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Abstract

In this paper a novel strategy is presented for the real-time simulation of

contact between non-linear deformable solids at haptic feedback rates. The

proposed method is somehow related with the Voxmap Pointshell method for

two deformable solids. Its novelty and crucial advantages over existing imple-

mentations of this algorithm come from the intensive use of computational

vademecums. These are in essence a pre-computed solution of a paramet-

ric model in which every possible situation during the on-line phase of the

method has been considered through the introduction of the appropriate pa-

rameters. Such a high-dimensional parametric model is efficiently solved by

using Proper Generalized Decompositions (PGD) and stored in memory as
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a set of vectors. The paper presents a thorough description of the developed

algorithm together with some examples of its performance.

Keywords: Real time, contact, Model reduction, Proper Generalized

Decomposition, Parametric models, Computational vademecums.

1. Introduction

Computational contact mechanics [66] constitutes nowadays a very active

field of research due to its inherent difficulty, associated to the highly non-

linear character of its models. But when we deal with non-linear solids and,

in addition, real-time response is required, the problem becomes extremely

burdensome and has generated a plethora of publications searching for a good

compromise between accuracy and time to response, see for instance [8] [31]

[10] [63], to name but a few of the available references.

Haptic peripherals have become very popular for augmented simulation

in immersive environments, particularly for education purposes and games.

They have been used notably in medical environments as an essential tool

for the education in minimally invasive procedures [59] [60] [22] [40] [45]

[18] [2] [49] and for training of complex industrial processes. In particular,

aircraft and automobile industries have recently incorporated virtual reality

to the design process to see whether a mechanical part could be located at

a particular position in the plane in order to facilitate manufacturing and

maintenance processes [7] [65] [57].

The main difficulty associated to haptic peripherals (those with force

feedback) is that they need, to provide with a realistic sense of touch, a

feedback response in the order of 500 Hz to 1 kHz. What this means in

practice is that, very much like some 25 frames per second are needed in

cinemas to provide the spectator with a continuous sensation of movement,
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in haptic environments nearly one thousand simulations per second must be

carried out to provide the user with a continuous sense of touch. 1 kHz is

roughly the free-hand gesture frequency [21].

The reader will readily understand the difficulties associated with the

simulation of non-linear solids (soft living tissues are frequently assumed

to be hyperelastic, possibly with fiber reinforcement [30] [1]) under such

astringent requirements. If, in addition, the possibility of contact between

deformable solids is taken into account, the 1kHz constraint is even more

difficult to fulfill.

Contact mechanics simulations under real-time restrictions have been

tackled from a variety of approaches. One of the earliest and most popular

is that of constructing Bounding Volume Hierarchies (BVH) [63], consisting

in associating each node in a tree with a subset of the primitives (polygons,

NURBS, etc.) defining the boundary of the object. Other approaches for

real time include the use of stochastic contact detection [64], based on the

assumption that the perceived realism of contact detection depends more of

the real-time response than in the accuracy itself of the simulation.

One of the most popular families of real-time contact detection algorithms

is based on the use of distance fields [13] [10]. Distance fields (level sets)

constitute a very convenient way of representing very intricate geometries

for contact detection, but has been traditionally considered as non-apt for

real-time contact simulation between deformable solids, since the distance

field must be updated according to the deformation of one of the solids [63].

If we restrict ourselves to the problem of real-time simulation of hyper-

elastic solids, several approaches have been accomplished in the literature.

Besides the obvious choice of considering a purely elastic material, but which

renders very poor results in terms of visual realism in the presence of large
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strains, the first approaches considered multi-resolution methods [36] [32].

Very popular in the last years are the methods based on the use of explicit

finite element implementations [46], possibly based on parallelization by us-

ing general-purpose Graphics Processing Units (GPUs) [34] [59] [19]. Due to

the inherent complexity of the objective, techniques based upon model order

reduction methods have also recently reached some popularity. Among them,

we can cite [47] [52] [48] [62] [61] [9]. In general, all these last references are

based on the use of Proper Orthogonal Decomposition (POD) techniques [35]

[41] [43], known also as Principal Component Analysis (PCA). These tech-

niques employ an statistical treatment of the results obtained for complete,

similar problems to the one at hand to construct a set of global, Ritz-like,

basis functions that are optimal, with respecto to some measure, for the

already solved, complete problems. They are then used for the problem un-

der consideration in the hope that, if the modifications with respect to the

original problems are small, they will be also a good choice for it.

This approach presents some drawbacks. For instance, the choice of sim-

ilar, complete problems, after which to obtain the set of global basis, is not

an easy task [6]. In addition, model reduction methods loose many of their

advantages if we deal with non-linear problems, since they need for the recon-

struction of the full tangent stiffness matrix in order to obtain a consistent

linearization of the problem. Although several approaches have been devel-

oped to deal with this difficulty, no definitive response has been found [52]

[14] [20].

As an alternative to POD techniques, Proper Generalized Decomposition

(PGD) techniques can be seen as a sort of a priori model order reduction

method, in the sense that no complete problem must be solved in order to

obtain the set of global basis functions. The origin of PGD dates back to
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the so-called radial loading approximation of the LArge Time INcrements

(LATIN) method [37]. It consisted, essentially, of an space-time separated

representation of the solution that very much resembles that of POD, but

obtained completely in an a priori fashion.

Some years later, F. Chinesta employed a similar separated representation

for the solution of high-dimensional problems arising from the kinetic theory

of complex, non-Newtonian flows [3] [4]. Once both approaches have been

identified as belonging to one single method for the model order reduction of

PDEs, the field of application of PGD has grown exponentially. Just to cite

some of the most recent survey papers, the interested reader can consult, for

instance, [17] [15] [26] [16] [38] [29] [53].

Based on PGD, the authors have developed a series of computational

vademecum approaches [16] for different physical problems such as thermal

control of industrial furnaces [24] [25], dynamic, data-driven application sys-

tems (DDDAS) [27], shape optimization [5] or computational surgery [50],

to name a few. In essence, a computational vademecum (from the latin vade

mecum, “goes with me”) is a sort of reference guide that helps engineers (or

physicians) by abridging known solutions to given problems. One of the earli-

est and most known examples is that of Bernoulli [12]. This concept has been

translated by the authors to nowadays computational mechanics by comput-

ing, off-line and once for life, parametric (and thus multi-dimensional) solu-

tions for a given problem. This general, multi-dimensional solution (a sort

of computational response surface or meta-model, if preferred) is then used

(evaluated) on-line at very high feedback rates.

The main difficulty with computational vademecums is that they give rise

to high-dimensional problems. It is well-known that, for mesh-based methods

such as finite elements or finite differences, high-dimensional problems suffer
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from the so-called curse of dimensionality [39], i.e., an exponential increase

on the number of degrees of freedom with the number of dimensions of the

space. This difficulty is at the very heart of the choice of PGD for such

high-dimensional problems, since it assumes the solution as being expressed

as a finite sum of separable functions.

In this paper a novel approach to the real-time simulation of contact

between non-linear solids is presented. It is based on an intensive use of

computational vademecums obtained off-line by means of PGD techniques.

The developed technique can be seen as a particular instance of distance

field methods, in which a general, high-dimensional distance field will be

pre-computed off-line by taking the collision position as a parameter in the

model. Thus, the most restrictive characteristic of distance field techniques

will therefore be overcome, since there will be no need for distance field

updating with the deformation of the solid.

In order to fully understand the developed methodology, a brief review

of how to construct a computational vademecum by PGD techniques will

be made in Section 2. The novel distance-field method will be presented

in Section 3. In Section 4 examples of the performance of the proposed

technique will be given. The paper is closed by some final remarks in Section

5.

2. A brief review of computational vademecums obtained by PGD

techniques

As stated in the introduction, the main ingredient of the method here

reported is the intensive use of computational vademecums [16]. In essence,

the idea behind this method is to pre-compute off-line every possible situation

(with the limitations that will be later clarified) that could be faced during
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the on-line phase of the simulation.

Consider, as a starting point, the case of a vademecum in which we would

like to store the displacement field u(x) of a non-linear (here, hyperelastic)

solid Ω under the action of a force (assumed for the sake of simplicity as

unitary and always acting in the vertical direction) at any point s of its

boundary region Γ ⊂ Γt ⊂ Γ = ∂Ω. This renders a problem defined in

general in R5 (u = u(x, s)), although if s is interpolated using nearest-

neighbour interpolation, it can be seen as a one-dimensional parameter (the

node in which the load is acting), rendering a problem in R4.

In the general case of an arbitrary force acting in any direction, the prob-

lem would be stated so as to find the displacement field for any physical point

x ∈ R3, for a load acting at any point of its boundary (a two-dimensional

manifold in R3) and arbitrary values of its three components, thus t ∈ R3.

This renders a problem defined in dimension 8.

Consider now the weak form of the equilibrium equations (balance of lin-

ear momentum). Again, for the sake of simplicity, we omit inertia terms.

For a detailed treatment of non-linear solid dynamics with the use of PGD

and computational vademecums, the interested reader can consult [28]. Un-

der these assumptions, the (doubly-) weak form of the problem, extended

to the whole solid, Ω and the portion of its boundary which is accessible to

load, Γ̄ ⊂ Γt, consists in finding the displacement u ∈ H1 such that for all

u∗ ∈ H1
0: ∫

Γ̄

∫
Ω

∇su
∗ : σdΩdΓ̄ =

∫
Γ̄

∫
Γt2

u∗ · tdΓdΓ̄ (1)

where Γ = Γu∪Γt represents the boundary of the solid, divided into essential

and natural regions, and where Γt = Γt1 ∪ Γt2, i.e., regions of homogeneous

and non-homogeneous, respectively, natural boundary conditions. Here, t =

−ek · δ(x − s), where δ represents the Dirac-delta function and ek the unit
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vector along the z-coordinate axis (we consider here, as mentioned before,

and for the ease of exposition, a unit load directed towards the negative z

axis of reference).

The Dirac-delta term is then regularized, and approximated by a trun-

cated series of separable functions in the spirit of the PGD method, i.e.,

tj ≈
m∑
i=1

f i
j(x)gij(s)

where m represents the order of truncation and f i
j , g

i
j represent the j-th com-

ponent of vectorial functions in space and boundary position, respectively.

PGD techniques allow to efficiently construct the computational vademe-

cum u(x, s) by constructing, in an iterative way, an approximation to the

solution in the form of a finite sum of separable functions [15]. Let us assume

that the method has converged to a solution, at iteration n of this procedure,

unj (x, s) =
n∑

k=1

Xk
j (x) · Y k

j (s), (2)

where the term uj refers to the j-th component of the displacement vector,

j = 1, 2, 3 and functions Xk(x) and Y k(s) represent the separated functions

used to approximate the unknown field, obtained in previous iterations of the

PGD algorithm. At this stage, the objetive of PGD is to provide the solution

with an improvement given by the (n+ 1)-th term of the approximation,

un+1
j (x, s) = unj (x, s) +Rj(x) · Sj(s), (3)

where R(x) and S(s) are the sought functions that improve the approxi-

mation. In an equivalent manner, admissible variations of this displacement

field will be given by

u∗j(x, s) = R∗
j (x) · Sj(s) +Rj(x) · S∗

j (s).
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As can be noticed, even if the original problem is linear, PGD needs for

the solution of a non-linear problem, i.e., to determine a product of functions,

see Eq. (3). To this end, any of the possible linearization procedures could be

employed. Traditionally, the authors have employed the simplest one, a fixed

point, alternating directions algorithms that, although not being optimal,

works in general very well. This strategy is briefly described hereafter.

2.1. Computation of S(s) assuming R(x) is known

In this case, following standard assumptions of variational calculus, we

have

u∗j(x, s) = Rj(x) · S∗
j (s), (4)

or, equivalently, u∗(x, s) = R ◦ S∗. The symbol “◦” stands here for the

so-called entry-wise, Hadamard or Schur multiplication for vectors. Once

substituted into Eq. (1), gives

∫
Γ̄

∫
Ω

∇s(R ◦ S∗) : C : ∇s

(
n∑

k=1

Xk ◦ Y k +R ◦ S

)
dΩdΓ̄

=

∫
Γ̄

∫
Γt2

(R ◦ S∗) ·

(
m∑
k=1

fk ◦ gk
)
dΓdΓ̄,

or, equivalently (we omit obvious functional dependencies)∫
Γ̄

∫
Ω

∇s(R ◦ S∗) : C : ∇s(R ◦ S)dΩdΓ̄

=

∫
Γ̄

∫
Γt2

(R ◦ S∗) ·

(
m∑
k=1

fk ◦ gk
)
dΓdΓ̄−

∫
Γ̄

∫
Ω

∇s (R ◦ S∗) · RndΩdΓ̄,

where Rn represents:

Rn = C : ∇su
n.
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Since the symmetric gradient operates on spatial variables only, we have:∫
Γ̄

∫
Ω

(∇sR ◦ S∗) : C : (∇sR ◦ S)dΩdΓ̄

=

∫
Γ̄

∫
Γt2

(R ◦ S∗) ·

(
m∑
k=1

fk ◦ gk
)
dΓdΓ̄−

∫
Γ̄

∫
Ω

(∇sR ◦ S∗) · RndΩdΓ̄

where all the terms depending on x are known and hence all integrals over Ω

and Γt2 (the part of the natural boundary with non-homogeneous boundary

conditions) can be computed to derive an equation to determine S(s).

2.2. Computation of R(x) assuming S(s) is known

Equivalently, in this case, we have

u∗j(x, s) = R∗
j (x) · Sj(s),

which, once substituted into Eq. (1), gives∫
Γ̄

∫
Ω

∇s(R
∗ ◦ S) : C : ∇s

(
n∑

k=1

Xk ◦ Y k +R ◦ S

)
dΩdΓ̄ =

∫
Γ̄

∫
Γt2

(R∗ ◦ S) ·

(
m∑
k=1

fk ◦ gk
)
dΓdΓ̄.

In this case all the terms depending on s (load position) can be integrated

over Γ̄, leading to a generalized elastic problem to compute function R(x).

As mentioned before, even if fixed-point algorithms do not have guaran-

teed convergence properties, it is extremely unfrequent, in our experience, to

find examples in which convergence is lost (see [17] and references therein).

Other linearization strategies such as Newton-Raphson could also be equally

employed [3] [4].

This development assumes implicitly small strain measures. For gen-

eral, hyperelastic constitutive laws, large strain tensors (usually the Green-

Lagrange tensor E) must be equally linearized. In the past, the authors have
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tackled this linearization problem within the PGD approach in two different

ways. In [50] an explicit approach was developed that renders, in general,

very good results without stability problems. In [51] an approach was devel-

oped based on the combined use of PGD and Asymptotic Numerical Methods

(ANM). In this last approach, the solution u is expanded in terms of a power

series of an arc-length parameter, providing a sort of continuation method

in which there is no need of updating tangent stiffness matrices. Other ap-

proaches such as the Discrete Empirical Interpolation Method [11] [14] could

also be equally employed.

In general, following the aforementioned works, a strategy is followed in

which enough terms in Eq. (2) so as to provide a norm of the residual below

10−5. Sometimes, given the strong limitations imposed by haptic response,

further simplification of the PGD representation of the solution is needed.

In that cases, the number of terms are restricted to those giving an accuracy

always above 10%, computed with respect to full FE solutions of the same

problem.

In general, we refer the interested reader to the previous works in the field

[51] [50] [28] for a thorough discussion on the relationship between accuracy

and number of terms in the PGD representation of the solution.

3. A distance-field method based on the use of computational vede-

mecums

The method here developed assumes that a computational vademecum

u(x, s) has already been computed for the solids under consideration. As

mentioned before, this multi-dimensional solution provides a general solution

for the displacement field in the solids under an arbitrary load acting on Γ̄.

The collision detection method assumes that one of the solids, say Ω2,
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is modeled as a pointshell [10], i.e., a set of boundary points (assumed for

simplicity identical to the boundary nodes of the solid model, although this

is not strictly necessary) equipped with normals to the surface. As such, the

algorithm is not symmetric, since the choice of which body is chosen to be

equipped with the pointshell affects the final result of the simulation, albeit

slightly. The other solid, Ω1, is in turn equipped with a signed distance field,

see Fig. 1.

Figure 1: Sketch of the collision detection algorithm. Solid Ω1 is equipped with a distance

field, represented in the Figure, while solid Ω2 is represented, for collision detection pur-

poses, as a pointshell, i.e., a collection of boundary nodes and normals to the surface (not

represented for simplicity).
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In our implementation, following closely [10], at every haptic cycle, con-

tact penalty forces are determined by querying the points of Ω2 against the

distance field associated to Ω1. Traditionally, this approach has been con-

sidered not valid for haptic feedback requirements, if we deal with two de-

formable solids, see [63]. This limitation is due to the need of updating the

distance field along with the deformation of Ω1, which is not an easy task,

even if the collision detection loop is not performed at every haptic cycle, as

in [33]. In the approach here presented, there is no need for such an update,

since a high-dimensional distance field is computed off-line that contains the

distance fields for any deformed configuration of the solid.

Once collision has been detected, a force

F = −kcdn

is applied to both solids, provided that d is trilinearly interpolated from

the distance field accompanying Ω1. kC is the contact penalty stiffness. The

minus sign assumes that normals to Ω2 point towards the interior of the solid,

although this is completely arbitrary. Finally, n represents the normal to Ω2

in the deformed configuration. An equal force is applied to Ω1, regardless

of its geometry, since we have no information on its normals to the surface.

This very simple algorithm preserves continuity in the force computation,

essential to perceive haptic response as realistic.

For very slender solids, large penetrations could eventually lead to de-

creasing force values, provided that Ω2 crosses the medial axis of Ω1, see

[10]. However, note that collision will be checked every millisecond. Except

from very large solid velocities, this will likely never happen in fields such as

computational surgery, for instance.

Remark 1. It is important to note that computational vademecums are de-
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signed for one single punctual load, or at least for a fixed number of loads. In

contact problems the position of contact, and therefore the number of contact-

ing nodes is a priori unknown. In the results presented in Section 4, where

non-linear constitutive equations and strain measures are inherent, a predic-

tor of the result is obtained by simply applying superposition, i.e., a linear

combination of the contacting load predicted by the vademecums associated

to each contacting node.

This very simple approach results to be enough for many applications such

as computational surgery [20], since visual realism is kept (no artificial gain

of volume, as in purely elastic approaches, is obtained) and the human sense

of touch is not able to detect the lack of accuracy generated in the resulting

load transmitted by the haptic peripheral.

If more accuracy is needed, a correction can be added to this prediction by

employing hyper reduction methods [54] [55] [56] [42]. In essence, the solu-

tion is projected onto the subspace spanned by the PGD modes of the solution

(as in POD-based MOR) and the tangent stiffness matrix is evaluated only at

a very limited number of elements of the mesh, typically some three times the

number of modes considered. In our experiments, this approach has rendered

excellent results, albeit not always necessary. This same rationale could be

applied to the updating of the pre-computed distance field, although our expe-

rience indicates that the force feedback produced by the predictor obtained by

linear superposition provides sufficient accuracy. I general, the correction is

not perceivable by the human sense of touch.

The use of the correction step could seem compromising real time re-

sponses. However, it is important to notice that (i) only some elementary

stiffness matrices are assembled (the global matrix is not singular because the

global stiffness matrix appears pre- and post-multiplied by the matrix contain-
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ing the reduced basis) [47]; (ii) because the iteration starts from the predic-

tion, that is in general close to the final solution, few correction iterations

are needed; and (iii) only vector products are involved and all these can be

computed simultaneously and in parallel by using GPUs, for example.

Even if the tests performed proved that surgical simulation applications do

not need for the correction step, its consideration does not seem a great chal-

lenge, and it will be integrated in our future works to extend the applicability

of this strategy to domains other than computational surgery.

3.1. Computation of the distance field

The main ingredient of this algorithm is the distance field associated to

the solid Ω1. Any method could be in principle valid for the computation

of this field. The key novelty of the approach here presented is that a high-

dimensional distance field

d = d(x, s)

for every load location s is computed off-line and stored in memory, very

much in the spirit of computational vademecums. Here, x represents, by

an abuse of notation, the coordinates of points belonging to the prism in

which the distance field is computed, see Fig. 1. This prism, in general, does

not need to be much bigger than the solid Ω1, see [63], to avoid storing a

big number of nodal distance values. However, in the implementation here

presented, the distance field must be such that every possible deformation

state of Ω1 must lye within the prism. Once computed off-line and once for

life, this distance field is evaluated for a particular load position s, that is, for

any possible deformed configuration of the solid Ω1, thus giving a standard

3-d field for each load position, without the need of further updating.

Our implementation interpolates trilinearly the three physical coordinates

and by nearest neighbors the s coordinate. This leads actually to a 4-d dis-
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tance field d = d(x, y, z, s), where s represents the node number to which the

load is associated. Test codes used Matlab’s griddedInterpolant algorithm

[44] for a very fast evaluation of the distance field at a query point. Results

are given in Section 4 on the performance of this technique. The distance field

at nodal position of the grid could be computed by employing fast marching

algorithms [58] or by simply employing the pdist Matlab function.

Remark 2. The brute force computation of the distance field is a feasible

option if the number of dimensions of the problem (i.e., the number of pa-

rameters of the solution) is kept relatively small. If this is not so, the number

of distance values to compute grows exponentially with the number of dimen-

sions. The authors are currently exploring the possibility of solving the fast

marching equations [58] in parallel with the computation of the vademecum,

Eqs. (2) and (3) in a PGD, separated way. In this manner, a vademecum

could be obtained containing all the possible deformed configurations, each

one attached to its distance field, both expressed in a separated form.

4. Numerical examples of performance

In what follows some examples have been selected to demonstrate the

performance of the proposed method. Firstly, a Matlab [44] implementation

of the algorithms was accomplished in order to check their validity. Once

their performance had been assessed, a final implementation for the Geomagic

Touch haptic device [23] was developed in order to test realism of the reaction

forces, stability of the perceived touch, etc.

4.1. Contact between a beam and a rigid solid

To begin with, the simplest case of collision detection between a hypere-

lastic (Saint Venant Kirchhoff) cantilever beam and a solid is considered. A
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squared cross-section beam, with 40×40×400 mm, discretized with some 189

nodes, was considered. Young’s modulus was assumed to be 209000 MPa,

while Poisson coefficient was set to 0.3. The beam is actuated by a vertical

load of 106 N, that can be applied at any point of the boundary of the beam.

If nearest-neighbor interpolation for the position of the load was assumed, a

total of 170 different positions of this load could be encountered during the

on-line phase of the simulation.

During the off-line phase of the calculation, a multidimensional solution

is obtained for the displacement field of the beam, whose two first pairs of

modes are shown in Fig. 2. Details of the PGD procedure for the solution

of this parametric problem can be found at [51] or [50]. A total of 81 pairs

of functions X i and Y i (see Eq. (2)) were employed in this example, i.e.,

n = 81. Tests with only some 25 pairs also gave satisfactory results, with no

perceptible loss of accuracy for the human eye. The off-line computation of

this example takes roughly less than half an hour on a standard laptop.

Over this general solution u(x, s), a four-dimensional distance field d(x, s)

is constructed. In this case, although the obvious choice would have been to

equip the rigid solid with the distance field, to demonstrate the capabilities of

the method the inverse solution has been preferred. Therefore, the distance

field was attached to the deformable solid, the beam. The mesh to construct

this distance field contained 42× 26× 61× 170 nodes (i.e., more than eleven

millions of degrees of freedom) along x, y, z and s (load position, considered

as a one-dimensional array of nodal locations) directions, respectively.

A rigid block is also considered with which the beam gets into contact,

see Fig. 3. All the possible load cases were tested and the time necessary

to detect contact stored. On a Macbook Pro laptop equipped with an Intel

Core i7 processor running at 3 GHz (8Gb DDR3 RAM at 1600 MHz) and
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Figure 2: First two modes of the beam model, depending on the physical coordinates x

(top) and load position s (bottom).
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running Matlab [44] the results indicated that the time to contact detection

was 0.0006223± 1.02122E − 07 seconds, well within the strong requirements

of haptic contact feedback.

Figure 3: Collision between a beam and a rigid block for one of the 170 possible load

locations in the model. The beam (red), the block (blue) and a slice of the distance field

are depicted.

4.2. Contact between two hyperelastic beams

The fact that in the previous example a rigid solid was considered has

no special implications on the complexity of the algorithm. If a deformable-

deformable contact between two beams is now considered, the numbers re-

main roughly the same, the complexity of the algorithm depending essentially

on the number of nodes of the pointshell and the number of degrees of free-

dom considered for the distance field. Both vademecums are essentially the
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same, so that the computer cost of the off-line computations remains the

same of the previous example.

The algorithm here presented is so powerful that it can be implemented

on an html page running javascript, for instance, and still provide visual

perception of interactivity when the beam is touched with the mouse on the

screen, see Fig. 4. Contact iterations were limited to run in less than 100

ms, but the typical time to find collision was around 40 ms, still under the

typical 25 frames per second of films.

Figure 4: Collision between two beams running on an html web page with embedded

javascript. The red stroke indicates the position of the load actuating the blue beam.

The implementation of the same problem on a HP ProBook 6470b lap-

top (Intel Core i7, with 8 Gb DDR3 PC3-12800 SDRAM running Ubuntu)

equipped with a Geomagic Touch [23] haptic device also gave excellent re-

sults, with no noticeable jumps in the perceived contact force, see Fig. 5.
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Figure 5: The two-beam problem actuated by a Geomagic Touch haptic device.
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4.3. Contact between two Stanford bunnies

In this example two Stanford bunnies were forced to contact each other

in order to test the capabilities of the proposed technique. From the original

STL file, a tetrahedral finite element model composed by 4285 nodes for

each bunny was constructed, see Fig. 6. The total number of nodes in the

pointshell (blue bunny in Fig. 6) was 3733. Bunnies were assumed to be

modeled by a Kirchhoff-Saint Venant hyperelastic law with E = 2.0 · 107

MPa and ν = 0.3.

Figure 6: Collision between two Stanford bunnies. A slice of the distance field is also

shown.

The vademecum for each bunny —they are identical for both bunnies—

contained 143 modes. The cost of the off-line computation of these vademe-
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cums was more than three hours on a Mac Pro computer running Matlab [44]

and equipped with a 6-core Intel Xeon ES CPU (although no parallelization

was accomplished) at 3.5 GHz and with 16 GB RAM, 1867 MHz DDR3.

The red bunny is actuated by the user, provoking a rigid-solid displace-

ment until contact occurs with the blue one. Three different positions were

tested. At position number 1, no collision was detected, and the total time

employed by the proposed algorithm was 0.0007148 seconds. At position

number 2, 36 contacting nodes were detected, while the total time employed

for their location was 0.001611 seconds. Finally, at position number three,

427 nodes got into contact, and in this last case 0.0012811 seconds were

necessary to detect them.

The deformed configuration of the bunnies after contact is depicted in

Fig. 7.

Again, for complex, detailed models of intricate geometry, the proposed

method is able to render feedback at rates on the order of 1 kHz, proving the

validity of the assumptions made so far.

5. Conclusions

In this paper a method for the real-time detection of collision between

deformable solids has been presented. Although inspired by existing algo-

rithms, the novelty of the proposed technique lies in the use of computational

vademecums, i.e., pre-computed solutions that are exploited on-line at very

high feedback rates. Here, the proposed method has been successfully tested

on a Geomagic Touch device needing for 1 kHz feedback rates.

These extremely efficient vademecums are previously computed with the

help of Proper Generalized Decomposition strategies, in order to alleviate

the burden associated with the curse of dimensionality, i.e., the exponential
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Figure 7: Deformed configuration of the bunnies after contact. Only the undeformed

configuration of the blue bunny is represented, for simplicity, in white.
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increase of the number of degrees of freedom with the number of dimensions

(parameters) of the problem. Solutions for the displacement field of different

solids under arbitrary load locations are thus obtained and employed to com-

pute four-dimensional distance fields to the boundary of the object. Collision

with the second solid is detected by checking the position of its boundary

nodes against this distance field. Boundary nodes lying at negative distance

regions are then penalized to force them to avoid interpenetration.

The main advantage of the proposed method over existing algorithms is

that it avoids the need of updating the distance field with the deformation of

the reference solid. Since any deformation of the solid has been parametrized

previously by PGD and stored efficiently as a set of one-dimensional vectors,

with the distance function associated to each deformed configuration, no

need for on-line updating of the distance field results. This allows for a more

detailed mesh for the computation of the distance field or, equivalently, for a

more detailed geometric approximation of the pointshell in the second solid.

So far only collision detection has been accomplished within this algo-

rithm, although be strongly believe that a generalization of the proposed

technique is possible for frictional contact. This constitutes nowadays our

main effort of research, whose results will be presented elsewhere.
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[9] Jernej Barbič and Doug L. James. Real-time subspace integration for St.

Venant-Kirchhoff deformable models. ACM Transactions on Graphics

(SIGGRAPH 2005), 24(3):982–990, August 2005.
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