

parametric problem, depending on the initial conditions in the interval (t, t+ ∆t),

is solved off–line, for any value of the parameters within a prescribed interval. The

separation of the initial conditions is done as a pre–process introducing again trun-

cated input data and therefore generating an error on the solution.

1.2 A priori estimates for FE

Different sources of errors are present in the solution provided by PGD (see for

example [6, 7, 8]. If u is the analytical solution of the BVP and uH,M is the solution

of PGD characterized by a mesh size H and a number of terms M , the PGD error

is then defined by e := u − uH,M . This error can be divided into several sources:

first, an interpolation error, eFE = u − uH , related with the space discretization,

where uH is the standard FE solution of the problem. Second, a truncation error

eM := uH − uH,M that comes from the finite number of terms computed by PGD.

The PGD error e, therefore, can be written as

e = u− uH,M = u− uH︸ ︷︷ ︸
eFE

+uH − uH,M︸ ︷︷ ︸
eM

(4)

where the contribution of each type of error becomes explicit. Figure 5 shows

schematically the relation between these errors. When the input data separation

is required and functions are replaced by separable approximations, another source

of errors gets into the equation. The replacement of function k by ksep is assumed to

affect similarly to the FE solution and the PGD solution (i.e. the truncation error

is assumed to be independent of the error introduced by FE). If the error affects

the source term, error estimators proposed for data oscillation could be used, for

example [9].

If the diffusivity function k is the one separated, the ideas of homogenization

theory (e.g. [10, 11]) can be recalled: k can be understood as k = ksep + ε, being ε a

highly oscillatory function with small amplitude compared to k (as shown in Figure
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5). Note that ε can be reduced by increasing the number of terms nk in ksep. The

problem, although, is inverse to the standard homogenization problem: the exact

solution here is smooth and the high frequency terms are the errors introduced by

the separation.

The standard error estimates for FE read

eH = ||u− uH || ≤ CHα,

for some value of alpha depending on the norm chosen. When oscillation terms are

included an extra term appears:

esep
H = ||u− usep

H || ≤ CH
α + Osc,

being Osc = ||k−ksep||. The truncation error, eM , introduced by PGD is a function

decreasing with the number of terms M , so its norm is bounded by ||eM || ≤ C̃F (M).

Note that, as mentioned above, for error affecting the source term s the standard

estimates for oscillation terms provide a similar expression for Osc [9].

The final error of the PGD solution, therefore can be stated as

||u− usep
H,M || ≤ CH

α + C̃F (M) + Osc. (5)

This bound expression shows that if Osc dominates over the truncation error, the

error of the PGD solution cannot be reduced. On the other hand, if an estimation

for Osc and for esep
H at enrichment step i are available, (5) can be used as stopping

criteria of the enrichment process.

2 Problem statement and PGD solution for separated space
dimensions

In order to study the propagation of the errors within the PGD scheme a boundary

value problem governed by a Poisson equation is considered. Its solution u, taking

values in Ω, satisfies,

−∇ · (k∇u) = s in Ω (6a)

(k∇u) · n = gN on ΓN (6b)

u = uD on ΓD (6c)

where the source term s, the prescribed values on the Dirichlet boundary uD, the

prescribed flux on the Neumann value gN and the diffusivity k are the data set.

The usual variational form for this problem reads: find u ∈ V such that

a (u, v) = `(v), for all v ∈ V0, (7)

where V := {u ∈ H1(Ω) : u = uD in ΓD} and its corresponding test functions space

is V0 := {u ∈ H1(Ω) : u = 0 on ΓD}. The bilinear and linear forms a(·, ·) and `(·)
are given by

a (u, v) :=

∫
Ω

∇u · (k∇v) dΩ and `(v) :=

∫
Ω

sv dΩ +

∫
ΓN

gNv ds. (8)
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2.1 Space–separated PGD algorithm

The space–separated PGD algorithm for problem (7) is based on a separated solu-

tion usep(x, y) with the form

u ≈ usep(x, y) =

nu∑
m=1

Fmx (x)Fmy (y). (9)

As usual in FE, usep is inserted in the weak form (7). In this case, the diffusivity

function k(x, y) is also replaced by its separable approximation ksep, and therefore

the operator a(·, ·) is somehow redefined. The problem then reads: find usep such

that

asep (usep, v) = `(v), for all v, (10)

where

asep (u, v) :=

∫
Ω

∇u · (ksep∇v) dΩ (11)

and the definition of `(·) remains unchanged.

Assuming that the initial nu terms of usep are known (that is all functions Fmx
and Fmy , for m = 1 . . . nu are known), the addition of a new term FxFy to usep is

done by solving the following problem:

asep (FxFy, v) = `(v)−
nu∑
m=1

asep
(
Fmx F

m
y , v

)
. (12)

To simplify notation, the dependence of each function Fm∗ is kept implicit in the

subindex, for example F ix stands for F ix(x).

The PGD solution is constructed one term at a time using the incremental pro-

cedure suggested in (12). The addition of a new term involves solving problem (12)

with all the previously computed terms in their right hand side. Note that this

problem is non linear because the unknown Fx multiplyes Fy. This non linearity is

usually handled by an alternate–directions algorithm consisting in first solving for

Fx, assuming Fy is known, and then solving for Fy, assuming Fx is known. These

two (linear) subproblems are iterated until convergence.

The test functions v belong to V0 and they are written as v = δFxFy + FxδFy.

When solving the first problem, Fy is assumed to be fix and therefore δFy vanishes.

The test function v, then, is simplified to v = δFxFy and the first subproblem is

stated as,

asep (FxFy, δFxFy) = `(δFxFy)−
nu∑
m=1

asep
(
Fmx F

m
y , δFxFy

)
. (13)

The second problem is exactly symmetric inverting the dimensions x and y.
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3 Separation of the input data

Several procedures can be applied to obtain separable approximations of known

functions. The Proper Orthogonal Decomposition (POD) and the Singular Value

Decomposition (SVD) are the most common techniques when the separation is done

in two dimensions. Many techniques have been proposed to extend SVD to higher

number of dimensions. These techniques are usually called higher–order, as they

were originally proposed to decompose higher–order tensors. An overview can be

found, for example, at [12]. Some examples are the Higher–Order SVD (HOSVD)

[13], the CANDECOMP/PARAFAC (CP) [14, 15] and the Tucker decomposition

[16].

When the number of separated dimensions is two, the POD and the SVD are

equivalent and they provide a optimal decomposition in the sense that they provide

the minimum number of required to obtain an given accuracy. Unfortunately, for

n > 2 this property is lost and usually there is no guarantee of the optimality of

the separated tensor.

Recently Modesto et al. [17] proposed a method based on PGD to perform sep-

aration of functions. Their approach has the advantages of being equivalent to

SVD when the separation is done in two-dimensions and it is trivial to extend it

to higher dimensions. Their technique produced decompositions having lower rank

than HOSVD for all tested cases and it does not require to specify the order of the

separated function before starting the process (as CP does).

The application of SVD to obtain a two–dimensional separable approximation is

explained next: consider a discrete approximation of a function f(x, y) supported

on a Finite Element (FE) mesh, that is, f is determined by a set of nodal values fi

for i = 1 to nt. In this case the dimensions in which the function will be separated

are the cartesian axis x and y. The form of the approximation is,

f(x, y) ≈
q∑

m=1

αmFm(x)Gm(y),

where the set of function Fm(x) and Gm(y) are to be determined. A scalar αm hold-

ing the amplitude of each term is added in order to normalize Fm and Gm. These

functions are also supported in a FE mesh with the corresponding dimensionality;

in this example both are 1D meshes.

Let M be a m× n matrix with rank r and coefficients f(xi, yi), where xi and yi

are the nodal locations. The SVD provides a factorisation M in the form

M = U · S ·VT (14)

where the columns of U ∈ Rm×m are called the left-singular-vectors and denoted

here as Ui. The columns of V ∈ Rn×n are called the right-singular-vectors and

denoted Vj . The matrix S ∈ Rm×n is rectangular and diagonal and holds the

singular values of M sorted from larger (S11) to smaller. Matrices U and V are

both unitary, in the sense that their transpose its equal to their right inverse.
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The factorisation provided be SVD allows to construct a separated representation

of the matrix M as,

M =

r∑
i=1

Sii ·Ui ·VT
i . (15)

In practice, the rank of the separated tensor is kept as low as possible as the com-

putational effort is usually proportional to the number of terms in it. Therefore,

it is usual to truncate the sum and discard all terms with amplitud smaller than

a given threshold. That is, the terms corresponding to the largest eigenvalues are

kept and terms with smaller eigenvalues are discarded.

As an example the function k(x, y) = sin
(

1
2 (x+ y)2

)
+ 2 introduced in (2) is

separated using SVD to obtain ksep(x, y) as defined in (3). This function is chosen

because it does not admits an exact separated representation. Figure 5 shows the

function k(x, y) (top right), the amplitude of the initial terms in the separated

version of k, that is, the diagonal coefficients of the matrix S (top left), and the

functions Fm and Gm for the four initial terms of ksep(x, y). Note that with the

initial 25 terms the function k is approximated to machine precision. The meshes

corresponding to F and G, both have 402 nodes.

3.1 Influence of the sampling points

The first idea is sampling the input date (material parameters, source terms...) on

the nodes of the grid used for the space and parametric discretization. As it is shown

in the next section, this choice is not particularly sensible because the values of these

functions are required at the integration points of the FE mesh used to solve the

weak form of the equation. This extends not only to the spacial coordinates but also

to the parametric coordinates because the parametric modes are approximated in a

least squares sense (Galerkin L2 projection). Thus, separation has to be performed

on the basis of values sampled at integration points: sampling at the nodes defining

the functional interpolation results in an important loss of accuracy.

4 Results
The behaviour of the PGD scheme with respect to errors in the input data is studied

next via a series of numerical experiments. The problem (6) is solved using PGD

as described above in a unit square domain.It is closed with Dirichlet boundary

conditions on the top and bottom sides with values one and zero respectively and

homogeneous Neumann in the lateral sides. The separated diffusivity function 3 is

used. The mesh is structured and regular and has 100 elements in each dimension.

The relative errors shown in convergence curves is computed as the H1 norm of

the relative difference between the PGD solution and a reference Finite Element

solution computed over the same mesh. Note that the FE solution is computed

using the exact analytic expression for the diffusivity k.

4.1 Input data sampling

The diffusivity function (2) is separated using the SVD approach described in Sec-

tion 3. To do that, the spatial grid to sample the function k(x, y) needs to be
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selected. The first choice taken here is to evaluate k in the same mesh that will be

later used in the discretization of u. In this case, it is a regular grid with 101× 101

nodes. This is an overkill mesh to represent the function k (see first panel of Figure

5). The ksep separated function described with 26 terms has an maximum nodal

relative error of the order of machine tolerance (10−14).

When ksep is introduced into the weak form and the problem is solved via PGD,

the solution obtained is rather inaccurate having relative errors of order 10−2 (Fig-

ure 5). This poor behaviour comes from the fact that the diffusivity function was

sampled at the nodes but it is required by PGD (and by FE) at the integration

points. The values of ksep used in the integrals are interpolated spatially and there-

fore an “H-like” error is introduced. This error is not related with the truncation

on the number of terms used in ksep, but is only dependent on the grid chosen to

sample k.

In the example above, despite the nodal values of ksep have errors that could be

negligible, the interpolated values at the mid points of the elements have relative

error of order 10−2, coinciding with the maximum accuracy that PGD could provide.

To overcome this limit the grid used to sample ksep is modified so that the grid

nodes coincide with the integration points that will be used later by the integrals of

PGD. Figure 5 shows an example of such a mesh for a quadrature of 4 points per

element in each direction x and y. Same as in the previous grid, the nodal values

of ksep have errors comparable of machine tolerance but, in this case, the spatial

interpolation is completely avoided. When this new ksep is used, the limit imposed

by the interpolation disappears and PGD recovers it normal convergence.

4.2 Accuracy of ksep

A second set of tests is done to evaluate the relation between the accuracy of PGD

and the truncation error of ksep. To do that, the problem is solved several times

using different truncated versions of ksep for nk = 5, 6, 7, . . . , 11, 12, 14. Note that

all nk are smaller than 26 (26 terms were required to get machine tolerance at the

nodes) and therefore we do not expect the errors to vanish at the nodes. The grid

for ksep is taken coinciding with the integration points. Figure 5 shows the different

convergence curves of the error on the PGD solution as a function of the number

of terms. Recall that the errors are computed against the FE solution having the

exact k function. All curves present a final flattening and a convergence to an error

that is imposed by truncation error of ksep. On other words, at some point, the

error Osc (that does not depends on the number of terms) dominates in (5) and

therefore the PGD error cannot decrease. The better the description of ksep (that

is, the larger nk and the smaller the Osc term), the smaller the final error achieved

by PGD. For this example and when Osc dominates, the relation between the PGD

error and ksep truncation error is linear with slope equal one (as shown in Figure

5).

5 Conclusions
The stability of PGD with respect to errors in the input data was studied by means

of numerical experiments. These errors are in practice present due to the need of

approximate input data by truncated separable expressions. Moreover, separation

requires discretization introducing into the input data a ”spatial?? h–like error.
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Results show that PGD is stable (it does not amplify errors). In the tested case of

a BVP governed by the Poisson equation, the errors introduced on the diffusivity

function are linear with the final error that PGD commits. The grid in which the

separated data is represented is crucial to the accuracy of PGD; to minimize in-

terpolation error, the mesh for the input data should coincide with the integration

points used for the solution of u.

The relation between the errors in the input data and the final error of PGD can

be used to decide the accuracy required in the input data to get a certain accuracy

on the PGD solution. Another use of this relation is as stoping criteria for the

enrichment of the PGD solution, as the error of PGD cannot overcome the limit

imposed by the errors in the separated input data.
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Figure 1 Motivation example: flow around a geometrically parameterized airfoil. The solution
of parameterized geometries involves the separation of the Jacobians and, therefore, a truncation
error in introduced in the operators.

Figure 2 Motivation example: real-time integration of solid dynamics. The initial conditions of
the problem are parameterized. The number of terms in used in the parametric initial conditions
determines its accuracy.

Figure 3 Error sources in the PGD solution The approximation introduced by data separation
affects the PGD and the FE solutions.

Figure 4 Nodal errors for the separated diffusivity function.

Figure 5 Separation of the diffusivity function using SVD. Top left panel shows the analytic
diffusivity function k. Top right panel show the relative weight of the initial 30 terms of the
separated functions; the relative weight is computed as the sum of the amplitude of all previous
terms, divided by largest amplitude. Lower panels show the functions F and G corresponding to
the initial four terms

Figure 6 Evolution of the error of the PGD solution with the number of terms for a ksep

function with discretized on the nodes. The separated diffusivity function is discretized on a grid
that coincides with the nodal points used to describe the solution usep.

Figure 7 Grid for the discretization of ksep coinciding with the location of the integration
points. Left: mesh for usep in gray lines and location of integration points. Right: mesh for usep in
thick gray lines and mesh for ksep in thin red lines.

Figure 8 Evolution of the error of the PGD solution with the number of terms. Errors are
relative and computed against a FE solution. Each curve corresponds with a PGD solution
including a different accuracy of ksep.

Figure 9 Dependence of the final PGD error as a function of the errors introduced by ksep. In
the range where the separation error is dominant a linear dependence (having slope equal to one)
is obtained.


