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Abstract

The numerical solution of the Chemical Master Equation (CME) governing

gene regulatory networks and cell signaling processes remains a challenging

task due to its complexity, exponentially growing with the number of species

involved. When considering separated representations of the probability dis-

tribution function within the Proper Generalized Decomposition – PGD –frame-

work the complexity of the CME grows only linearly with the number of state

space dimensions. In order to speed up calculations moment-based descrip-

tions are usually preferred, however these descriptions involve the necessity

of using closure relations whose impact on the calculated solution is most of

time unpredictable. In this work we propose an empirical closure, fitted from

the solution of the chemical master equation, the last solved within the PGD

framework..
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1. Introduction

Simulating the behavior of gene regulatory networks is a formidable task

for several reasons. At this level of description, only a few molecules (maybe

dozens or hundreds) of each species involved in the regulation process is present,

and this fact limits the possibility of considering the process as deterministic,

as is done very often in most chemical applications. Here, the concept of con-

centration of the species does not make sense [10] [16]. On the contrary, under

some weak hypotheses the system can be considered as Markovian, and can be

consequently modeled by the so-called Chemical Master Equation (CME) [15],

which is in fact no more than a set of ordinary differential equations stating

the conservation of the probability distribution function – pdf – P in time:

∂P (z, t|z0, t0)
∂t

=
∑
j

[
aj (z − vj )P (z − vj , t|z0, t0)− aj (z)P (z, t|z0, t0)

]
, (1)

where P (z, t|z0, t0) represents the probability of being at a state in which there

are a number of molecules of each species stored in the vector z at time t when

we started from a state z0 at time t0. aj represents the propensity (i.e., the prob-

ability) of reaction j to occur, while vj represents the change in the number

of molecules of each species if reaction j takes place. This change is given, of

course, by the stoichiometry of the reaction at hand.

What is challenging, however, in this set of equations is that they are de-

fined in a state space which possesses as many dimensions as the number of

different species involved in the regulatory network. Under this framework, if

we consider N different species, present at a number n of copies, the number

of different possible states of the system is nN . This number can take the astro-

nomical value of 106000 if we consider some types of proteins, for instance [15].

This phenomenon is known as the curse of dimensionality in many branches of

science.

To overcome this difficulty, most of the authors employ Monte Carlo-like

algorithms (the so-called stochastic simulation algorithm, SSA [15] [6] [7]).
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However, Monte Carlo techniques need for as many as possible individual re-

alizations of the problem, leading to excessive time consuming simulations,

together with great variance in the results.

Separated representations involved in the Proper Generalized Decomposi-

tion described below allow circumventing the issues related to the high-dimen-

sional character of the CME as was successfully proved in our former works

discussed later. However, and despite the fact of being able to solve the CME,

its solution requires a significant amount of computation, and thus, the simula-

tion of a variety of scenarios remains a challenging issue because its computa-

tional complexity. For alleviating such a computational complexity an appeal-

ing route consists of calculating the moments of the probability distribution

function instead of the pdf itself. Moments constitute a valuable description of

great interest in many practical applications and then moment-based descrip-

tions represent an appealing alternative to pdf-based descriptions. However,

as discussed later, when deriving the equations that govern the time evolution

of the pdf-moments, usually the one related to a moment of a certain order

depends on higher-order moments and so-on. In order to close the model at a

certain order, we must approximate higher order moments as a function of the

ones lower or equal to the one considered. Such an approached constitutes the

closure-based description.

As discussed later different closures has been proposed however, no closure

relation is general enough to represent any possible scenario with the required

accuracy. In this paper we propose using the expensive but very accurate CME

solution efficiently obtained by invoking the PGD technology for fitting empir-

ical polynomial closures. These closures are then used for obtaining moment-

based solutions in an efficient way, because the integration of the evolution

equations governing the time evolution of these moments can be performed

almost in real-time, for scenarios that slightly differ from the ones that served

to construct the empirical closure relation.

In any case it is important to note that the validity and accuracy of the com-

puted closure-based solutions is never assured but in many cases is a valuable
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tool for pre-analysis. As soon as the main tendencies are obtained using the

fast closure-based simulations, by performing a lot of simulations, all them

very fast, finer analysis can be performed by solving the CME in a few selected

scenarios of special interest extracted from the previous fast closure-based sim-

ulations.

1.1. Proper Generalized Decomposition for alleviating the curse of dimensionality

Dealing with the problem of the curse of dimensionality in a very differ-

ent context, the authors presented in a previous work a technique that is now

known under the name of Proper Generalized Decomposition (PGD) based on

the use of separated representations [2] [3]. Essentially, to avoid the exponentialy-

growing complexity of the problem with the number of state space dimensions,

the method approximates the variable of interest, say u, as a finite sum of sep-

arable functions:

u(x1,x2, . . . ,xD , t) ≈
N∑
i=1

Fi1(x1) ·Fi2(x2) · . . . ·FiD (xD ) · T i(t). (2)

The reason for this particular choice motivated the method itself, that is con-

ceived as a greedy algorithm that computes one sum at a time and one product

at a time, within a fixed-point, alternating directions algorithm. This leads

to a sequence of one-dimensional (low-dimensional, in general) problems, one

for each function Fij that can be solved using your favorite technique (finite

elements, finite volumes, finite differences, colocation, ...).

If M nodes are used to discretize each coordinate, the total number of PGD

unknowns isN ×M×D instead of theMD degrees of freedom involved in stan-

dard mesh-based discretizations. Moreover, all numerical experiments carried

out to date with the PGD show that the number of terms N required to ob-

tain an accurate solution is not a function of the problem dimension D, but

it rather depends on the regularity and separability of the exact solution as

well as on the solution constructor itself. The PGD thus avoids the exponential

complexity with respect to the problem dimension.
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1.2. A PGD approach to gene regulatory networks simulation

The PGD approach to the problem of efficiently simulating gene regulatory

networks begins by assuming that the probability of being at a particular state

z at time t can be approximated as a finite sum of separable functions, i.e.,

P N (z, t) =
N∑
j=1

F
j
1(z1) ·Fj2(z2) · . . . ·FjD (zD ) ·Fjt (t), (3)

where, as mentioned before, the variables zi represent the number of molecules

of species i present at a given time instant. This particular choice of the form

of the basis functions allows for an important reduction in the number of de-

grees of freedom of the problem, N ×nnod× (D + 1) instead of (nnod)D , where D

is the number of dimensions of the state space and nnod the number of degrees

of freedom of each one-dimensional grid established for each spatial dimen-

sion. For this to be useful, one has to assume that the probability is negligible

outside some interval, and therefore substitute the infinite domain by a sub-

domain [0, . . . ,m − 1]D , m being the chosen limit number of molecules for any

species in the simulation. A similar assumption is behind other methods in the

literature, such as the Finite State Projection algorithm, for instance [15].

Another important point to be highlighted is the presence of a function

depending solely on time, Fjt (t). This means that the algorithm is not incre-

mental. Instead, it solves for the whole time history of the chemical species

at each iteration of the method. If one then assumes that n terms of the sum

given by Eq. (3) are already known,

P n+1(z, t) = P n(z, t) +Fn+1
1 (z1) ·Fn+1

2 (z2) · . . . ·Fn+1
D (zD ) ·Fn+1

t (t), (4)

and look for the n + 1-th term, by substituting Eq. (4) into the CME, Eq. (1)

gives a non-linear problem in Fn+1
1 , . . . ,Fn+1

D ,Fn+1
t that is solved by means of a

fixed-point, alternating directions algorithm, see [4] [5].

The separated representation just considered does not involve any assump-

tion. Any solution defined in a high-dimensional space can be written, if it is

regular enough, in a separated form if the number of terms in the finite sum
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decomposition is high enough. A polynomial of any order is no more than a

sum of functional products, each depending on a different coordinate. Thus,

solutions can be approximated with the desired accuracy by using a separated

representation and an adequate constructor as the one described above.

1.3. Moments-based descriptions

Even if the use of separated representations allows circumventing the curse

of dimensionality the computational cost remains considerable. This fact mo-

tivated in many other disciplines the replacement of the pdf by some of its

moments [8] [9] [1] [11], since many times the last suffice for having a view

rich enough on the dynamics of the systems. The use of moment-based de-

scription was of major interest in different areas of statistical mechanics and it

is being the more and more considered as an alternative to the discretization

of the CME.

A moment represents the expected value of a random variable, z, raised to

a certain power. An “expectation” is a specifically defined function in statis-

tics, E [f (z)] =
∫
f (z)P (z)dz when in continuous spaces or

∑
f (z)P (z) in discrete

spaces. In general, we can talk about the ith moment as:

µi(t) = E
[
zi
]

=
∞∑
z=0

P (z, t)zi

A probability distribution is uniquely defined by its full set of moments.

Having access to these moments could eliminate the need to solve for the full

distribution, depending on what information would be considered important.

A special function, called the Moment Generating Function, is specifically in-

tended for this purpose:

M(θ,t) =
∞∑
z=0

eθzP (z, t)

By taking the Taylor expansion of eθz = 1 + (θz)1

1! + (θz)2

2! + (θz)3

3! + · · · , we can see

the moments emerging from this function, the i-th moment associated with
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the i-th power of θ:

M(θ,t) = µ0(t) +
µ1(t)θ

1!
+
µ2(t)θ2

2!
+ · · · =

∞∑
z=0

µz(t)θz

z!

The following equations will be used extensively in the following deriva-

tion, so it will be useful to define them now:

M(θ,t) =
∞∑
z=0

eθzP (z, t) =
∞∑
z=0

µz(t)θz

z!
(5)

∂M(θ,t)
∂t

=
∞∑
z=0

eθz
∂P (z, t)
∂t

(6)

∂iM(θ,t)
∂θi

=
∞∑
z=0

eθzP (z, t)zi =
∞∑
z=0

µz(t)θz−i

(z − i)!
(7)

2. From the Chemical Master Equation to moments based descriptions

Since we will be uniquely considering the structure of the Chemical Master

Equation, we would like to derive a general version of the Moment Generating

Function which can be used for any system. The CME for l reactions with

stoichiometric change vl is:

∂P (z, t|z0, t0)
∂t

=
∑
l

al(z − vl)P (z − vl , t)− al(z)P (z, t)

As we will see later on, the kind of rate laws associated with the system dra-

matically impact the complexity of the overall problem. We begin with the

most simple case of kinetic mass action laws, following the derivation from

[8]. However, we would eventually like to take rational rate laws, such as

Hill functions, as is seen in [14]. An example of a mass action rate law is

al(z) = λz1(z1−1)
2 = λ

2 z
2
1 −

λ
2 z1 =

∑
i cl,ia′l,i , where the law can be rewritten as a

sum of coefficients cl,i and variables a′l,i . This expanded, polynomial form will

be exploited in our derivation.

Since we would like to talk about moments of the CME rather than proba-

bilities, our first priority is to write this equation in terms of M, rather than in
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terms of P . We multiply both sides by eθz and sum over all possible values of

z:
∞∑
z=0

eθz
∂P (z, t)
∂t

=
∞∑
z=0

∑
l

eθzal(z − vl)P (z − vl , t)− eθzal(z)P (z, t)

that taking into account the previous definitions results

∂M(θ,t)
∂t

=
∞∑
z=0

∑
l

∑
i

cl,ia′l,i(z − vl)eθzP (z − vl , t)−
∑
i

cl,ia′l,i(z)eθzP (z, t)


=
∞∑
z=0

∑
l

∑
i

cl,ia′l,i(z − vl)eθ(z−vl )eθ(vl )P (z − vl , t)−
∑
i

cl,ia′l,i(z)eθzP (z, t)


=

∑
l

∑
i

cl,i
∂iM

∂θi
eθ(vl ) −

∑
i

cl,i
∂iM

∂θi

 =
∑
l

∑
i

cl,i
∂iM

∂θi

(
eθ(vl ) − 1

)
Now, we can take the second definition of ∂iM

∂θi
and expand eθ(vl ) into its

Taylor series. Notice that the summation now begins at j = i. When j < i, the

index will be out of bounds and not correspond to any physical state

∂M(θ,t)
∂t

=
∑
l

∑
i

cl,i
∂iM

∂θi

(
eθ(vl ) − 1

)
=

∑
l

∑
i

cl,i

∞∑
j=i

µj (t)θj−i

(j − i)!

 ∞∑
k=0

(θvl)
k

k!
− 1


Remember that the initial goal was to isolate the coefficients of θn in order

to obtain the nth moments:

∂M(θ,t)
∂t

=
∑
l

∑
i

cl,i

∞∑
j=i

µj (t)θj−i

(j − i)!

 ∞∑
k=0

(θvl)
k

k!
− 1


=

∑
l

∑
i

cl,i

(
µi
0!

+
µi+1θ

1!
+
µi+2θ

2

2!
+ · · ·

)(
vlθ
1!

+
(vlθ)2

2!
+

(vlθ)3

3!
+ · · ·

)
=

∑
l

∑
i

cl,i

([µi
0!
vl
1!

]
θ +

[
µi
0!
vl

2

2!
+
µi+1

1!
vl
1!

]
θ2 + · · ·

)

=
∑
l

∑
i

cl,i

∞∑
n=0

θn
n∑
k=1

µi+(n−k)
1

k!(n− k)!

Our next step will be isolate just the coefficients of θ in order to achieve a

form in which we are creating ODE’s of µ rather than M(θ,t). Since ∂M(θ,t)
∂t =
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∑
n
∂µn
∂t

1
n!θ

n, we will have to multiply both sides by n! in order to isolate µ.

Thus, it finally results

∂µn(t)
∂t

=
∑
l

∑
i

cl,i

n∑
k=1

vkl µi+(n−k)
n!

k!(n− k)!
(8)

3. Closures

It is easy to note from the previous expression (8) that the equation that

governs the time evolution of the moments up to a certain order implies, in

general, higher order moments, and then, before solving all them, higher order

moments must be written as a combination of those involved in the considered

time evolution equations. These relations have in most of cases an approximate

character and are known as closure relations [13] [1]. Before describing the

technique that we are following for defining such closures for a given system,

we introduce some notation.

When considering multicomponent systems involving D components, the

state becomes a vector zT = (z1, z2, · · · , zD ) as previously discussed. Now the

first moment also becomes a vector µ1, of size D, defined by

µ1(t) =
∑

z P (z, t) (9)

The second order moment µ2 results a D ×D matrix

µ2(t) =
∑

z⊗ z P (z, t) (10)

µ3 a third order tensor

µ3(t) =
∑

z⊗ z⊗ z P (z, t) (11)

and so on. These expressions involve many symmetries, e.g. µ2(i, j) = µ2(j, i).

In what follows and without loss of generality, we consider reactions in-

volving linear propensities. Thus, when considering the equations governing

the time evolution of the first two moments µ1(t) and µ2(t) the third order mo-

ment µ3(t) remains in these equations, and it needs to be expressed from both

lower moments.
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The simplest closure writes:

µ3 = α1I⊗ I⊗ I+α2S(µ1,I,I) +α3S(µ1,µ1,I) +α4µ1 ⊗µ2 ⊗µ1+

α5S(µ2,I) +α6S(µ2,µ1) (12)

where

S(µ1,I,I) = µ1 ⊗ I⊗ I+ I⊗µ1 ⊗ I+ I⊗ I⊗µ1,

S(µ1,µ1,I) = µ1 ⊗µ1 ⊗ I+µ1 ⊗ I⊗µ1 + I⊗µ1 ⊗µ1,

S(µ2,I) = µ2 ⊗ I+ I⊗µ2

and

S(µ2,µ1) = µ2 ⊗µ1 +µ1 ⊗µ2

Thus, the third order closure relation (12) involves 6 coefficients to be de-

termined. For this purpose, and for a given system, we solve the CME by using

the PGD in order to circumvent the curse of dimensionality and then evaluate

the third order moment according to Eq. (11) and then we choose the alpha

parameters in (12) to provide the best fitting (in a least squares sense).

As soon as the alpha parameters are empirically fitted, the CME is substi-

tuted by the two ordinary differential equations governing the time evolution

of µ1(t) and µ2(t), when considering the solution of the same systems for any

other initial condition or slightly different kinetic rates.

4. Numerical results

4.1. Lotka model

Fist, we consider the so-called Lotka model. This model consists of:

A+X
λ1−→ 2X

X +Y
λ2−→ 2Y

Y
λ3−→ B

where the number of molecules of species A and B are enforced to be constant.

We consider the two simulation cases:

10



• Case 1. At the initial time t = 0, the state of the systems consists of zT0 =

(#X0,#Y0) = (120,50), the reaction rates being λ1 = 1, λ2 = 0.012 and

λ3 = 1.

• Case 2. At the initial time t = 0, the state of the systems consists of zT0 =

(#X0,#Y0) = (60,60), the reaction rates being λ1 = 1, λ2 = 0.008 and λ3 =

1.

First, we solve the CME with the Case 1 conditions. The probability distri-

bution function at 6 different times is depicted in Fig. 1.

Now from the pdf P (z, t), zT = (#X,#Y ) and t = [0,10], we compute the three

first moments µ1(t), µ2(t) and µ3(t) respectively from Eqs. (9-11) that will be

considered as reference moment solutions. The parameters alpha involved in

the empirical closure relation (12) are then determined. In the present case,

and taking into account the symmetries, µ1 is of size two, µ2 has three in-

dependent components and µ3 four. Fig. 2 shows the different independent

components of µ1 and µ2. Figure 3 compares the reference third moment with

the one fitted with the empirical closure relation, from which we can conclude

that both are in perfect agreement.

Now, by integrating in time the equations governing the time evolution

of the components of µ1 and µ2, using the just identified empirical closure

relation, we obtained the curves depicted in Fig. 4 that are very close to those

obtained from the probability distribution function that were depicted in Fig.

2.

Now, with the closure relation obtained from the analysis of Case 1 we are

addressing Case 2 without modifying the closure relation. For that purpose the

equations governing the time evolution of the different components of µ1 and

µ2 are integrated in time by considering the closure relation fitted in Case 1.

In order to check the accuracy of those solutions we solve again the CME and

compute the reference moments from the resulting probability distribution

function. Figure 5 compares the moment-based and the pdf-based moments.

Even if non negligeable deviations in the second order moment are noticed at
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Probability distribution function P (z, t) at different times: (a) t = 0.2,

(b) t = 3, (c) t = 7, (d) t = 8, (e) t = 9 and (f) t = 10
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(a) (b)

Figure 2: Time evolution of the components of µ1 (left) and µ2 (right)

Figure 3: Time evolution of the third order moment µ3(t): reference compo-

nents (continuous line) versus closure-based approximation (broken line)
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(a) (b)

Figure 4: Time evolution of the components of µ1 (left) and µ2 (right) obtained

from the moment-based description

the final time, results are qualitatively quite good.

4.2. Exclusive switch 5D model

We consider a gene regulatory network called exclusive switch. It describes

the dynamics of two genes with an overlapping promoter region, and the corre-

sponding proteins X1 and X2. Both X1 and X2 are produced if no transcription

factor is bound to the promoter region. However if a molecule of type X1 (X2)

is bound to the promotor then it inhibits the expression of the other protein,

i.e. molecules of type X2 (X1) can not be produced. Only one molecule can be

bound to the promotor region at a time which gives three possibilities for the

state of the promoter region (free, X1 bound, X2 bound). The model is infinite

in two dimensions (X1 and X2) and the reactions are given by:

X5
λ1−→ X5 +X1

X5
λ2−→ X5 +X2

X1
λ3−→ 0

X2
λ4−→ 0

X1 +X5
λ5−→ X3

14



(a) (b)

(c) (d)

Figure 5: Components of µ1 (left) and µ2 (right), computed from the pdf-based

description (top) and the moment-based description (bottom)
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X2 +X5
λ6−→ X4

X3
λ7−→ X5 +X1

X4
λ8−→ X5 +X2

X3
λ9−→ X3 +X1

X4
λ10−→ X4 +X2

where (λ1,λ2, · · · ,λ10) = (2,5,0.005,0.005,0.005,0.002,0.02,0.02,2,5). The ini-

tial conditions are such that only one DNA molecule is present in the system

while the molecular counts for the rest of the species are zero.

First, we solve the CME. The probability distribution function at 6 different

times is depicted in Fig. 6.

Now from the pdf P (z, t), zT = (#X1, · · · ,#X5) and t = [0,60], we compute

the three first moments µ1(t), µ2(t) and µ3(t) respectively from Eqs. (9-11)

that will be considered as reference moment solutions. The parameters alpha

involved in the empirical closure relation (12) are then determined. Fig. 7

shows the different independent components of µ1 and µ2. Figure 8 depicts

the fitted third moment that makes use of the empirical closure relation.

With the closure relation just identified we are addressing a new scenario

consisting of a different initial condition zT (t = 0) = (#X0
1 , · · · ,#X

0
5 ) = (50,100,0,0,1)

that produces at time t = 10 the pdf depicted in figure 9. Now, the equations

governing the time evolution of the different components of µ1 and µ2 are inte-

grated in time by considering the closure relation just identified fitted. In order

to check the accuracy of those solutions we solve again the CME and compute

the reference moments from the resulting probability distribution function.

Figure 10 compares the moment-based and the pdf-based moments, proving

that the moment approach based on the use of an empirical closure produces

a quite reasonable agreement.

4.3. The toggle

Mutually repressing gene pair, or gene toggle, can be found in biological

systems as discussed in [12]. As in their example, here we focus on protein
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Probability distribution function P (z, t) at different times: (a) t = 3,

(b) t = 7, (c) t = 12, (d) t = 19, (e) t = 30 and (f) t = 60
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(a) (b)

Figure 7: Time evolution of the components of µ1 (left) and µ2 (right)

Figure 8: Time evolution of the third order moment µ3(t)
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Figure 9: probability distribution function at time t = 10

(a) (b)

(c) (d)

Figure 10: Components of µ1 (left) and µ2 (right), computed from the pdf-

based description (top) and the moment-based description (bottom)
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dynamics, and more particularly in the toggle-switch network. The reactions

consist of:

X2
λ1−→ X1 +X2

X1
λ2−→ 0

X1
λ3−→ X1 +X2

X2
λ4−→ 0

and the following polynomial properties are considered:

a1(X1,X2) = λ1(A−X2)

a2(X1,X2) = λ2X1

a3(X1,X2) = λ3(A−X1)

a4(X1,X2) = λ4X1

(13)

Now, we consider the initial condition (#X0
1 ,#X

0
2 ) = (90,50) as well as the

parameters λ1 = 1, λ2 = 5, λ3 = 1 and λ4 = 10, and solve the associated chem-

ical master equation for calculating the joint probability distribution function

P (z, t). Now from the pdf P (z, t), zT = (#X1,#X2) and t = [0,1], we compute the

three first moments µ1(t), µ2(t) and µ3(t) respectively from Eqs. (9-11) that will

be considered as reference moment solutions. The parameters alpha involved

in the empirical closure relation (12) are then determined. Figs. 11, 12 and 13

compare respectively the different independent components of µ1, µ2 and µ3

calculated from chemical master equation solution and from the closure-based

description. A very good agreement can be noticed.

With the closure relation just identified we are addressing a new scenario

consisting of a different initial condition zT (t = 0) = (#X0
1 ,#X

0
2 ) = (1,1). Now,

the equations governing the time evolution of the different components of µ1

and µ2 are integrated in time by considering the closure relation just identified

fitted. The third moment is calculated from the fitted closure from the first

two moments. In order to check the accuracy of those solutions we solve again

the CME and compute the reference moments from the resulting probability

20



time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

(a)

time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

(b)

Figure 11: Time evolution of the components of µ1 calculated from the CME

solution (left) and from the closure-based description (right)
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Figure 12: Time evolution of the components of µ2 calculated from the CME

solution (left) and from the closure-based description (right)
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Figure 13: Time evolution of the components of µ3 calculated from the CME

solution (left) and from the closure-based description (right)

distribution function. Figs. 14, 15 and 16 compare respectively the different

independent components of µ1, µ2 and µ3 calculated from chemical master

equation solution and from the closure-based description. Again a very good

agreement can be noticed.

5. Conclusions

In this work we revisited the modeling of regulatory networks described

within the chemical master equation framework. Deterministic solutions of

the CME were performed by using the separated representation involved in

the PGD, allowing circumventing the so-called curse of dimensionality. In or-

der to improve the computational efficiency a moment-based description is

derived, however such description involves higher order moments that must

be described from the ones of lower order. In that sense we proposed a sim-

plest closure relation, of empirical nature, that can be fitted numerically from

the probability distribution function, the last coming from the PGD solution

of the CME. As soon as the closure relation is fitted, it can be used for solving

similar problems to the one that served to identify the closure relation.
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Figure 14: Time evolution of the components of µ1 calculated from the CME

solution (left) and from the closure-based description (right)

time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

50

100

150

200

250

300

350

400

(a)

time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

50

100

150

200

250

300

350

400

(b)

Figure 15: Time evolution of the components of µ2 calculated from the CME

solution (left) and from the closure-based description (right)
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Figure 16: Time evolution of the components of µ3 calculated from the CME

solution (left) and from the closure-based description (right)
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