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SUMMARY

In this paper we address the problem of improving Natural Element simulations in terms of
computational cost. Several problems are discussed, that include an efficient natural neighbour
search algorithm and a comparison of different natural neighbour-based interpolation algorithms.
In particular, we review the so-called pseudo-NEM, a MLS-like approximation scheme that employs
natural neighbours, and compare it with traditional Sibson and Laplace interpolation schemes in terms
of both accuracy and computational cost. Some examples in linear Elasticity and visco-plasticity are
analyzed in order to test the proposed schemes in engineering problems. Copyright (© 2006 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Performance of a numerical method in terms of computational cost is a critical issue. Although
computers are growing exponentially in terms of speed of computation and capacity of storage,
so does user’s needs. The case of meshless methods is particularly noteworthy. It is well-known
that nowadays meshless methods greatly alleviate the user time employed in meshing the
domain of interest, and significantly reduce the time employed in remeshing, that is nearly
completely eliminated in practice, since the distortion of the mesh (or cloud of nodes) does
not affect the accuracy of the results.

In a meshless method, instead of constructing a mesh on a given domain (thus placing nodes
in appropriate positions so as to obtain well-shaped elements), usually the approach is reversed
and the objective is, given a cloud of points, to obtain their connectivity. This connectivity
can be sought based on a distance criterion (as in the EFGM [J] or the RKPM [Ld]) or other
type of neighbourhood (natural neighbourhood in the case of the NEM, for instance, see [2J]).

In a recent paper devoted to these topics [@] it has been said that for a meshless method to
be competitive, “ ... the evaluation of the nodal connectivity [should be] bounded in time and
linear with the total number of nodes in the domain”. Despite that the constants accompanying
the linear law are also important (i.e., the relative amount of time employed in generating
the connectivity, despite that it varies linearly or not), it is clear that the generation of the
connectivity is a crucial issue in meshless methods.

In the NEM the generation of the connectivity is done by searching for natural neighbours of
the nodes. Natural neighbours of a given node are those nodes that share with it an edge of a
Delaunay triangle or tetrahedron. Usually, however, natural neighbourhood is sought between
an integration point and the nodes whose support cover the mentioned integration point. Thus
efficient natural neighbour search algorithm should be employed in order to make the NEM
competitive. This constitutes one of the main objectives of this papers.

In a Galerkin procedure, there is another issue that should be addressed. The computation
of the approximation (shape) functions and their derivatives is also important. Since the
irruption of the very first meshless methods [@] it was noted that the computation of the
shape functions, and especially their derivatives, can be a very costly process. This was one of
the early motivations of the so-called “diffuse derivatives” in the work of Villon and colleagues
before mentioned in the context of MLS approximations.
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A STUDY ON THE PERFORMANCE OF NATURAL NEIGHBOUR GALERKIN METHODS 3

In the NEM framework, two different interpolants have been proposed. The original
version of the method [f]] employed natural neighbour (Sibson) interpolation [2]. Sibson
interpolation is known to be a costly procedure, although it is also well-known in the
approximation community as a high-quality interpolation scheme with many advantages (see,
for instance, [E]) Sukumar [@] later proposed the use of Laplace (also known as non-
Sibsonian) interpolation [[4]. This interpolant is considerably less costly than the original
Sibson interpolant, although somewhat less smooth.

Some of the advantages of Natural Neighbour interpolation have been attributed to the
particular geometry of the shape functions’ support, that remains quite isotropic even for
large distortions of the original cloud of points. Based on this, Reddy @] and Yvonnet [B()]
proposed independently a MLS procedure that employs a weight function whose support is the
same as the one of the NEM (we hereafter refer to this approximation as pseudo-NEM). This
method runs considerably faster than traditional NEM methods (for equivalent reproducing
conditions) and can constitute an interesting alternative to alleviate this high cost of the NEM.

These and other issues are discussed in this paper. Firstly, in section 2, a review of natural
neighbour interpolation is made, with special emphasis on the newly proposed pseudo-NEM
approximation before mentioned.

In section 3 we propose a efficient natural-neighbour search algorithm that runs in linear
time and that has proved to be very fast, especially when using a large amount of nodes.

In section 4 we analyze the computational cost associated to each interpolation procedure in
a series of examples in linear elasticity and visco-plasticity. We discuss the relative importance
of this cost in linear and non-linear problems, with regular and irregular clouds of different
densities. Finally, in section 5, some conclusions are drawn.

2. NATURAL NEIGHBOUR INTERPOLATION

Essentially, the NEM is a Galerkin procedure that relies on natural neighbour interpolation to
construct the trial and test functions characteristic of this method. As mentioned before, there
exist nowadays different interpolation procedures that are based upon natural neighbourhood.
In this section we review three of them, although there exist others.

Prior to this definition we introduce some basic geometrical entities that are needed for
further developments.

2.1. Voronoi/Dirichlet diagrams

Consider a model composed by a cloud of points N = {ny,ns,...,n,,} C RY, for which there
is a unique decomposition of the space into regions such that each point within these regions is
closer to the node to which the region is associated than to any other in the cloud. This kind
of space decomposition is called a Voronoi diagram (also Dirichlet tessellation) of the cloud of
points and each Voronoi cell is formally defined as (see figure m)

Ty ={x e R : d(z,x;) < d(z,2;)V J £}, (1)
where d(+, ) is the Euclidean distance function.
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4 ALFARO, YVONNET, CHINESTA AND CUETO

|

Figure 1. Delaunay triangulation and Voronoi diagram of a cloud of points.

I ~

The dual structure of the Voronoi diagram is the Delaunay triangulationﬂ, obtained by
connecting nodes that share a common (d — 1)-dimensional facet. While the Voronoi structure
is unique, the Delaunay triangulation is not, there being some so-called degenerate cases in
which there are two or more possible Delaunay triangulations (consider, for example, the case
of triangulating a square in 2D, as depicted in Fig. ] (right)). Another way to define the
Delaunay triangulation of a set of nodes is by invoking the empty circumcircle property, which
means that no node of the cloud lies within the circle covering a Delaunay triangle. Two nodes
sharing a facet of their Voronoi cell are called natural neighbours and hence the name of the
technique.

Equivalently, the second-order Voronoi diagram of the cloud is defined as

Try={x e R : d(x,x;) < d(xz,xz;) < dx,xx)V J#1#K}. (2)

Based on these definitions, different natural neighbour interpolation schemes have been
proposed. We review some of the most popular.

2.2. Thiessen interpolation

The simplest of the natural neighbour-based interpolants is the so-called Thiessen’s interpolant
[@] Its interpolating functions are defined as

wl(m)_{ lifw el )

0 elsewhere

The Thiessen interpolant is a piece-wise constant function, defined over each Voronoi cell. It
defines a method of interpolation often referred to as nearest neighbour interpolation, since
a point is given a value defined by its nearest neighbour. Although it is obviously not valid
for the solution of second-order partial differential equations, it can be used to interpolate the
pressure in formulations arising from Hellinger-Reissner-like mixed variational principles, as

proven in [E]

TEven in three-dimensional spaces, it is common to refer to the Delaunay tetrahedralisation with the word
triangulation in the vast majority of the literature
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A STUDY ON THE PERFORMANCE OF NATURAL NEIGHBOUR GALERKIN METHODS )

2.3. Sibson’s interpolation

The most extended natural neighbour interpolation method, however, is the Sibson interpolant
B3 [B4. Consider the introduction of the point z in the cloud of nodes. Due to this
introduction, the Voronoi diagram will be altered, affecting the Voronoi cells of the natural
neighbours of «. Sibson [@] defined the natural neighbour coordinates of a point @ with respect
to one of its neighbours I as the ratio of the cell T7 that is transferred to 7, when adding x to
the initial cloud of points to the total volume of T,. In other words, if x(x) and k;(x) are the
Lebesgue measures of T, and T,; respectively, the natural neighbour coordinates of & with
respect to the node I is defined as

¢r(x) = : (4)

Figure 2. Definition of the Natural Neighbour coordinates of a point x.

In Fig. P the shape function associated to node 1 at point  may be expressed as

o) = G )
abed
Sibson’s interpolation scheme possesses the usual reproducing properties for this class of
problems, i.e., verify the partition of unity property (constant consistency), linear consistency
(and therefore are suitable for the solution of second-order PDE). Other interesting properties
such as the Kronecker delta property [@] and linear interpolation on the boundary [ﬂ] [@] are
also verified by the NEM.

2.4. Laplace interpolation

Recently, some new interpolation schemes based on the concept of natural neighbors have been
proposed [B] [E] Its application in the context of the NEM dates back to the work of Sukumar
[E] This so-called Laplace or non-Sibsonian interpolation, has received considerable attention,
since it involves magnitudes of one order less of the space dimension (i.e., the calculation of
areas in three-dimensional problems, for instance, instead of volumes). If we define the cell

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1-28
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6 ALFARO, YVONNET, CHINESTA AND CUETO

intersection t7; = {& € Ty (\Ts,J # I} (note that ¢;; may be an empty set) we can define
the value

|th|
= —" 6
a; () Az, 2;) (6)
Thus, the shape function related to node 4 at point x in Fig. E is defined as
h
23(1:) O44(33) 84(%)/ 4(’73) (7)

T as(@) T Y [sa(@)/ha(e)]

where s represent the length of the Voronoi segment associated to node J and n represents
the number of natural neighbours of the point under consideration, &. n = 4 in this example.

2
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Figure 3. Definition of non-Sibsonian coordinates.

Derivatives of the Laplace shape function are not defined along the edges of the Delaunay
triangles that lie inside its support (see [2d]).

This same interpolation scheme is used in the Meshless Finite Element Method (MFEM)
context [E], but in this case, the space is divided into polyhedral elements and Laplace
interpolation is constructed within each polyhedron. Since the same properties mentioned
for Sibson interpolation (i.e., linear completeness, exact interpolation on the nodes and linear
interpolation along the boundaries) hold, a conforming method is achieved.

2.5. Pseudo-NEM interpolation

As mentioned before, one of the key issues in the high quality of the interpolation achieved
by the NEM despite the large distortion of the underlying triangulation is that the support of
the shape function remains quite isotropic, since it is composed by the union of circumcircles
covering a given evaluation point.

Based on this analysis, Reddy and coworkers [P and Yvonnet et al. [BQ] proposed
independently a Moving Least Squares (MLS) technique whose weighting function possesses
NEM-like support. But in order to alleviate the burden associated to the computation of
natural neighbour shape functions, they substitute it by a simplified one, composed by the
union of conical volumes.

Copyright (© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1-28
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A STUDY ON THE PERFORMANCE OF NATURAL NEIGHBOUR GALERKIN METHODS 7

Let
u" = p’(z)a(z) (8)
be a polynomial approximation to the essential field of the problem, u, with p”(xz) =

[1,2,y,2,...] a polynomial basis to a given order, and a(x) a vector of unknown coefficients.
To determine a(x), the functional

T =5 > w@p (@a(@) - uf )

is minimized with respect to a. w;(x) represents a weighting function associated to the node
i. See [R1] [B] for more details. This leads to the linear system

Aa = Bu, (10)
where N
Aje =Y wi(a)p;(ai)pr (i), (11)
i=1
Bi; = wi(z)p;(z). (12)
This leads to
u"(x) = pT(x) A" Bu, (13)
and thus, we can speak of a shape function
¢(x) =p"(z)A7'B. (14)

The key point in this approach is the choice of the weight function, that in this case is
a conical function. Let f be a cone, of unit height, whose basis matches the corresponding
Delaunay circumcircle containing the evaluation point  and whose tip projection over the
horizontal plane is the node n; (sce Fig. fl):

—
n;P| — 1713
f = Pl — iz (15)
Ini P
with

In order to avoid the overlapping of cone functions, whereby conserving the continuity of the
weight function, a cone portion is associated with each of the Delaunay triangles connected
to node n;. The cone function is thus non-zero if a point x belongs to the intersection
between the Delaunay circumcircle and the portion of the plane such as any point in the
basis formed by the origin node n; and the vectors n;n; and n;n; has positive coordinates
in this basis. n; and ny being the other two vertices of the triangle (see Fig. E) Due to
the particular shape of its support, which is defined for any nodal distribution, this weight
function guarantees interpolation conditions (w;(x;) = J;;); as Delaunay circles passes through
the nodes. Furthermore, the properties of positiveness and monotonically decrease are verified.
Since the cone functions are linear between two nodes, the continuity of the weight function
is guaranteed.

Sibson, Laplace and pseudo-NEM shape functions for a regular lattice of 5 X 5 nodes are
depicted in Fig. E

Copyright (© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1-28
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8 ALFARO, YVONNET, CHINESTA AND CUETO

ni

P

Figure 4. Definition of the conical weighting function f.

|nj

Figure 5. Zone associated with a cone portion.

2.6. Computation of natural neighbour shape functions

The computation of natural neighbour (Sibson or Laplace) shape functions deserves some
comments. In three-dimensional settings, it is necessary to compute volumes of Voronoi cells
(polyhedra) for the Sibson interpolant and areas of the corresponding Voronoi facets (poligons)
for Laplace interpolants. Both schemes share many features, although expressed in different
dimensions.

In two dimensions, the algorithm proposed by Watson [E] is especially efficient.
Unfortunately, this algorithm seems not to be straightforwardly extended to three-dimensional
settings.

In our experience, the algorithm proposed by Lasserre } for the computation of the volume

Copyright (© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1-28
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A STUDY ON THE PERFORMANCE OF NATURAL NEIGHBOUR GALERKIN METHODS 9

()

Figure 6. Sibson (a), Laplace (b) and pseudo-NEM (c) shape functions.

of polyhedra seems to be the most appropriate and has been employed in the three-dimensional
examples included in this work. For an in-depth discussion on the Watson’s algorithm, the
interested reader should read [R5 or [f.

We review here Lasserre’s algorithm, since we consider that three-dimensional problems are
both the most interesting cases and the most time-consuming. Lasserre’s algorithm begins by
expressing a convex polyhedron’s volume (first or second order Voronoi cell) in the form of a

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1-28
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10 ALFARO, YVONNET, CHINESTA AND CUETO

set of inequalities in R? that may be written as
{z|Rx < b}, (17)

where x represents, as usual, a point in R?, R is a matrix of dimension (m,d) and b is a
column vector of dimension m (number of restrictions that define the volume). The volume
enclosed by the polytope (d-dimensional counterpart of a polygon) is then given by

V(d,R,b), (18)
the i-th face of the polytope given by:
{z[(r; - ) = b, Rz < b}, (19)
where r; represents the i-th row of R. This face’s volume, in R%~! space is denoted by:
Vi(d—1,R,b). (20)

A traditional way of computing the volume of the polytope is given by:

V(d, R, b) i Vi(d—1,R,b), (21)

&\'—‘

where p is a fixed point in the space, m’ the minimum number of restrictions that define the
polytope (no redundant restrictions are considered) and d(p, H;) the distance from point p to
the hyperplane H; given by the i-th restriction that defines the volume.

This algorithm can be constructed in a recursive way, so the volume computation is
performed in the form of a binary tree, beginning by dimension d and leading to the
computation of some lengths in R. This volume can then be computed by:

1 — =
V(d,R,b) gz —1,R; 4, by). (22)

T1t| ’

In this expression R;; represents the reduced matrix, obtained from R by elimination of the
t-th variable, by means of the equation r;z = b;; by is the reduced vector after this elimination
and 7 is the t-th element of r;. V}, represents the volume in dimension d — 1 obtained with
the reduced matrix Ei,t and the reduced vector b;. The formulae used to calculate the 7 x

and b, terms of Ei’t and b, are:
Tjt

TiK = Tjk — %trlk (23)
by =b; — b, (24)
Tit

In the work of Braun and Sambridge [f]] the value of ¢ is chosen such that

|rie] = mjax |73] - (25)

Note that in this case the sum is set up to m instead of m’ since redundant restrictions are
automatically eliminated by the algorithm.

Copyright (© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1-28
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A STUDY ON THE PERFORMANCE OF NATURAL NEIGHBOUR GALERKIN METHODS 11

Node | = Y
1 0 0
2 1 0
3 1.5 1 0.5
4 2 1
5 141 1.6
6 0.6 | 1.8
7 0 1
8 1 1

Table I. Nodes for the calculation of Sibson shape function.

In order to calculate the derivatives of the shape functions, Eqs. (29), (R3) and (R4) should
be differentiated:

oV (d, R, b) 1~ | bi- 02, Vii(d— 1, Ri s, by)
—— 7 —§,,V(d,R,b) dz[ d -

oxy |rit|

‘/Z/t(d — 17Ei,t75t)

. (awlbi — fi|az1'rit|>‘|ﬂ (26)

|7t |7it
T5 i
3EIFJK = 8m17"jk — (9m1 (ﬁ)rik - ﬁamlrikv (27)
8:::ng = 8a:1bj - 8:01 (Tjt>b B Tjt 8931b17 (28)
Tit Tit

where O, represents the derivative in the x; direction.

2.6.1. Example: computation of shape function through Lasserre’s algorithm. In order to
clarify the previous algorithm, consider the set of points in two dimensions given in Table
I. We compute Sibson’s shape function associated to node 8 at the point (0.8,0.8).

The evaluation point (labelled P in Fig. ﬂ) has six neighbours. So it will be necessary to
compute six areas corresponding to second-order Voronoi cells, formed by the integration point
and its neighbours (highlighted in Fig. E) To this end, we compute the list of neighbours:

e Neighbours of node 8: 8,7, 1, 2, 3,4, 5,6
e Neighbours of the integration point: 8, 7, 1, 2, 3, 6
e Common neighbours: 8, 7, 1, 2, 3, 6

The equation defining the intersection of the hyperplane between two generic points A and
B and the plane R? (or, equivalently, = 0 in R?), that contains these two points, is

2 2
A — ||TRB
(IL’A —:z:B)T:Jc: M (29)
so, computing the different restrictions to form the matrix R, we arrive to
Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1-28
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12 ALFARO, YVONNET, CHINESTA AND CUETO
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Figure 7. Configuration of the point set given in Table I and position of the integration point. The
areas needed to perform the computation are highlighted.

Restriction | x4 | ya | B | YB Tix Tiy b;
7-8 0 1 1 1 -1 0 -0.5
1-8 0 0 1 1 -1 -1 -1
2-8 1 0 1 1 0 -1 -0.5
3-8 1.5 105 | 1 1 0.5 || -0.5 || 0.25
6-8 06| 18| 1 1 -0.4 || 0.8 0.8
8-p 1 1 ({0808 02 0.2 || 0.36

Copyright (© 2006 John Wiley & Sons, Ltd.
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A STUDY ON THE PERFORMANCE OF NATURAL NEIGHBOUR GALERKIN METHODS 13

Thus, matrix R and vector b defining the restrictions are in this case:

2,2 2 2
Ty Yz —Tg—Ys

T —Tg Y71 —Ys -1 0 $§+y§z$§_y§ —0.5
Tr—2%8 Y1—Ys -1 -1 224 2z$2_ 2 -1
Ro|®2—ms we—ws| _| O 1| [ |05 (30)
Tr3 —Tg Y3 —Ys 0.5 -0.5 1" w 0.25 | °
T — T3 Y6 — Ys -04 0.8 w2ty —al—y? 0.8
T8 —Tp Ys —Yp 0.2 0.2 Zg-i—ygzw?,—yi 0.36
2

This set of restrictions is shown in a graphic manner in Fig. E

6@

@' @’

Figure 8. Graphical representation of the restriction set.

Note that in this case the only row of matrices R and b in Eq. () depending on the position
of the evaluation point P is the last one. Thus, by deriving the Eq. @), defining each row of
the restriction set, with respect to the coordinates of the evaluation point, we arrive to:

7] 0 0 0
e~y = -1 —{x-fx}:o, 7[,, }:o —[-f ]:71. 31

8.%‘1, { i p:| s ayp i P 8.1‘;0 Yi — Yp s 8yp Yi — Yp ( )
o |al+y?—ap—up 9 |2} +y!—al—up (32)

o = —Tp, F— =Y

Oxyp 2 P oy, 2 P

(¢ =1,...,m) and thus the derivatives of the restriction matrices are

Copyright (© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1-28

Prepared using nmeauth.cls



14 ALFARO, YVONNET, CHINESTA AND CUETO

0 0
0 0
OR OR 0 O
dR = ( dzp  Jyp ) “| o o
0 O
-1 0
0
0
b b 0
b= ( ey Dup ) o
0
-0.8

0 0
0 0
0 0
0 0 (33)
0 O
0 -1
0
0
0
0 (34)
0
—0.8

We start with ¢ = 1 with respect to the sum in Eq. (@) The first step is to select the pivot

and, therefore, the variable to be eliminated in the reduced matrices. In this case, in reference
to Eq. (B9, |rit| = max;|r1j| = |r11] = 1 and the new R?~1 space is the y-axis. We compute

the z value and introduce it in the rest of equations, giving

1 rog — ;%7“12 -1 by b — %fn -0.5
B Ty 32 — T2 -1 B by bs — by —0.5
Rig=|T3|=|re2—i8re|=|-05]|, bi=|by|=|ba—72b|=]| O (35)
Ty T2 — 2o 0.8 by bs — 21by 1
Ts 62 — %7’12 02 b5 b6 — %bl 026
Ry y<b (36)

The reduced derivative matrices can be calculated using Eq. (@) and (R§) and the data

stored in dR and db matrices, i.e.:

— Oy d -1
Oubs = Oubs — “2OLby = dbgy — —Lb; = —0.8 — —(—0.5) = —0.3 (37)
r11 r11 -1
The entire matrices are:
0,71 OyT1 0 0 ax@ ayEI 0 0
L O0zT2 ay?g 0 0 L 81;92 6y§2 0 0
dR, = | 0,73 Oyr3 | =10 0 |, dby = |30.b3 0Oybs | = 0 0 (38)
a{EFZl ay?4 0 0 8&4 8y54 0 0
0,75  OyTs 0 -1 0y bs ay55 —-0.3 -0.8
So we finally arrive to
Y (39)
Y= (40)
y=>0 (41)
y <125 (42)
y<13 (43)

Copyright (© 2006 John Wiley & Sons, Ltd.
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A STUDY ON THE PERFORMANCE OF NATURAL NEIGHBOUR GALERKIN METHODS 15

where y > 0.5 and y < 1.25 are the restrictions that limit the length of the segment, 0.75 (see

Fig. ).

Let us call ymin = % = #f = 0.5 and Yimar = % = 0%5 = 1.25. Then, the length on the y
axis is:
L= ‘/zlt(d - lvﬁi,tagt) = Ymaz — Ymin = 0.7 (44)
and its derivative is:
8a:1L = 8w1‘/z:£(d - 17§i,t75t) - 8azzymuw - 6w1ymin~ (45)

The value of Oz, Ymax can be calculated using the chain rule and the El,l and db; matrices,
ie.:

Ortimas = = (0B~ s - 0u71) = 0 (46)

In this case 0, L and 0, L are both zero. In other words, this segment’s length (see Fig. E)
does not change with a small change in the position of the evaluation point, P.
Introducing this value in the recursive formula (@) and @) we obtain:

b1 L —-0.5-0.75

A:A _— =
v A e T e

= —0.1875. (47)

by -0, L L b1 —-0.5-0 0.75 -0.5
0, Asp = 0, A (0201 = 0ulru]) = 0 (0-="0) =o.
8p 8p+d-\7‘11|+d-|7“11\ ! |T11| Iral + 2-1 +2~1 1
(48)
by -0, L L by —-0.5-0 0.75 -0.5
0, Asp = 0, A y (01— 0, lm]) =0 (0-=~0) =o0.
yoi8p = Sy 8p+d-|r11| d-[ro [\ e vlrul BN 1
(49)
7
®
.1 74/y>:0 .2
Figure 9. Final length of the first segment in the computation.
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16 ALFARO, YVONNET, CHINESTA AND CUETO

This same procedure is then repeated for the m rows of the R matrix. The sum of the m = 6
terms in Eq. (@) will give the total area of the second-order Voronoi cell corresponding to
node 8 and evaluation point P. The shape function ¢g(P) can then be obtained as

_ Agp

P)=—— 50
ss(P) = 2L, (50)
where Ar = Z?:{l A;p, being nnn the number of natural neighbours of the considered point.
The resulting area Agp is depicted in Fig. E

Finally, the derivative of the shape function is obtained by applying the chain rule to Eq.

(TE

0A 0A
L pg(P) ot

r 611:[

d¢s(P) 1

(“):BI AT

],mmI:LZ”Wd (51)

3. AN EFFICIENT NATURAL NEIGHBOUR-SEARCH ALGORITHM

For the computation of the weak form of the problem some kind of numerical integration of
the type
nip

/Q fpd0~ Y wif @) (52)

must be employed, since there is no closed form for the natural neighbour shape functions
just described, in general. In Eq. (@) w; represent the weights associated to the particular
quadrature scheme employed, nip the number of integration points and x; the associated
quadrature points.

It is well-known that the use of three-points (four in three-dimensional cases) numerical
quadrature on each triangle (or, respectively, tetrahedra) leads to a numerical integration
error in the NEM and it was judged as the cause of the apparent lack of conformity of the
NEM with standard patch-tests. In [@] a study was performed on the influence of this error
in the results and how to alleviate it. It was demonstrated that, despite the integration error
due to the non-polynomial form of the shape functions, the NEM is frequently more accurate
than standard, linear triangular FEM.

Whatever method employed to perform the integration, a search for the neighbours of the
integration point must be accomplished. This is equivalent to search for all the triangles whose
circumcircle contains the point . In that case the three nodes of the triangle will be natural
neighbours of the integration point. The naive approach to this problem is to perform an O(m?)
search (being m the number of nodes in the set, as mentioned in the preceding section), by
testing if the evaluation point is a natural neighbour of each node in the set. As will be shown
later on, this scheme performs extremely badly, and should be employed only when using very
coarse clouds of nodes.

In the original work by Braun and Sambridge [{f], the search for natural neighbours was
done by employing the walking triangle algorithm, due to Lawson [@] This method is used to
search for the triangle containing the evaluation point.

In our approach this search is not necessary since we employ a method that closely resembles
the structure of traditional FE codes. Thus, a “natural element” will be composed by a triangle,
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A STUDY ON THE PERFORMANCE OF NATURAL NEIGHBOUR GALERKIN METHODS 17

which defines, in general, the integration domain, and a number of nodes whose associated
shape function’s support covers any of the integration points. A similar definition can be
given if stabilized conforming nodal integration @] is used, for instance, instead of traditional,
Gauss-based quadratures.

Recently, a new algorithm has been proposed in [E] for the natural neighbour search. In
it, the possible neighbour candidates are limited to a squared region of length 2r around the
given integration point. In this way the search is done in an algorithm of order O(n - m)
where n < m. Although in principle valid, this algorithm possesses a main drawback derived
from the nature of natural neighbourhood itself. Two points can be neighbours even if they
are far away from each other, depending on the relative position of the other nodes. This
circumstance, that constitutes one of the main differences between NEM and other meshless
methods, complicates the practical application of the before mentioned algorithm, so that the
number of possible neighbour candidates n to be considered should be high enough. Otherwise,
the risk of eliminating natural neighbours of the given point is always present, and these will
be omitted, thus altering the approximation result.

We have developed a new searching algorithm that performs the search in an “expansive”
way, starting with the triangle that defines the integration points. We refer in this explanation
to two-dimensional settings for simplicity, although the algorithm is extended to three-
dimensional settings straightforwardly. Obviously, the Delaunay triangulation of the points
must be previously computed, prior to the application of the algorithm. This is done in our
case by employing the “Detri” software [@], that has proven to be very fast and efficient. It
employs a symbolic perturbation technique to avoid degenerate cases [H] Nevertheless, this
particular choice does not affect the conclusions of the work here presented.

Consider, for instance, a set of nodes whose triangulation gives 11 triangles, as shown in Fig.
E. The algorithm starts with the triangle that defines the integration domain, here labelled
as 1. Obviously, the three nodes defining triangle 1 are natural neighbours, by definition, of
the three integration points.

Figure 10. Step 1 in the search algorithm. Integration points are represented by circles.
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18 ALFARO, YVONNET, CHINESTA AND CUETO

We then continue (step 2, Fig. [LI]) by moving through the edges of the starting triangle,
say, to triangle number 2. The circumcircle of triangle 2 covers some of the integration points
of the element, so we add its nodes to the list of neighbours. Repeat this search iteratively by
moving through triangle edges, say to triangle number 3. In this case, the circumcircle does
not cover any of the integration points and we can stop the search trough this branch of the
tree and come back to triangle number 2.

Figure 11. Step 2 in the search algorithm. We move to triangle number 2 and check the neighbourhood.

All the triangles neighbouring triangle number 2 have been now checked, so we move back
to triangle number 1 and perform the search again beginning by other, non checked, edge (we
move, for instance, to triangle number 4). The process finishes when checking triangle number
7 and its associated triangles.

This iterative-search algorithm provides all element’s neighbours, while keeping the number
of checked triangles proportional to n, the number of nodes (or, equivalently, triangles) on
the cloud. This algorithm can be programmed in the form of a tree, whose pseudo-code is
summarized in Algorithm m

Algorithm 1. Natural neighbour search for a given natural element.

triangle = initial triangle
for triangles sharing an edge do
if any of the integration points is in the circumcircle and not “checked”
then add the three nodes to the list of neighbours
then label the triangle as “checked”
then triangle = next neighbouring triangle
else come back to previous triangle
end if
end for
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return

The algorithm runs in approximate constant time for each triangle, since the number of
checked neighbouring triangles is nearly constant for each of them. Thus, the total time for
the complete neighbour search is O(n). For this to be true, it is necessary to perform an
storage of triangle neighbouring a given one. This can be done in the triangulation process,
thus saving computational time. We refer the reader to [@] for further details on the particular
data storage algorithm.

Computer savings by employing this algorithm are shown in Fig. @ Savings reach a relative
amount of 4500 times for meshes of around 20000 tetrahedra.

4. NUMERICAL EXAMPLES

4.1. Two-dimensional plate with a hole problem

In order to compare the behaviour of the different approximations previously proposed, we
begin by the well-known two-dimensional problem of an infinite plate with a hole under
traction. Domain’s geometry is shown in Fig. E

Analytical solution for this problem exists, and it can be found in many classical books like,
for instance, in [2g]

uy(r,0) = %[2(&4— 1)0080-1—2%((1 + k) cos 0 + cos 30)

3
a
—2r—3 cos 39], (53)
afr . a . .
ug(r,0) = 8 [E(Ii —3)sinf + 2;((1 — ) sin @ + sin 30)
3
a- .
—275—3 sin 39}, (54)
where
k=3 —4v, (55)
3—v
=11, (56)

is the Kolosov coefficient for plane strain and stress, respectively. In this case, we have assumed
E =1.0 and v = 0.25. p represents the shear modulus and a is the radius of the circular hole.
The traction applied at infinity, og, was taken unitary.

By imposing appropriate symmetry conditions we model only one quarter of the plate.
Analytical tractions are imposed on the boundary of the domain so as to simulate the infinite
length of the plate.

This problem has been analyzed by employing Sibson, Laplace, pseudo-NEM interpolations,
and FEM. Comparative results for the convergence rates in Ly and H! norms are shown in

Fig. [14 (a) and (b).
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Figure 12. Time employed in the neighbour search for a traditional, O(n?) algorithm (a) and by the
proposed O(n) algorithm (b).
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Figure 13. Geometry of the plate with a hole problem.

As expected, all methods posses similar convergence rates, indicated by R. If we analyze
the computational cost of each simulation, we conclude that FEM simulations are the fastest
ones, without significant differences between all the methods, see Fig. E

Two-dimensional results are not very representative, in our opinion, since there exist
competitive algorithms for the computation of natural neighbour shape functions (i.e.,
the before mentioned Watson’s algorithm [@]) Pseudo-NEM does not appear to be very
competitive, but in three-dimensional problems the situation changes drastically, as will be
seen in the following section.

4.2. Three-dimensional linear elastic compression test

To test the performance of the methods in three-dimensional settings, we have chosen a very
simple problem of a cubic block under compression, composed by a linear, elastic material.
The schematic representation of this problem is shown in Fig. E

The exact solution of this problem is spanned by each of the four methods, so the analysis
of the accuracy will not be performed. Instead, we have focused in the computation time
employed in solving the problem, by checking different clouds, both regularly and irregularly
distributed over the unit cube. Examples of such clouds are shown in Fig. @ We checked both
regular and irregular meshes since the behaviour of the proposed neighbour-search algorithm
could differ in its speed of computation. For regular meshes, the search process is somewhat
faster.

The computational costs generated with this problem are analysed in Figs. [l and [l for
regular and irregular meshes, respectively. We analyze both the total time employed in the
calculation, as well as the part of this time employed in the computation of the shape function
and its derivatives.

As expected, the use of Sibson interpolation becomes prohibitive in three-dimensional cases.
But Laplace and pseudo-NEM approaches, despite being more costly than FEM, appear to be
competitive. Note that, although employing more computation time, the absence of need of
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Figure 14. Convergence of the results for the different methods in the plate with a hole problem. (a)
Lo-norm error and (b) H'-norm error. R denotes the convergence rate found for the different methods.

Copyright (© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1-28
Prepared using nmeauth.cls



A STUDY ON THE PERFORMANCE OF NATURAL NEIGHBOUR GALERKIN METHODS 23

5,00E-02
4,50E-02 +{——FEM
4,00E-02 = NEMS //:
—~ 3,550E-02 {{*~ NEML e
8 300E-02 = PNEM z -
£ 5 50E-02 1
“E’ 2,00E-02 -
= 1,50E-02 -
1,00E-02
5,00E-03 -
0,00E+00 ‘ ‘ ‘
0 500 1000 1500 2000
Number of nodes
(a)
1,20E+01
——FEM
1,00E+01 H—=— NEMS /:
-~ —s—NEML /
§ 8,00E+00 H_,  pNEM
< 6,00E+00 -
o
£ 4,00E+00 1
=
2,00E+00 %
0,00E+00 ‘ ‘ ‘
0 500 1000 1500 2000

nodes

(b)

Figure 15. Time employed in the computation of the shape functions and their derivatives (a) and
total computation time for the resolution of the plate with a hole problem (b).
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Figure 16. Geometry of the compression test.
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Figure 17. Different clouds of nodes employed in the simulation of the block under compression.

remeshing is not considered here. Especially noteworthy is the fact that nearly ninety per cent
of the computation time is employed in the computation of the shape function when using
Sibson interpolation.

Results for irregular meshes are similar. Again, Sibson interpolation becomes prohibitive,
while Laplace and pseudo-NEM approaches result to be competitive. While FEM employs
a negligible part of the calculation in computing the shape function, Sibson interpolation
constitutes up to ninety per cent of the computing time.

FEM is a competitive method for this kind of problems as has been proved in the last decades.
It has revealed to be among the most used numerical techniques both in industry and academia,
for obvious reasons. In our opinion, meshless methods should not be used for problems in which
FEM has proven to be a very robust technique. The difficulties associated with FEM begin in
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Figure 18. Total time employed in the compression test (a) and part of this time employed in the
computation of the shape function and its derivatives. Regular clouds.
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Figure 19. Total time employed in the compression test (a) and part of this time employed in the
computation of the shape function and its derivatives. Irregular clouds.
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problems with large transformations, where remeshing is necessary, especially when transfer
of internal variables is necessary from the old meshes to the new ones. This kind of problems
is analysed in the following section.

4.8. Extrusion of an aluminium profile

Direct aluminium extrusion is one of the most extended forming processes worldwide. Roughly
speaking, it is a process used to produce long profiles by pressing a billet of hot aluminium
through a hole with a certain shape. A schematic representation of the process is given in Fig.
@. Obviously, very large strains are present throughout the process. Numerical simulation of
extrusion has been studied largely by the FEM, by employing ALE or Eulerian approaches.
The interested reader is submitted to the early references by Zienkiewicz and co-workers for

examples on this topic [B4] [BJ.
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- Dummy Block
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- Die Backer
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()]
w
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Figure 20. Schematic representation of the extrusion process.

If we neglect elastic deformations when compared to plastic ones, the flow of hot aluminium
can be assimilated to that of a non-newtonian fluid. This approach has received the name
of “flow formulation” [@] This is the approach followed here. For an in-deep description of
aluminium behaviour and its simulation with NEM, the reader is referred to [[I].

We consider the balance of momentum equations, without inertia and mass terms

V.-o=0, (57)

and the assumed incompressibility of a von Mises-like flow:
V.v=0, (58)
where v represents the velocity field. The stress-strain rate relationship is given by Eq. (@)
o =2ud — pl, With,u:%, (59)

where d represents the strain rate tensor (deviatoric part of the velocity gradient), o, represents
aluminium’s yield stress and d represents the so-called “effective strain rate” (second invariant
of the strain rate tensor). The dependence of the yield stress on the strain rate is given by the
well-known Sellars-Tegart equation:

o, (d) = Smarcsinh“(%)e%] *, (60)

with d; = maz{d,dy} and dy an initial threshold in the strain rate.
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Parameter  Units Value
do (s7h) 0.005
S (MPa) 25
m 2.0
A (s71)  6x10°
J 5
: ((mf l)) e
mol K .

Table II. Material parameters for AA6063 Aluminium alloy.

(a) (b)

Figure 21. Geometry of the die for the extrusion of the cross-shaped profile. (a) perspective view and
(b) geometry.

Parameters governing the aluminium yield stress are summarised in Table ﬂ

With this model we performed the simulation of the extrusion of a cross-shaped profile,
whose geometry is shown in Fig. @ Only one half of the geometry was analysed, taking
advantage of the symmetry of the domain. The model was composed by 3021 nodes, 15843
tetrahedra and 63372 integration points (four per tetrahedra).

Obviously, large deformations appear during the simulation. For comparison purposes, we
ran the simulation using Laplace interpolation. At a given time step, we stopped the simulation
and performed the following time step using the four different approximation techniques,
namely, finite element, Sibson, Laplace and pseudo-NEM approximations. The geometry of
the domain at this time step is shown in Fig. @

One of the main results of the comparison between the different approximation techniques is
the differences found in the results. In Fig. @ a comparison is made of the small area marked
in Fig. p3.

Note the highly distorted mesh appearing in this time step. This produces spurious high
levels of strain rate in the FEM solution —in the zone highlighted by a white circle—, far
from the extrusion die, due undoubtedly to the distortion of the tetrahedra. At this step, FEM
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Figure 22. Geometry of the domain for the extrusion simulation test. The ellipse highlights the zone
detailed in Fig. @

mesh would have necessitated of a remeshing process, with the well-known inherent diffusion
of internal variables during the field transfer of internal variables.

While Sibson interpolation predicts slightly higher levels of strain, Sibson, Laplace and P-
NEM interpolations have demonstrated to provide good results when compared to experiments
(see [@]) The results seem to be insensible to mesh distortion. Note, however, that near the
symmetry planes, the number of natural neighbours for a given tetrahedron is low. In these
circumstances, Sibson, Laplace, P-NEM and FEM approximations are very similar (note that
Sibson tetrahedron with only four neighbours is a CST tetrahedron, see [@]) This could be
the reason of the high of level of equivalent strain rate appearing in the four results near the
symmetry plane.

The total amount of time employed in the simulations of the before-mentioned time step
are summarised in Table .

Number iterations Calc. shape functs. Total time Percentage

FEM 13 0.21 1040.01 0.02019
NEM-Sibson 15 15339.81 21979.48 67.79
NEM-Laplace 12 70.3 5580.03 1.260
pseudo-NEM 10 10.99 4674.96 0.2351

Table III. Total amount of time (seconds) employed for the simulation of one time step in the extrusion
problem.

These results are even more notorious if we perform the same simulation employing a purely
newtonian behaviour. These results are outlined in Fig. @ In this case the spurious high levels
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Figure 23. Contour plot of the second invariant of the strain rate tensor at the location indicated in
Fig. P2 (a) FEM, (b) Sibson, (c¢) Laplace and (d) pseudo-NEM results.
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Figure 24. Contour plot of the second invariant of the strain rate tensor at the location indicated in
Fig. @ Newtonian behaviour: (a) FEM, (b) Sibson, (c) Laplace and (d) pseudo-NEM results.

of strain rate present in the FEM simulation are even higher.

It is worth noting that the pseudo-NEM approach seems to present locking in this case,
since virtually no strains are predicted in this step. Maybe by employing richer consistency
approximations in the MLS adjustment of the approximation would provide locking-free
results, but there is a limited number of nodes in the support of the shape functions and
this is not possible everywhere with the formulation presented before.

The stiffness matrices in the NEM are banded and sparse, as in the FEM, but the number of
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neighbours of a given “element” is usually much higher than in the FEM. Thus, calculation and
inversion of the tangent matrix takes around 450 seconds with the three NEM methods, while
in FEM it takes around 80 seconds. Again, Laplace approximation seems to provide a good
compromise between accuracy and speed of computation, with no lack of accuracy detected
due to mesh distortion. Is in this type of problems where the authors believe that meshless in
general, and NEM in particular, approximations can be competitive with FEM simulations.
When large transformations in a Lagrangian framework are present in a problem, possibly
with internal variables related to history, NEM seems to provide an attractive alternative to
more traditional approaches. Note also that in the before presented results, remeshing time is
not considered for FEM results.

5. CONCLUSIONS

In this paper we have presented some techniques to improve the computational performance of
natural neighbour Galerkin methods. In particular, we have developed a new neighbour-search
algorithm that proves to run in O(n) time with big efficiency.

An in-deep study of the performance of the method has been accomplished, both from
the accuracy point of view and from the computational cost one. The P-NEM approach has
revealed some very interesting features, especially its efficient computation times, but should
be employed, while further analysis is performed, to problems where the LBB condition is not
relevant. While Sibson approximation seems to be prohibitive in three-dimensional settings,
Laplace interpolation within a Galerkin NEM approach has proven to give an excellent
compromise between computational costs (obviously higher than those of the FEM) and
efficiency and accuracy, since no need of remeshing is needed.

Thus, the diffusion of internal variables (like those appearing in plasticity, for instance)
during to field transfers between meshes is avoided. Despite the highly distorted meshes
employed in our experiments, no need of remeshing was encountered.
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