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Abstract

In this paper a new method is described for the generation of computational patient

avatars for surgery planning. By “patient avatar” a computational, patient-specific,

model of the patient is meant, that should be able to provide the surgeon with an

adequate response under real-time restrictions, possibly including haptic response.

The method is based on the use of computational vademecums [F. Chinesta et al.,

PGD-based computational vademecum for efficient design, optimization and control.

Archives of Computational Methods in Engineering, 20(1), 31-59, 2013.] that are prop-

erly interpolated so as to generate a patient-specific model. It is highlighted how the

interpolation of shapes needs for a specialized technique, since a direct interpolation

of biological shapes would produce, in general, non-physiological shapes. To this end

a manifold learning technique is employed, that allows for a proper interpolation that

provides very accurate results in describing patient-specific organ geometries. These

interpolated vademecums thus give rise to very accurate patient avatars able to run at

kHz feedback rates, enabling not only visual, but also haptic response to the surgeon.
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1 Introduction

Systems patientomics has been recently defined [18] as a systematic approach to the

generation of virtual in silico patients, able to provide, by means of an integration of

patient- and population-specific data, essential predictions to clinicians in general and

surgeons in particular. It is envisaged that computational sciences will be able, in a not-

so-far future, to provide us with predictive informations about decisions to make, and that

these decisions will be taken upon personalized computational models, the so-called pa-

tient avatars. These avatars would comprise information across multiple scales, from

purely macroscopic mechanical properties to gene regulatory systems.

In this work an advancement in the development of patient avatars with an eye towards

personalized surgery planning simulators is made. The goal is the development of patient-

specific surgery planning systems able to provide the surgeon with valuable information

on the patient’s anatomy and its mechanical response so as to be able to forecast the

difficulties that most likely will be faced during the real surgery procedure. At this level

only purely mechanical effects will be taken into account but, as will be discussed later,

information at all levels (including gene regulatory systems) could be handled under the

same rationale in a multiscale framework, see [4].

The challenge of a patient-specific simulator

The development of a surgery simulator faces several difficulties, see [15]. To this end,

several approaches can be found in the literature [22] [16] [12] [6] [17] [13], although

they are in general limited to very simplified constitutive modeling of soft tissues. Only

recently, the so-called Total Lagrangian Explicit Dynamics approach has been able to
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develop explicit finite element techniques including hyperelasticity with haptic feedback

[33] [23] [14].

Even though a realistic-enough surgery simulator has not been completely achieved,

the consideration of patient-specific information still complicates the challenge. First of

all, personalized geometry should be obtained from any type of medical imaging system

(computerized tomography, ultrasounds, etc.) and conveniently segmented so as to pro-

vide an accurate description of the patient’s anatomy. This is not, however, the objective

of this work. The interested reader could consult [32] for an excellent review on the topic.

Once the patient’s anatomy has been segmented, a computational model able to

provide the mechanical response of the different organs with a relevant role during the

surgical procedure must be developed. The approach here considered to this problem

is conceptually simple: to interpolate the patient-specific anatomy from previously com-

puted computational vademecums [9] for the organ(s) of interest. In engineering practice,

the use of vademecums (or compilations of known solutions to common problems) has

a strong tradition, with the Bernoulli vademecum as the most typical example one can

cite [5]. Recently, the concept has been updated by the authors, by adding a computa-

tional character. Thus, off-line computed numerical simulations of parametric problems

are exploited in real time, even with handheld, deployed platforms such as smartphones

or tablets [1].

In general, the computational solution of parametric problems needs for a campaign of

(numerical) experiments and a sort of interpolation between the solutions so as to obtain

the desired response surface of the parametric model. It is well-known, however, that

it is not possible to “mesh” the entire parametric domain and just to solve the resulting

high-dimensional problem. Since the number of degrees of freedom grows exponentially

with the number of dimensions of the phase space, the size of the problem soon becomes

intractable, giving rise to the so-called curse of dimensionality [20].

Recently a technique to overcome these problems has been proposed. Considered
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as a generalization of Proper Orthogonal Decomposition (POD, also known as Principal

Component Analysis, or Karhunen-Loeve transform), the Proper Generalized Decompo-

sition (PGD) [10] [8] [11] approximates the solution in the form of a finite series of sep-

arated functions, thus leading in practice to the solution of a series of (non-linear) low-

dimensional problems rather than a high-dimensional one. PGD techniques have been

employed in the past by the authors to produce computational vademecums to develop

haptic surgery simulators, see for instance, [25] [26].

The procedure here proposed is thus conceptually simple. From a database of pre-

computed vademecums that provide the response of the organ of interest for any value

(within a prescribed interval) of the parameters of the model, the just segmented anatomy

of the patient is used to obtain a new interpolated vademecum. Parameters could be

material coefficients, thus taking into account patient variability of the properties, position

of the loads provoked by the interaction with the surgeon scalpel, or, in general, any other.

As mentioned before, the obtention of a single vademecum is not an easy task, nor

their interpolation. It has been noticed that the anatomy can not be straightforwardly

interpolated. Rather, more sophisticated manifold learning techniques must be employed,

since the interpolation of two physiological anatomies does not correspond, in general, to

a physiological one [30].

The structure of the paper is as follows. In Section 2.1 a brief overview of the concept

of computational vademecum, which is not new nor the objective of this paper, is made.

It is included here for completeness, although the interested reader can consult [25] [26]

[19] for more details. Then, in Section 2.2 manifold learning techniques are introduced

as a means of interpolating anatomies in a rigorous way. In Section 3 some results that

prove the validity of the proposed method are shown. First, a set of in silico-generated

anatomies are analyzed, and finally a set of clinical data is employed. The paper is closed

in Section 4 with a discussion on the accuracy of the results.
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2 Materials and methods

2.1 A brief overview of computational vademecums for haptic surgery

simulation

In this section we reproduce, for completeness, results from some of the authors’ previous

works on the topic. Essentially, to develop a surgery simulator, we look for the solution

of the mechanical problem under any possible location of the force of contact between

surgery tool and organ, say s. Consider, for simplicity, the static equilibrium equations of

a general solid under small strain assumptions:

∇ · σ + b = 0 in Ω, (1)

where b represents the volumetric forces applied to the body, subjected to the following

boundary conditions

u = ū on Γu (2)

σn = t̄ on Γt (3)

The standard weak form of the problem is obtained after multiplying both sides of Eq.

(1) by an admissible variation of the displacement, u∗, and integrating over the domain Ω.

The basic ingredient of the PGD to the problem is to consider the load t̄ as a parameter

of the formulation, thus enabling to obtain a parametric response surface to the problem.

The load is assumed to be applied at any point s of the surface and, for the sake of

simplicity in the exposition, unitary and vertical. Then, u = u(x, s) ∈ Ω× Γ̄, where Γ̄ ⊆ Γt

represents the portion of the boundary of the organ where the load can be applied (region

accesible to the surgeon).

To account for the high dimensionality of the problem, an alternative (doubly) weak
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form of problem (1)-(3) consists in finding the displacement u ∈ H1(Ω)× L2(Γ̄) such that

for all u∗ ∈ H1
0(Ω)× L2(Γ̄) (see [25]):

∫
Γ̄

∫
Ω

(∇su
∗)TσdΩdΓ̄ =

∫
Γ̄

∫
Γt2

(u∗)T tdΓdΓ̄ (4)

where ∇su represents the symmetric part of the gradient of displacements, Γ = Γu ∪ Γt

represents the boundary of the solid, divided into essential and natural regions, and where

Γt = Γt1 ∪ Γt2, i.e., regions of homogeneous and non-homogeneous, respectively, natural

boundary conditions.

The Dirac-delta term should be regularized for computation purposes and approxi-

mated by:

tj ≈
m∑
i=1

f i
j(x)gij(s) (5)

by performing a singular value decomposition of the load, for instance. Here, j refers to

the j-th component of the vector at hand, and m the truncation index —the series would

be in principle infinite— whose value should be determined with the help of a suitable

error indicator, see for instance [3].

The main ingredient of the PGD approach to the construction of a computational vade-

mecum is the establishment, in an iterative way, of an approximation to the solution in the

form of a finite sum of separable functions [10]. To briefly describe the method, we

assume that, at iteration m of this procedure the solution has converged, and takes the

form

umj (x, s) =
m∑
k=1

Xk
j (x) · Y k

j (s), (6)

where the term uj refers to the j-th component of the displacement vector, j = 1, 2, 3.

Here, vectorial functions Xk and Y k represent a set of a priori unknown approximating

functions that will be computed by the PGD algorithm with no user intervention. In general,

and perhaps by the strong tradition of POD methods, they are referred to as modes also

in the PGD terminology.
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The subsequent term of this approximation, the (m + 1)-th one, will be obtained by

means of an enrichment with space and load position functions, say

um+1
j (x, s) = umj (x, s) +Rj(x) · Sj(s), (7)

where R(x) = Xm+1(x) and S(s) = Y m+1(s) are the sought functions that improve the

approximation, here renamed for brevity. The admissible variation of the displacement is

now

u∗j(x, s) = R∗j (x) · Sj(s) +Rj(x) · S∗j (s). (8)

To find the new pair of functions Rj and Sj, our experience indicates that a fixed-point

alternating directions algorithm, in which functions Rj and Sj are sought iteratively, gives

excellent results despite its simplicity. Newton-Raphson or modified Newton methods

could be equally employed.

2.1.1 Computation of S(s) assuming R(x) is known

If R(x) is assumed to be known, the resulting admissible variation will include terms

related to S(s) only:

u∗j(x, s) = Rj(x) · S∗j (s), (9)

or, in vector notation, u∗(x, s) = R ◦ S∗, where the symbol “◦” stands for the so-called

entry-wise, Hadamard or Schur multiplication for vectors. Injecting it back into the weak

form of the problem, Eq. (4), provides

∫
Γ̄

∫
Ω

∇s(R ◦ S∗) : C : ∇s

(
m∑
k=1

Xk ◦ Y k +R ◦ S

)
dΩdΓ̄ =

∫
Γ̄

∫
Γt2

(R ◦ S∗) ·

(
m∑
k=1

fk ◦ gk
)
dΓdΓ̄, (10)
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or, equivalently (functional dependencies have been omitted for clarity when they are

obvious)

∫
Γ̄

∫
Ω

∇s(R ◦ S∗) : C : ∇s(R ◦ S)dΩdΓ̄

=

∫
Γ̄

∫
Γt2

(R ◦ S∗) ·

(
m∑
k=1

fk ◦ gk
)
dΓdΓ̄ (11)

−
∫

Γ̄

∫
Ω

∇s (R ◦ S∗) · RndΩdΓ̄,

where Rn stands for the residual:

Rn = C : ∇su
m, (12)

and C represents, as usual, the fourth-order constitutive tensor of the particular model

employed for soft tissues.

Since all the terms depending on x are known at this stage, all integrals over Ω and

Γt2 can be computed straightforwardly so as to obtain an equation to compute S(s).

2.1.2 Computation of R(x) assuming S(s) is known

As the fixed-point algorithm proceeds, an equivalent procedure allows us to obtain R(x)

by noting that now S(s) is assumed to be known:

u∗j(x, s) = R∗j (x) · Sj(s). (13)

Again, by substitution into the weak form of the problem, Eq. (4), we obtain

∫
Γ̄

∫
Ω

∇s(R
∗ ◦ S) : C : ∇s

(
m∑
k=1

Xk ◦ Y k +R ◦ S

)
dΩdΓ̄ =

∫
Γ̄

∫
Γt2

(R∗ ◦ S) ·

(
m∑
k=1

fk ◦ gk
)
dΓdΓ̄. (14)
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Conversely, all the terms depending on s can now be integrated over Γ̄, thus arriving at a

system of equations to determine R(x).

Based on this procedure, a surgery simulator that provides very accurate response

and that includes haptic feedback, has been constructed, see Fig. 1. Contrarily to what is

commonly believed, the number of modes (i.e., the number of functions, m), needed for

the approximation of the response is not that big. In practice, we have been employing

in the order of tens of functional pairs [25], although an error estimator is being currently

developed that could relate the number of functions to the error in the force feedback

provided to the user.

[Figure 1 about here.]

2.2 Manifold learning techniques for the interpolation of anatomies

As can be noticed from the introduction before, what PGD technique is intended for is

the solution of parametric problems, considered as problems in high dimensional spaces.

Therefore, it seems natural to think of an extension in which “shape” itself is a parameter

of the problem so as to be able to provide the user with solutions to any possible (physio-

logical) anatomy. The inclusion of the patient anatomy as a parameter in the formulation

is a delicate task, however, as will be readily noticed. Shape is not a parameter in classi-

cal terms. In other words, by linearly interpolating two ellipses, for instance, shapes very

different to an ellipse can be obtained. This is a very well-known phenomenon that has

already been pointed out in many branches of science and engineering [28] [29].

To efficiently parameterize shapes, following [28], it has been preferred to embed the

segmented organ(s) geometry (a human liver in this case) on a background mesh and to

compute in it the distance field to the boundary of the organ (in other words, a level set),

see Fig. 2. This approach is also classical in shape and topology optimization [7] [2],

where the concept of shape derivative and also topological derivative is introduced. The
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set of (Euclidean) nodal distances is thus stored in the form of a high dimensional vector,

living in the example of Fig. 2 in a space of 49321 dimensions, that correspond to the

distance values at the nodal positions of a grid of 43 × 31 × 37 nodes. Therefore, each

anatomy represents a point in this 49321-d space. Associated to each anatomy, an off-

line pre-computed vademecum is considered that provides with its response with respect

to a punctual load at any point of its accesible boundary, as introduced in the previous

section.

[Figure 2 about here.]

To find the underlying geometrical structure of a particular set of organ anatomies

and their associated, pre-computed vademecums, Locally Linear Embedding (LLE) tech-

niques have been employed [30]. Essentially, LLE looks for a suitable, lower-dimensional

space where to project the set of high dimensional vectors and still obtain meaningful

results.

Denote by X i the coordinates of each organ in the high dimensional space, that is,

its associated 49321-dimensional vector containing the distance to the organ boundary.

LLE looks for a suitable interpolation of each point i in terms of a number of neighbors

(that must be chosen by the user, always greater than the expected dimension of the low

dimensional space where we try to project). These weights are found by minimizing the

functional

ε(W ) =
∑
i

|X i −
∑
j

WijXj|2, (15)

where Wij = 0 if i and j are not neighbors. The basic assumption of LLE is that, in the low

dimensional space, these weights still interpolate well the new, embedded coordinates Y i.

These new, low dimensional coordinates are thus found by minimizing a new functional,

Φ(Y ) =
∑
i

|Y i −
∑
j

WijY j|2, (16)
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that leads to a problem in which Φ(Y ) =
∑

ij Mij(Y i · Y j) with Mij = δij −Wij −Wji −∑
kWkiWkj. Precisely, see [30], the lowest eigenvalues of this matrix Mij serve as an

indirect measure of the dimensionality of the embedding space (except from the first

eigenvector, always unitary, with null associated eigenvalue, that is discarded).

By embedding the geometry of a particular organ in the manifold generated by other

organs, also obtained from any suitable medical imaging technique and after segmenta-

tion, it will be shown that it is possible to efficiently characterize the underlying geometry

and, notably, to interpolate it among their neighbors.

3 Results

Before giving details on the performance of the proposed technique, we revisit the per-

formance of PGD as a menas to obtain suitable vademecums for the organ(s) of interest.

Then, the resulting performance of the proposed technique for interpolating vademecums

is addressed.

3.1 On the convergence of the PGD technique

It is firstly important to clarify the error introduced by the truncation of the PGD series at a

number m of functional pairs, see Section 2.1. Although it is a classical result from some

of our previous works, it is important to evaluate all sources of error.

In this example we consider one particular liver geometry, the same employed in some

of our previous works, see [25], for instance. The mesh is composed by 2853 nodes

and 10519 tetrahedra. For this simple example, a Kirchhoff-Saint Venant constitute law

with E = 0.17 MPa and ν = 0.48 is considered. More sophisticated constitutive laws are

equally possible, see [15] and references therein. To evaluate the convergence properties

of the method, we consider a loading region Γ̄ composed by 66 nodes. The explicit

algorithm introduced in this same reference [25] is also considered. In Fig. 3 a plot of the
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convergence in the error with respect to the full finite element solution of the problem (for

one particular position of the load, randomly chosen) is represented. As can be noticed,

some eleven modes suffice to obtain errors below 10% in L2-norm, a value that seems

judicious, given the inherent uncertainties of this type of application. Nevertheless, there

is no limitation in terms of real-time performance and storage of a much higher number of

modes, if needed.

[Figure 3 about here.]

Once the tolerance has been fixed for a particular basis set of vademecums, the

patient-specific one is then obtained by a suitable interpolation on the shape manifold,

as explained before. This is analyzed next.

3.2 In-silico generated anatomies

It is not easy, in general, to have access to a big enough number of organ geometries.

Although in Section 3.3 an example will be given, to show the capabilities of the proposed

method it has been preferred to begin with a set of synthetic geometries. Thus, by be-

ginning with a segmented geometry of a human liver, a set of 50 different livers has been

generated by applying to its original finite element mesh a transformation

x′ = Ax =


αx βxy βxz

αy βyz

αz

x. (17)

These αi and βij parameters have been randomly chosen such that the volume gain (i.e.,∑
i αi) is always under 30% and that the distortion provoked by βij is always under 10%.

The resulting livers are shown in Fig. 4.

[Figure 4 about here.]
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As can be noticed from Eq. (17), every liver from the set is identical to the original

one except a six-parameter transformation given by the symmetric matrix A. Thus, it is

expected that LLE method will be able to find this relationship. Indeed, by applying LLE,

the set of eigenvalues clearly show that every point in the manifold (a liver in the form

of its 49321-d level set nodal vector) depends on six values, the six eigenvalues clearly

distant from the others (here, the already mentioned null eigenvalue is discarded, see

[27]). The set of eigenvalues and the projection of the set of 50 liver nodal coordinates

into a three-dimensional space by LLE are shown in Fig. 5(a) and (b), respectively. It is

noteworthy to mention that upon projection onto a 3-d space, still a meaningful structure

of the set is found, see Fig. 5(b), where the set fits perfectly on a plane that could even be

projected onto a two-dimensional space almost without distortion. This fact is suggested

by the two eigenvalues shown in Fig. 5(a), clearly distant from the others.

[Figure 5 about here.]

With an eye towards the interpolation of the computational vademecums generated on

top of this geometric structure, a total of 45 livers were used to generated the manifold

structure, while the remaining 5 livers of the set were utilized for testing the proposed inter-

polation method. Essentially, what is here proposed is to interpolate among vademecums

ui = ui(x, s), with i = 1, . . . , 45, by simply applying the LLE structure:

uj(x, s) ≈
nn∑
i

Wijui(x, s), (18)

where Wij represent the set of weights obtained by straightforward application of the LLE

algorithm and nn the number of chosen neighbors (that is, as already mentioned, a user

parameter). Note that the weights result from the interpolation of the geometry. We

assume that the vademecum (i.e., the displacement field for each possible load position)

will equally be well interpolated by these weights. Results indicate that this assumption

works reasonably well.
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By doing this, one of the vademecums was interpolated from among their neighbors,

as dictated by the LLE algorithm, and the predicted results were compared to the ref-

erence ones, obtained by standard application of the method presented in Section 2.1.

Results from the comparison between the reference anatomy and the just interpolated

one are shown in Fig. 6(a). As can be noticed, very good agreement between both vade-

mecums is obtained, with an error in the predicted volume of the liver under 5% and an

error in the displacement field, measured in the L2-norm, of 9.03%, see Fig. 6(b).

[Figure 6 about here.]

Another aspect of utmost importance in the application of LEE techniques is the ex-

pected rate of convergence of the method with the number of samples taken from the

manifold. As intuition dictates, the more we sample the manifold, the more accurate the

results should be. To verify this intuitive assumption, a set of up to 500 samples was

generated. Fig. 7 plots the obtained convergence rate. As expected, the error decreases

monotonically with the number of samples considered.

[Figure 7 about here.]

It is important to note that the number of available data could (and should) be increas-

ing as new anatomies are being obtained by medical imaging techniques and progres-

sively incorporated to the system database. Currently, there exist efficient incremental

LLE algorithms able to improve the description of the manifold without the need for a full

re-computing of the whole LLE weights, see Eq. (15)[31]. Ideally, big data streams coming

continuously from CT scans can be incorporated into the high dimensional descriptions

in the proposed data base, thus allowing for a finer description of the data manifold, es-

pecially in regions of intricate geometry.
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3.3 In-vivo geometries

But the real challenge of the method here proposed is to work with segmented patient

geometries. These are always harder to find. In this case, a set provided by the french

research institute IRCAD, whose collaboration is gratefully acknowledged, was employed.

The set was composed, see Fig. 8, by 20 segmented geometries, in *.obj format, corre-

sponding to 10 men and 10 women, with different degrees of hepatic cancer. The tumor

geometry has not been segmented, however, and for the ease of exposition has been

treated as if it were healthy liver tissue. Consideration of a second distance field to prop-

erly take into account tumoral tissue, or even blood vessels, etc., could in principle be

equally possible, although it has not been considered in this work.

[Figure 8 about here.]

3.3.1 Validation of the technique

The proposed technique has been validated, in the first instance, by evaluating the er-

ror in the results that the description of the anatomy by means of level sets implies. Of

course, this error must be mesh-dependent, so four different grid sizes h were employed

for a single liver anatomy. One of the liver anatomies, namely, that of liver number 2 in our

nomenclature, was interpolated by employing a base composed by the original 20 livers.

Therefore, liver number 2 was a member of the base. As expected, the LLE algorithm

predicted that the weights Wij = 0 ∀i, j except from W22 = 1.0. In other words, LLE algo-

rithms are able to detect the presence of the target anatomy in the basis and to interpolate

it without adding any noise to the result. All the error must come indeed from the passage

through a level set description of the anatomy and its associated vademecum.

The resulting anatomy is presented in Fig. 9. In this case, the error in the displacement

field provided by the associated vademecum in L2-norm is of 9% for a grid size of h = 1

mm. A convergence study with grid size is presented in this same Fig. 9.
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[Figure 9 about here.]

3.3.2 Interpolating one target anatomy and its related vademecum

The true objective of the conducted research was to develop a method able to interpolate

an anatomy and its associated vademecum by using a database composed by already

computed vademecums on reference anatomies. To this end, one of the twenty livers

(namely, liver number 13 in Fig. 8) was removed from the base and chosen as a target

anatomy. With the aid of the remaining 19 livers and their respective vademecums, a

model was created for liver number 13 including its interpolated anatomy and the associ-

ated vademecum.

By applying LLE algorithms, the anatomy of the liver was interpolated, giving the ap-

pearance shown in Fig. 10(a). In Fig. 10(b) the error thus provoked, measured as the

difference between the interpolated and target level sets, is shown. Note that the dif-

ference between distance fields remains bounded, always below some 4 mm, within the

region occupied by the liver.

[Figure 10 about here.]

By interpolating the vademecums using d = 4 dimensions and assuming k = 10 neigh-

bors, the L2-norm error in the displacement field for different load positions is below 19%.

These values have been found by trial and error (with the obvious limitation that the num-

ber of neighbors should be greater than the number of dimensions in which the manifold

lives), so as to provide the best possible results. Even if this error value is high, if we

think in terms of usual engineering practice, it is not so if we consider all the uncertainties

related to the correct constitutive modeling of soft living tissues. Furthermore, it should be

highlighted that these results can be considered as a upper bound of the errors provided

by the proposed technique, since they have been obtained for a dataset of only twenty

livers, ten coming from male patients and ten from female, and with very different degrees
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of anatomy deformation provoked by different cancer types. One of the main advantages

of the proposed techniques is precisely that it can be continuously improved by adding

new organ segmentations to the data set. In this way, a better characterization of the

underlying geometrical structure of the problem (i.e., the shape of the manifold) can be

achieved without the need for re-computing the whole set of interpolating weights.

4 Discussion

In this work a technique has been developed that is able to compute computational,

patient-specific, avatars for surgery planning, including haptic response. The just de-

veloped technique is based on the use of computational vademecums, i.e., a technique

developed by the authors that can be seen as a sort of (entirely computational) response

surface method that provides the user with the mechanical response of the organ(s) of

interest at feedback rates on the order of 1 kHz, thus amenable to be employed in surgery

planning environments with haptic response.

The systems is thus equipped with a database of (off-line) pre-computed vademecums

for geometries of reference that serve as a basis for a proper interpolation of the target,

patient-specific anatomy. The method is thus able to provide a patient-specific vademe-

cum in a very short time, ranging from minutes to few hours. The main difficulty of such an

interpolation is the fact that geometry can not be interpolated straightforwardly. Instead, a

manifold learning technique should be employed. In this work, Locally Linear Embedding

(LLE) techniques have been employed. This technique allows for a progressive enrich-

ment of the database without the need of re-computation of the associated weights.

This is precisely one of the future enhancements of the technique that constitutes

nowadays our main line of research. The work presented herein has been accomplished

with a very restricted data set composed by only twenty livers, which provides limited ac-

curacy in the interpolated vademecums. However, even in such a restrictive scenario, the
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presented technique has shown to properly interpolate patient anatomies and, perhaps

more importantly, to provide with very reasonable results in very limited time windows.

Results reported herein were obtained by employing a Mac Pro computer equipped with

6 Intel E5 cores and 16 Gb of RAM and by employing some of the Matlab parallelizing

capabilities. No special supercomputing capabilities were needed, although for some very

fine grids some high performance computing could be needed.

Computational costs of the proposed technique can be established clearly in two parts.

Firstly, the obtain of the vademecums, which is by far the most costly part. In general, as

reported in some of our previous works, one single vademecum could take up to some

three-four days running in a standard Mac Pro computer, with no parallelization in the

code. No supercomputing facilities were employed in this work.

Once obtained, vademecums should be interpolated through LLE techniques. This

procedure runs considerably faster. For instance, in the example with 500 liver geometries

only 1.4 seconds were necessary to run the LLE algorithm. This can be considered as a

realistic upper bound of the consumed time.

The just developed technique thus opens the possibility for a very realistic patient-

specific surgery planning that could eventually help the surgeon to perform the surgery

virtually in advance to face all the difficulties he or she is going to face in the operating

room. Other features (such as patient-specific constitute behavior of soft tissues) could

be obtained by elastography, for instance, giving rise to a fully personalized patient avatar.

This constitutes our current effort of research.
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Figure 1: Prototype of surgery simulator based on the use of a computational vademe-
cum. Palpation of the liver during cholecystectomy is studied.
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Figure 2: Distance field for a particular liver and associated geometry extracted by the
Marching Cubes algorithm [21].
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Figure 3: Convergence of the PGD approximation of a single vademecum towards the
reference FEM solution for different number of modes.
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Figure 4: Set of 50 different livers generated by applying a linear transformation to an
original liver geometry.
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Figure 5: (a) Set of predicted eigenvalues, showing the 6-dimensional structure of the set
of livers. (b) Result of the projection into a 3-d space, where the flat structure of the set
can be noticed. The red dot represents the liver to be interpolated.
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Figure 6: (a) Comparison between an interpolated anatomy and the original one. Ref-
erence anatomy is represented in solid, while the obtained interpolation is represented
in wireframe. (b) Comparison between an interpolated vademecum and the original one.
Both deformed geometries are superimposed to show the noticeable similarity between
them. The color bar represents the magnitude of the difference in displacement, in mm.
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Figure 7: Convergence rate in the level set approximation of one particular liver of the
set, measured in L2-norm.
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Figure 8: Geometry of the 20 samples of patient livers.
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Figure 9: Obtained anatomies for different level set grid sizes: (a) 1 mm, (b) 5 mm, (c) 10
mm. (d) Convergence of the predicted volume (L2-norm error of the distance field within
the liver geometry) of the three different livers with grid size.
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Figure 10: Obtained anatomy for liver number 13 (a). Error with respect to the target
anatomy measured as the difference between distance real and interpolated fields (b).
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