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Abstract Standard simulation in classical mechanics is based on the use of
two very different types of equations. The first one, of axiomatic character,
is related to balance laws (momentum, mass, energy, ...), whereas the second
one consists of models that scientists have extracted from collected, natural or
synthetic data. Even if one can be confident on the first type of equations, the
second one contains modeling errors. Moreover, this second type of equations
remains too particular and often fails in describing new experimental results.
The vast majority of existing models lack of generality, and therefore must be
constantly adapted or enriched to describe new experimental findings. In this
work we propose a new method, able to directly link data to computers in order
to perform numerical simulations. These simulations will employ axiomatic,
universal laws while minimizing the need of explicit, often phenomenological,
models. This technique is based on the use of manifold learning methodolo-
gies, that allow to extract the relevant information from large experimental
datasets.
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R. Ibañez, E. Abisset-Chavanne, J.V. Aguado & F. Chinesta
High Performance Computing Institute &
ESI GROUP Chair @ Ecole Centrale de Nantes
1 rue de la Noe, F-44300 Nantes, France
E-mail: {Ruben.Ibanez-Pinillo;Emmanuelle.Abisset-Chavanne;Jose.Aguado-
Lopez;Francisco.Chinesta}@ec-nantes.fr
D. Gonzalez & E. Cueto
Aragon Institute of Engineering Research, Universidad de Zaragoza, Spain
E-mail: {gonzal;ecueto}@unizar.es
∗ Corresponding author: F. Chinesta



2 Rubén Ibañez et al.

1 Introduction

Big Data has bursted in our lives in many aspects, ranging from e-commerce to
social sciences, mobile communications, healthcare [17], etc. However, very lit-
tle has been done in the field of scientific computing, despite some very promis-
ing first attempts. Engineering sciences, however, and particularly Integrated
Computational Materials Engineering (ICME) [13], seem to be a natural field
of application.

In the past, models were more abundant than data, too expensive to be
collected and analyzed at that time. However, nowadays, the situation is rad-
ically different, data is much more abundant (and accurate) than existing
models, and a new paradigm is emerging in engineering sciences and technol-
ogy. For instance, high-energy physics experiments produce some 1Pb of data
per day, while in 2012, 162000 papers were published in materials science and
engineering journals.

Advanced clustering techniques, for instance, not only help engineers and
analysts, they become crucial in many areas where models, approximation
bases, parameters, etc. are adapted depending on the local state (in space and
time senses) of the system [1,10]. They make possible to define hierarchical and
goal-oriented modeling. Machine learning [9] needs frequently to extract the
manifold structure in which the solution of complex and coupled engineering
problems is living. Thus, uncorrelated parameters can be efficiently extracted
from the collected data, coming from numerical simulations or experiments. As
soon as uncorrelated parameters are identified (constituting the information
level), the solution of the problem can be predicted at new locations of the
parametric space, by employing adequate interpolation schemes [5,11]. On a
different setting, parametric solutions can be obtained within an adequate
framework able to circumvent the curse of dimensionality for any value of the
uncorrelated model parameters [4].

This unprecedented possibility of directly determine knowledge from data
or, in other words, to extract models from experiments in a automated way,
is being followed with great interest in many fields of science and engineering.
For instance, the possibility of fitting the data to a particular set of models has
been explore recently in [2]. Willcox and coworkers, on the contrary, have es-
tablished a strategy that allows to construct reduced-order models from data,
by inferring the full-order operators without the need to construct them explic-
itly, nor having a direct knowledge on the governing models [15,14]. Closely
related, Ortiz has developed a method that works without constitutive models,
by finding iteratively the experimental datum that best satisfies conservation
laws [7].

In the ICME framework of materials modeling, design, simulation, and
manufacturing, this subtle circle is closed by linking data to information, in-
formation to knowledge and finally knowledge to real time decision-making,
opening unprecedented possibilities within the so-called DDDAS (Dynamic
Data Driven Application Systems) [3][12].
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In the present work we will assume that all the needed data is available.
We will not address all the difficulties related to data generation or obtention
from adequate experiments. This is a topic that, of course, remains open. On
the contrary, we develop a method in which this stream of data plays the role
of a constitutive equation, without the need of a phenomenological fitting to
a prescribed model.

To better understand the data-driven rationale addressed in the present
paper, let us consider, for the sake of clarity, a very simple problem: linear
elasticity. In that case the balance of (linear and angular) momentum leads
to the existence of a symmetric second-order tensor σ (the so-called Cauchy’s
stress tensor) verifying equilibrium, expressed in the absence of body forces,
as

∇ · σ = 0.

The finite-element solution of this equilibrium equation starts from estab-
lishing a weak form in the domain Ω with boundary Γ ≡ ∂Ω,∫

Ω

u∗ · (∇ · σ) dx = 0.

By integrating by parts, it results∫
Ω

∇u∗ : σ dx =

∫
Γ

u∗ · (σ · n) dx,

where n represents the outward unit vector normal to the boundary.
If we consider Γ = ΓD ∪ ΓN , (ΓD ∩ ΓN = ∅), representing portions of

the domain boundary where, respectively, displacements u = ug(x) (Dirichlet
boundary conditions) and tractions σ ·n = tg(x) (Neumann boundary condi-
tions) are enforced, the weak form finally reads:

Find the displacement field u ∈ (H1(Ω))3 satisfying the essential boundary
conditions u(x ∈ ΓD) = ug(x) such that∫

Ω

ε∗ : σ dx =

∫
ΓN

u∗ · t dx, (1)

∀u∗ regular enough and vanishing on ΓD, i.e. ∀u∗ ∈
(
H1

0(Ω)
)3

.

In the previous weak form, the symmetry of σ implies the equality ∇u :
σ = ∇Su : σ, with ∇Su the symmetric component of the displacement gra-
dient, also known as strain tensor, generally denoted by ε.

The weak form given by Eq. (1) involves kinematic and dynamic variables
from the test displacement field u∗ and the stress tensor σ respectively. In
order to solve it a relationship linking kinematic and dynamic variables is
required, the so-called constitutive equation. The simplest one, giving rise to
linear elasticity, is known as Hooke’s law (even if, more than a law, it is simply
a model), and writes

σ = λTr(ε)I + µε, (2)
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where Tr(•) denotes the trace operator, and λ and µ are the Lame coefficients
directly related to the Young modulus E and the Poisson coefficient ν.

By introducing the constitutive model, Eq. (2), into the weak form of the
balance of momentum, Eq. (1), a problem is obtained that can be formulated
entirely in terms of the displacement field u. By discretizing it, using standard
finite element approximations, for instance, and performing numerically the
integrals involved in Eq. (1), we finally obtain a linear algebraic system of
equations, from which the nodal displacements can be obtained.

In the case of linear elasticity there is no room for discussion: the ap-
proach is simple, efficient and has been applied successfully to many problems
of interest. Today, there are numerous commercial codes making use of this
mechanical behavior and nobody doubts about its pertinence in engineering
practice. However, there are other material behaviors for whom simple mod-
els fail to describe any experimental finding. These models lack of generality
(universality) and for this reason a mechanical system is usually associated
to different models that are progressively adapted and/or enriched from the
collected data.

The biggest challenge could then be formulated as follows: can simulation
proceed directly from data by circumventing the necessity of establishing a
constitutive model? In the case of linear elasticity it is obvious that such an
approach lacks of interest. However, in other branches of engineering science
and technology it should be an appealing alternative to standard constitutive
model-based simulations. In our opinion, we are at the beginning of a new era,
the one of data-based or, more properly, data-driven engineering science and
technology, where as much as possible data should be collected and information
extracted in a systematic way by using adequate machine learning strategies.
Then, simulations could proceed directly from this automatically acquired
knowledge.

Thus, the question from a methodological viewpoint could be reformulated
as: If Hooke had never existed, linear elasticity finite element simulations would
have existed?

This paper addresses this question, trying to push it beyond linear elastic
behaviors. Next section focuses on the construction of the so-called constitu-
tive manifold from the collected data. Then, Section 3 introduces data-driven
simulation in the context of elastic models (linear and nonlinear). Finally,
Section 4 extends the procedure to inelastic behaviors.

2 Collecting data and constructing the constitutive manifold

Imagine, to begin with 8more general scenarios will soon be considered) me-
chanical tests conducted on a perfectly linear elastic material, in a specimen
exhibiting uniform stresses and strains. As previously indicated, in this paper
we do not address issues related to data generation. Thus, for M randomly ap-
plied external loads, we assume ourselves able to collect M couples (σm, εm),
m = 1, . . . ,M . These pairs could be represented as a single point Xm in a
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phase space of dimension D = 12 (the six distinct components of the stress
and strain tensors, respectively). In the sequel Voigt notion will be considered,
i.e. stress and strain tensors will be represented as vectors and the fourth-order
elastic tensor reduces to a square matrix.

Each vector Xm thus defines a point in a space of dimension D and, there-
fore, the whole set of samples represents a set ofM points in RD. We conjecture
that all these points belong to a certain low-dimensional manifold embedded in
the high-dimensional space RD. Imagine for a while that the M points belong
to a curve, a surface or a hyper-surface of dimension d � D. When D = 3 a
simple observation suffices for checking if these points are located on a curve
(one-dimensional manifold) or on a surface (two-dimensional manifold). How-
ever, when dealing with high dimensional spaces, a simple visual observation
is, in general, not possible. Moreover, the extraction of uncorrelated features
(often referred to as latent parameters) seems to be more physically pertinent.

Therefore, appropriate manifold learning (or non-linear dimensionality re-
duction) techniques are needed to extract the underlying manifold (when it
exists) in multidimensional phase spaces. A panoply of techniques exist to
this end. The interested reader can refer to [19,18,16,20,1], just to cite a few
references. In this work we focus on the particular choice of Locally Linear
Embedding —LLE— techniques [18]. This method proceeds in two steps:

1. Each point Xm, m = 1, . . . ,M is linearly interpolated from its K nearest
neighbors. In principle K should be greater that the expected dimension
d of the underlying manifold and the neighbors should be close enough so
as to ensure the validity of linear approximation. In general, a small but
enough number of neighbors K and a large-enough sampling M ensures
a satisfactory reconstruction. For each point Xm we can write the locally
linear data reconstruction as:

Xm =
∑
i∈Sm

WmiXi, (3)

where Wmi are the unknown weights and Sm the set of the K-nearest
neighbors of Xm.
If we perform this locally linear interpolation for every data point in the
high dimensional phase space, the set of weights that best approximates
the manifold structure of the data will be obtained by minimizing the
functional

F(W ) =

M∑
m=1

∥∥∥∥∥Xm −
M∑
i=1

WmiXi

∥∥∥∥∥
2

,

where Wmi is zero if Xi does not belong to the set of K-nearest neighbors
of Xm.

2. We assume now that each linear patch around Xm, ∀m, is mapped onto a
lower dimensional embedding space of dimension d� D. To maintain the
neighborhood structure of the set (other methods like isomap [19] conserve
distance in the embedding space instead), weights are assumed to remain
unchanged in the low-dimensional, embedding space. The problem thus
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becomes the determination of the coordinates of each point Xm in the low
dimensional embedding space, ξm ∈ Rd.
For this purpose a new functional G is introduced, that depends on the
searched coordinates ξ1, . . . , ξM

G(ξ1, . . . , ξM ) =

M∑
m=1

∥∥∥∥∥ξm −
M∑
i=1

Wmiξi

∥∥∥∥∥
2

,

where now the weights are known and the reduced coordinates ξm are
unknown. The minimization of functional G results in a M ×M eigenvalue
problem whose d-bottom non-zero eigenvalues define the set of orthogonal
coordinates in which the manifold is mapped.
It is important to note that functional G(ξ1, . . . , ξM ), with the different co-
ordinates ξm already calculated as just described, offers an error estimator
on the locally linear embedding capacity, and even a local estimator can
be derived by considering

E(ξm) =

∥∥∥∥∥ξm −
M∑
i=1

Wmiξi

∥∥∥∥∥ . (4)

Thus, if we consider the introduction of a new point ξ in the embedding
space Rd after identifying its neighbors set S(ξ) and calculating the locally
linear approximation weights, we can come back to RD and reconstruct X
from its neighbors Xi, i ∈ S(ξ).

In the linear elastic behavior the application of the just described technique
results, as expected, in a flat manifold of dimension two, i.e. d = 2. This is
in perfect agreement to the fact that Hooke’s law is completely characterized
by two coefficients (either Young’s modulus and Poisson coefficient, or Lame’s
coefficients) and is linear. Fig. 1 depicts the location of samples ξm = (σm, εm)
into the resulting two-dimensional manifold, as well as the associated elastic
energy of each sample, showing that LLE preserves the smoothness of the
elastic energy field of the sample in the embedding space.

3 Working with constitutive manifolds

We have abandoned the idea of a phenomenological constitutive equation.
Instead, we have defined the concept of (experimentally obtained) constitutive
manifold, as the one with a minimal number of latent parameters (embedding
coordinates) in which the state of the sample will evolve in different stress and
strain conditions.

However, for the method to be useful, we need to define a strategy to
solve problems stated in weak form and discretized by finite elements. Several
options can be considered, which are described next.

1. Identifying the locally linear behavior. If we consider locally linear
approximations, fully justified if E(ξm), given by Eq. (4), remains small
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Fig. 1 Reduced coordinates ξm on the resulting two-dimensional manifold. The color map
represents the associated elastic energy.

enough at each position ξm (if it is not the case the sampling should be
improved locally or globally), we can write

ξm =

M∑
i=1

Wmiξi,

where ξm is a stress-strain couple. This implies a locally linear elastic be-
havior, that allows obtaining the elastic tensor C fromXm andXi (related
to ξm and ξi respectively), with i ∈ Sm, by minimizing the functional

H(C) =
∑
i∈Sm

(σi − C · εi)2.

This results in the obtention of C(Xm) ≡ Cm.
2. Identifying the locally linear tangent behavior. In order to consider

Newton strategies the locally tangent linear behavior should be computed.
Again, it is easy to obtain by considering ∆mi ≡ Xm − Xi = (σm −
σi, εm − εi) or ∆mi = (∆σmi , ∆ε

m
i ), i ∈ Sm. Because of the locally linear

behavior around point Xm, we can write

∆σmi = CT ·∆εmi , (5)
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that allows defining the functional HT (CT )

HT (CT ) =
∑
i∈Sm

(∆σmi − CT ·∆εmi )2, (6)

whose minimization results in the tangent elastic tensor CT (Xm) ≡ CT,m.
3. No model at all. The third level of description considers points Xm

without trying to identify local behavior models at all. This strategy traces
back in some sense to that of Ortiz [7], which seeks for the experimental
result that provides the closest fit to the equilibrium state of the sample.
However, what we propose goes far beyond a pure clustering strategy, as
will be readily noticed.

It is important to note that even if the just discussed descriptions are based
on the original manifold Xm and not on the reduced one ξm, the consider-
ation of the reduced manifold allows to obtain a global view of the manifold
dimensionality as well as safer interpolations on the manifold. This ensures
that interpolated data ξ belongs to the manifold, before applying the inverse
mapping to obtain X on the original manifold.

4 Data-driven simulation in the elastic case

We assume that the elastic behavior is accessible from the data contained into
the so-called constitutive manifold but that an explicit expression relating
stresses and strains is neither available nor desired. Immediately, a question
arises on how to solve the weak form related to the equilibrium of the me-
chanical system given by Eq. (1) if no closed-form expression on σ = σ(ε) is
available.

In this case we could consider three different approaches depending on the
chosen behavior description as just discussed in the previous section:

1. From the just identified locally linear behavior C(X) one could apply the
simplest explicit linearization technique operating on the standard weak
form∫

Ω

ε∗(x) : σn+1(x) dx =

∫
ΓN

u∗(x) · t(x) dx, (7)

where at each point, from the stress-strain couple at position x, X(x), the
locally linear behavior C(X(x)) can be obtained (in practice at the Gauss
points used for the integration of the weak form) that allows us to write
(using Voigt notation)∫

Ω

ε∗(x) · (C(x) · ε(x)) dx =

∫
ΓN

u∗(x) · t(x) dx.

This allows, in turn, to compute the displacement field and from it, to
update the strain and stress fields, to compute again the locally linear
behavior. The process continues until convergence.
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Fig. 2 A generic nonlinear iteration solver between the constitutive manifold (red) and the
equilibrium manifold (blue), representing the locus of the points satisfying the weak form
of the problem in mixed form, Eq. (7).

2. From the just identified locally linear tangent behavior CT (X) one could
apply a Newton linearization technique where

σ(ε+∆ε) = σ(ε) +
∂σ

∂ε
∆ε = σ(ε) + CT ·∆ε,

that, once introduced into the weak form, reads∫
Ω

ε∗(x) · (CT (x) ·∆ε(x)) dx

= −
∫
Ω

ε∗(x) · (C(x) · ε(x)) dx+

∫
ΓN

u∗(x) · t(x) dx.

3. If no local behavior has been identified, the only knowledge consists of the
experimental data. In these circumstances we propose to consider a mixed
formulation involving the two unknown fields ε(u) and σ as considered in
the LaTIn method [8]. We consider a simple solution strategy consisting on
an iteration between two manifolds, the first one related to (ε,σ) couples
verifying equilibrium Eq. (1); and the second one related to couples (ε̂, σ̂)
verifying the (unknown) constitutive equation —in other words, belonging
to the constitutive manifold. The iteration solver sketched in Fig. 2, depicts
the usually non linear constitutive manifold (red curve) and the equilibrium
one (in blue). The problem solution is found at the intersection of both
manifolds.
If we assume that, at iteration n, the couple (εn,σn) verifies the equi-
librium, and that it does not belong to the constitutive manifold, a new
couple (ε̂, σ̂) is sought by considering an appropriate search direction from
(εn,σn). In fact the searched couple is no more that the intersection of the
search direction with the constitutive manifold. The just updated stress-
strain couple belongs to the constitutive manifold, but it does not verify
equilibrium. Thus, a new equilibrated solution (εn+1,σn+1) is searched
from the former one, being the intersection of a new search direction and
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the equilibrium manifold. The iteration process continues until reaching
the problem solution at the intersection of both manifolds.
The just described procedure requires a local step for the computation of
the couple (ε̂, σ̂) at each integration point considered in the weak form,
Eq.(1), and a global step in which the weak form is solved with the behavior
known at all the integration points. In what follows we describe both steps.

4.1 Local step

At each integration point xg, g = 1, . . . , ngp, we consider (εn(xg),σ
n(xg))

and look for (ε̂(xg), σ̂(xg)). Even if there is an infinity of possible search
directions, a natural choice consists in projecting it onto the constitutive
manifold.

4.2 Global step

From the strain-stress couples satisfying the constitutive law at every inte-
gration point, we come back to the weak form, Eq. (1), in order to obtain
updated strain-stress couples satisfying equilibrium (εn+1(x),σn+1(x)),
x ∈ Ω.
The generic search direction can be written as:

σn+1(x)− σ̂(x) = D · (εn+1(x)− ε̂(x)), (8)

with D a symmetric positive-definite matrix to ensure the problem ellip-
ticity discussed below. Enforcing now the equilibrium∫

Ω

ε∗(x) · σn+1(x) dx =

∫
ΓN

u∗(x) · t(x) dx,

and using Eq. (8), it results∫
Ω

ε∗(x) ·
(
σ̂(x) + D · (εn+1(x)− ε̂(x))

)
dx =

∫
ΓN

u∗(x) · t(x) dx,

that can be rewritten as∫
Ω

ε∗(x) ·
(
D · εn+1(x)

)
dx =

−
∫
Ω

ε∗(x) · (σ̂(x)−D · ε̂(x)) dx+

∫
ΓN

u∗(x) · t(x) dx. (9)

Matrix D should provide the fastest convergence rate while ensuring the
problem ellipticity. To ensure its positivity we can consider D = B2 with
B symmetric, i.e. BT = B, and look for B instead of D.
The a priori choice of direction D is not obvious in most of problems. In
the case of the LaTIn method [8] this matrix is assumed given when solving
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the global problems precisely because it was proposed as a nonlinear solver
able to decouple the local and nonlinear problem from the global but linear
one. In our case, we are considering a mixed formulation for solving a
problem without an explicit knowledge of the constitutive equation. The
most general option consists on considering matrix D unknown. Thus, our
strategy is composed of a sequence of nonlinear-local and nonlinear-global
problems, trying to avoid a priori choices of D. Obviously if the last is
fixed, global problems become linear as it is the case when considering the
LaTIn linearization technique. Moreover, the discrete global matrix does
not change during the iterations. However, we would like to emphasize
that our objective is to solve a constitutive model-free problem, more than
addressing nonlinear issues.
Thus, we distinguish two type of iterations, the so-called global-local ones
that involves the determination of stress-strain couples verifying the con-
stitutive equation and then their updating to ensure equilibrium (as illus-
trated in Fig. 2). Then a second iteration is needed for solving the local
problem in order to compute the stress-strain couple verifying equilibrium
when the searching direction D is assumed unknown. This induces an ad-
ditional nonlinearity in the global equilibrium problem.
At this point two possibilities exist:
(a) Considering a single direction D, the same for every Gauss point for

which the behavior was determined. Each of them is represented by a
point on the constitutive manifold. In that case in order to determine
the stress-strain couple satisfying equilibrium as well as the optimal
direction D, we are enforcing Eq. (9) as well as the fact that the searched
couple (εn+1(x),σn+1(x)) must be the closest point to the constitutive
manifold. This optimality condition writes

D = arg min
D∗

((
σn+1(x;D∗)− σ̂∗

)2
+
(
εn+1(x;D∗)− ε̂∗

)2)
, (10)

where (σ̂∗, ε̂∗) is the closest point on the constitutive manifold to the
stress-strain couple related to the direction D∗.
Obviously the solution requires some iterations to reach the minimum
distance that will be in general (except when considering linear behav-
iors) non-zero because we consider the same matrix D for all the Gauss
points involved in the integration of the weak form (9).

(b) We consider a field D(x), that implies the increase of the number of
degrees of freedom. However, by considering for example a different
matrix at each Gauss point, the minimization problem given by Eq.
(10) leads to the problem solution in a single iteration. The employ of
a coarse mesh to approximate D is a nice compromise between the two
limit cases: considering a single search direction or one at each Gauss
point.



12 Rubén Ibañez et al.

4.3 A first numerical example: A beam subjected to simple traction

In order to illustrate the data-driven procedure, we consider first a linear elastic
beam subjected to simple traction and solve the associated 1D equilibrium
problem. Different scenarios are considered and discussed below.

First, the beam is assumed clamped at its left boundary x = 0 with a
constant unit force F = 1 applied at its right boundary x = L = 1. Because of
the expected simple solution only 5 linear finite elements were considered for
discretizing its equilibrium weak form. Fig. 3 depicts the constitutive manifold.
In a general setting, this manifold should come from experiments, but in in
this case was generated in silico by assuming a linear elastic behavior with an
unit elastic modulus.

The use of strategies based on the identification of the locally linear behav-
ior or its tangent counterpart allows as expected (due to its linear behavior)
solving the problem in a single iteration. It is important to note that both
strategies are weakly intrusive, making possible its implementation into any
commercial simulation code with the only difference that the updated locally
linear behavior comes form a data table instead of any analytical expression.

In what follows we are discussing the use of the third strategy. The equilib-
rium manifold and the different strain-stress couples at the different iterations
are depicted in Fig. 3 for D = 10, D = 2 and D = 1. These D-values repre-
sent in fact different search directions in Fig. 2. It can be noticed that when
D = 1 is chosen, this value coincides with the elastic modulus associated to
the constitutive manifold, and therefore convergence is reached in a single it-
eration. All the simulations started by assuming the same stress-strain couple
(σ0, ε0) = (3.0, 3.0) at every Gauss point.

In these figures, the search direction in the global problem D was fixed “a
priori”. When the strategy described in the previous section is used, implying
the determination of the optimal value of D, the nonlinear problem involving
σ, ε and D, with (σ0 = 3, ε0 = 3, D0 = 3), converges in a single iteration of
the local-global problem. This is so even if a few iterations were required for
solving the nonlinear global problem, to obtain the reference values defining
the problem solution (σ = 1.0, ε = 1.0, D = 1). We considered an initial guess
D = 3.0. Because of the linearity of the constitutive manifold, no difference
exists between considering a single direction D or a different one at each Gauss
point. The solution is again obtained in a single global-local iteration and a
few ones for solving the nonlinear global problem.

In order to make the problem a bit more complex, we consider the previous
one but now we consider an uniformly distributed traction along the beam
length. Thus a linear stress and strain distribution is expected. In other words,
each Gauss point will be at a state located at different points of the constitutive
manifold. Fig. 4 represents the stress-strain manifold along the beam length,
where the stress-strain couples at the Gauss points are shown. It can be seen
that when starting from the initial guess (σ0(x) = 3, ε0(x) = 3, D0 = 3) and
again because of the linearity of the constitutive manifold, the convergence is
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Fig. 3 Beam subjected to traction: (top) D = 10, (center) D = 2 and (bottom) D = 1.
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Fig. 4 Beam subjected to uniformly distributed traction.

Fig. 5 Beam subjected to a traction for a nonlinear behavior: manifold-based fixed point
linearization

reached in a single global-local iteration with few iterations for the solution of
the nonlinear global problem.

Finally, we consider a nonlinear constitutive law defined from points with a
prescribed stress-strain relationship σ = Eε2, with E = 1. In the case of a unit
traction at the right boundary and when considering uniform initial strain and
stress guesses on the constitutive manifold, all the Gauss points will have an
identical behavior.

When applying the fixed point linearization based on the locally linear
manifold C or the Newton strategy making use of the locally linear tangent
manifold CT , the procedure proposed in the previous section converges very
fast. Iterations to convergence are depicted in Figures 5 and 6 respectively.

If, on the contrary, we proceed following the third strategy mentioned pre-
viously, i.e., directly from data, Figure 7 depicts the initial guess and the
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Fig. 6 Beam subjected to a traction for a nonlinear behavior: manifold-based Newton
linearization

Fig. 7 Beam subjected to traction for a nonlinear behavior.

solution after convergence (σ(x) = 1, ε(x) = 1). Here, D is unique and calcu-
lated at each global-local iteration. Moreover, at each one of these iterations
a nonlinear global problem must be solved needing for few extra-iterations.

If we combine behavior nonlinearities and nonuniform solutions (e.g., a
distributed traction along the bar) we proved that the convergence can be
improved by considering a different D at each Gauss point with respect to the
use of a single search direction D for all them.

Manifold-based locally linear behaviors resulting in the fixed point and
Newton strategies proceed faster that the one based on the solution from
the only knowledge of data. However, it requires the identification of such
behaviors with the subsequent errors that they could imply if coarse samplings
of the constitutive behavior are employed.
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Fig. 8 2D problem associated to a ”hidden” linear elastic behavior: (top) horizontal com-
ponent of the displacement and (bottom) vertical component

4.4 A two-dimensional case study

We considered a 2D problem defined on a square involving again an elastic
behavior defined from a manifold in the space (σ, ε). This constitutive mani-
fold proved to project onto a just two-dimensional one in its reduced form, as
discussed previously.

The square is clamped on its left boundary, free on the top and bottom
sides and a unit traction is applied on its right side. Any of the proposed
strategies, the ones making use of the manifold-based locally linear behaviors
or the one proceeding directly from data, allow reaching the same converged
solution depicted in Fig. 8. The last one employs a single search direction D
or a different one at each Gauss point D(x). It agrees in minute with the
one obtained by using standard model-based discretization. Again, a Newton
technique remains superior to the other choices.
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Fig. 9 Plastic manifold associated to the von Mises plasticity case.

5 Addressing inelastic behaviors: Linear elastic-perfectly plastic
behavior

In this section we start by addressing the case of a linear-elastic-perfectly
plastic 2D behavior. We assume the linear elastic contribution defined locally
from C(Xe) (Xe refers to the stress-elastic strain manifold) whereas the plastic
contribution that involves the yield surface f(σ) is assumed given by its own
manifold.

Using again Voigt notation, the elastic behavior expressed from σ = C ·εe,
where C represents the manifold-based elastic tensor and εe refers to the elastic
component of the deformation (the reversible one). The total strain can be
decomposed in its elastic and inelastic components,

ε = εe + εp,

where we assume the plastic flow rate

ε̇p = λ
∂f(σ)

∂σ
= λn,

where the yield surface f(σ) is provided by experimental data. To generate
these data in silico, we assume that it follows a von Mises model f(σ) = σe−Y ,
with Y the yield stress (no hardening is considered) and σe the equivalent stress
related to the von Mises criterion. f(σ) results in the surface represented in
Fig. 9 where, for the sake of clarity, it is represented in the space of stresses.

The persistency condition ḟ(σ) = 0 when plastic flow occurs, results in the
following plastic flow

λ =
nT · C · ε̇
nT · C · n

,

or in its incremental counterpart

λ =
nT · C ·∆ε
nT · C · n

,
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Fig. 10 Stress trajectory in the stress space in the elastic-perfecly plastic behavior

with now ∆εp = λn.
Here three fields must be considered, stress, strain and plastic strain. As

soon as the last one is known, the elastic strain can be locally determined and
the stresses obtained from the elastic manifold using the couple stress-elastic
component of the strain.

In these expressions everything is properly defined except n, since we as-
sume that the explicit form of the yield condition, i.e. f(σ) is unknown and
the only available data is the manifold depicted in Fig. 9. However, n is easily
accessible by considering the normal vector to the plastic manifold depicted
in Fig. 9.

Now one could imagine performing a standard linear elastic-perfectly plas-
tic simulation by using a finite element explicit code where the plastic de-
formation is computed from the manifold that allows extracting n instead of
the knowledge of function f(σ) and its explicit derivative with respect to the
stresses.

When considering the traction of a square domain along its right side, with
appropriate boundary conditions on its left side (with tension-free conditions
on the top and bottom boundaries) ensuring an homogeneous stress and strain
fields everywhere in the domain, the stress trajectory in the stress space is
depicted in Fig. 11. It can be noticed that the elastic behavior applies when
the stress remains inside the plastic surface and then it remains in the surface
during the plastic flow. Again, for the sake of simplicity, the results are shown
in the stress domain. Finally, Fig. ?? depicts the three composites of the plastic
strain for three different levels of the applied load acting on the right side of
the clamped square previously considered. The different strategies allows to
compute the same results.The Newton algorithm results again to be the one
involving less computational effort.

Even if this analysis proved that we could proceed as usually when function
f(σ) is not explicitly known, the elastic behavior was assumed given by the
locally-linear elastic manifold. Obviously the extension to implicit formulations
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Fig. 11 Plastic strain at the initial time (top), for the half of the total load (middle) and
for the entire load (bottom), for components εpxx (left), εpyy (center) and εpxy (right)

or to more complex nonlinear elastic behaviors again based on a locally-linear
tangent description is straightforward.

6 Conclusions

This paper constitutes a first attempt to reduce the modeling needs in com-
putational mechanics. We proved that by knowing the different stress-strain
couples defining the elastic behavior as well as the manifold defining the yield
condition there is no need to create models for representing neither the linear
or nonlinear elastic behaviors nor the yield condition. Different linearization
strategies have been proposed. Two of them are weakly intrusive and easily
implantable in existing commercial simulation codes, since they are based on
a locally-linear elastic expression. The use of Abaqus UMAT routines [6], for
instance, admits a straightforward implementation of the tangent locally lin-
ear strategy. Another linearization strategy proceeding exclusively from data
iterates from a local-nonlinear problem to ensure the verification of the con-
stitutive behavior and a linear or nonlinear-global problem for ensuring the
mechanical equilibrium.

Despite the fact of addressing quite simple problems, a great potential can
be noticed, that could constitute a new paradigm in computational mechanics,
linking experimental data with discretization techniques while reducing as
much as possible the needs of modeling issues.
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4. D. González, J. V. Aguado, E. Cueto, E. Abisset-Chavanne, and F. Chinesta. kpca-based
parametric solutions within the pgd framework. Archives of Computational Methods in
Engineering, pages 1–18, 2016.
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