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Abstract

Data assimilation is the process by which experimental measurements are

incorporated into the modeling process of a given system. We focus here

on the framework of non-linear solid mechanics. Applications of the devel-

oped methodology include real-time monitoring and control of structures or

mixed/augmented reality, to name a few. In these circumstances, the real-

time performance of the method is crucial to provide the user with robust

predictions about the behavior of the experimental system.

To achieve real-time feedback rates, the model (also known as physical

prior) and its solution play a fundamental role. Given the inherent non-

linear character of the problems here considered, we employ reduced order

techniques in order to obtain such stringent feedback rates. Examples are

provided on realistic models that show the performance of the proposed tech-
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Preprint submitted to Comput. Methods Appl. Mech. Engrg. August 29, 2017



nique.
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1. Introduction

The ability to handle big data, along with the possibility of extracting

relevant knowledge from raw data, once hidden correlations have been ellu-

cidated, has opened an unprecedented interest in the field of Dynamic Data

Driven Application Systems [11]. Ubiquitous sensing and the generalization

of the Internet of Things (IoT) in the framework of industry 4.0, is already

providing us with large amounts of experimental data, thus opening the pos-

sibility to learn form it, to correct our models online and to extract relevant

information for decision making. Data assimilation —the process by which

we incorporate these data to our numerical models— is therefore of utmost

importance in the construction of predictive models of industrial processes.

For many different and increasingly interesting applications, this assimilation

process must be accomplished under severe real-time constraints, thus posing

additional difficulties to the process.

One of these specially relevant cases is that of mixed and augmented re-

ality [18] [19]. Augmenting a video stream with synthetic images resulting

from a computer model, thus incorporating a priori hidden information to

the user —such as stresses, deformation of the internal microstructure of the

solid, among many other possibilities— needs for a suitable algorithm that

dynamically detects relevant features from the streamed image and follows

them through the process (a process known as image registration). On top of

the registration process, augmented reality systems must embed synthetic im-

ages on the video stream. The process of reconstructing a three-dimensional
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deformable scene and simultaneously determine the position of the camera

is known as Non-Rigid Structure from Motion problem (NRSfM) [1]. This is

a typical problem when dealing with augmented reality systems for laparo-

scopic surgery, for instance. This class of systems look for a suitable method

to superimpose a three-dimensional image of the internal structures of an

organ (typically, the liver) on the laparoscopic image.

Since video streams usually incorporate some 30 frames per second, the

problem at hand can thus be seen as composed typically by two different

steps:

1. To dynamically identify salient features of the deformable solid and to

track them throughout the duration of the video stream. To this end,

among different possibilities, we can cite Simultaneous Localization and

Mapping (SLAM) techniques [2] [38].

2. With the information provided by these tracked points, to be able to

provide a rigorous estimate of the state of the system, with a minimum

degree of uncertainty.

This last point can be seen, indeed, as the data assimilation procedure.

In fact, it is also a typical example of an inverse problem in which some

parameters, or even the whole state of the system, governed by a set of Partial

Differential Equations (PDEs) must be identified from a set of experimental

measurements. This inverse problem can be solved from a deterministic point

of view, if we postulate that the sought values are perfectly well matched by

a numerical discretization of the governing PDEs [16] [15]. In other words,

if we assume that a minimization process

µ = arg min
µ∗∈P⊂Rp

J (µ) =
nmeas∑
j=1

(
umeas(xj)− uh(xj,µ)

)2

will provide us (maybe by adding some Tykhonov regularization [26]) with

3



good approximations to the true values of the set of parameters µ. Here,

umeas represents the vector of measured displacements on the solid bound-

ary, and nmeas the number of performed measurements. The superscript h

indicates, as usually, a finite element discretization of the displacement field.

Even if this type of procedure can provide very good results (even under

real-time constraints if we employ reduced-order models, see, for instance,

[14] [15] [33] [16]), a more rigorous approach results from assuming that there

is some degree of uncertainty associated to both the environment (we usually

do not know the value of applied forces, for instance) and the measurement

process (unavoidable noise associate to experimental devices). This leads

to a formulation of the problem under a Bayesian framework [35] [36]. In

the Bayesian uncertainty quantification (UQ) framework, both the set of

parameters µ ∈ P ⊂ Rp and the observations are considered as random

variables subjected to some probability density functions (PDF). Under this

rationale, one of the most popular strategies is that of Kalman filtering [20].

A Kalman filter is an algorithm that provides an estimator of the state

of the system by assuming that the noise is Gaussian and by minimizing

the estimated error covariance. Of course, Kalman filters have encountered

countless applications in engineering and applied sciences, see [9] [23] [13]

[30] to name but a few.

Despite its wide applicability and interest, Kalman filters have a fun-

damental problem. If the underlying model is non-linear, the stochastic

variables, no matter if they were initially Gaussian, will tend towards a non-

Gaussian distribution. To alleviate these limitations, several alternatives

exist. The most extended ones are based upon sampling the probability dis-

tribution via a sequential Monte Carlo approach [4] [12]. These were coined

under the generic label of Particle Filters. Unscented Kalman filters (UKF)
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[29] follow somehow similar guidelines. They apply the so-called unscented

transform so as to estimate mean and variance by propagating a minimal set

of points via the non-linear response function of the system. It is well-known

that unscented Kalman filters improve the performance of extended Kalman

filters (EKF) if the response of the system is highly non-linear. It is com-

monly argued that they eliminate the need for computing tangent operators

[28]. However, their computational cost is considerably higher, even if re-

duced order models are employed [27] [25] [28] [31]. This is partially due to

the fact that the number of points to be propagated is equal to 2n+1, where

n is the parametric size of the variable vector associated to the probability

distribution function.

This is why in this work we have preferred to maintain the approach of

extended Kalman filters. Firstly, because for the type of applications we are

envisaging (notably, biomechanics) we keep ourselves in the framework of

hyperelastic solids, whose non-linearity is usually smooth. Secondly, because

we are constrained by heavy real-time feedback constraints imposed by the

need of processing some 30 frames per second. As will be noticed, the accu-

racy of the proposed methodology remains remarkable, while allowing for a

sufficient feedback response.

Therefore, in Section 2 we revisit the framework of EKF, with special

emphasis on the solid dynamics framework. In Section 3 we develop the

reduced order model-EKF strategy for the type of problems at hand. In

this case, we employ Proper Generalized Decomposition strategies [7] [10],

although Reduced Basis, for instance, could be equally employed [37], the

only difference being the type of off-line work to be done. In Section 4 we

show, with the help of some relevant linear and non-linear examples, the

performance of the proposed method. Finally, the paper ends with some
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discussions about the just presented methodology.

2. Data assimilation based on extended Kalman filters

As mentioned in the Introduction, Extended Kalman filters [39][9] assume

that the system under consideration is non-linear. The most straightforward

approach is therefore to linearize its response function around an estimate

of its current estate, described by its mean and covariance. In other words,

after discretization in time (by employing your favorite time integrator) and

space (by finite elements, for instance) of the governing PDEs, EKF assume

that the response of the system takes the form

ui+1 = f i(ui) + vi, (1)

where u represent the phase-space variables of the system —here, for sim-

plicity, we will assume that they represent nodal dispacements, but material

parameters could be envisaged as well—, i+1 and i denote, as usual, quanti-

ties referred to time instants ti+1 and ti, with ti+1 = ti + ∆t. v ∼ N (0,Q(t))

represents the process noise, assumed Gaussian with zero mean and covari-

ance Q(t), which is here incorporated so as to have into account the inherent

uncertainties of the model. Typically, these will represent, for instance, the

forces applied to the system during operation, to which we will have no ac-

cess.

In addition to the model described before, an extended Kalman filter

incorporates experimentally measured data of the form

yi = hi(ui) +wi,

giving rise to the so-called observation equation. Here, yi represents the

vector of measured quantities and the function hi relates the state ui to the
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measurement yi. Of course, this measurement process incorporates some

noise w ∼ N (0,R(t)).

In order to construct the extended Kalman filter, it is mandatory to lin-

earize both the response function f(u, t) and the observation equation h(u, t)

at every time step ti. These give rise to the following Jacobian matrices:

F i =
∂f i(u)

∂u

∣∣∣∣
u=û

; H i =
∂hi(u)

∂u

∣∣∣∣
u=û−

, (2)

where û represents an a posteriori estimate of u at time ti, and û−i+1 = f i(ûi)

is the approximate state vector of the system.

The resulting extended Kalman filter algorithm, which seeks to provide

an efficient estimate of the state of the system by taking into account both

the model predictions and the actual measurements, is therefore composed

by different steps:

1. Initialization at time t = t0:

û0 =E[u0],

P 0 =E[(u0 − û0)(u0 − û0)>],

where E denotes the expectation operator and P stands for the covari-

ance matrix.

2. At ti, i = 1, . . . , N ,

• Predictor phase:

û−i+1 =f i(ûi),

P−i+1 =F iP iF
>
i + V i,

where V i represents the covariance matrix of the vi noise.
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• Correction phase,

ûi = û−i +Gi(yi − hi(û−i ),

P i = (I −GiH i)P
−
i ,

and where

Gi = P−i H
>
i (H iP

−
i H

>
i +W i)

−1,

represents the so-called Kalman gain matrix [9].

For some applications of Kalman filtering, notably in augmented reality

applications, real-time performance is a crucial issue [1]. To that end, the

evaluation of the Jacobian matrices, Eq. (2) is perhaps the bottleneck of

the process. For complex, non-linear models solved by finite elements, the

usage of reduced order models has been recently found to be an appealing

alternative to the full (consistent) linearization of the model represented by

f . For instance, in [27], an unscented Kalman filter is employed for pa-

rameter estimation in thermal problems. In this framework, a Monte Carlo

approach is employed to propagate the Gaussian noise in the (non-linear)

model, thus giving rise to a repeated evaluation of an inverse problem, which

is advantageously modeled in a reduced order approach.

Here, on the contrary, we focus on the (non-linear) dynamics of large finite

element models under real-time constraints. To that end, a fast evaluation of

the linearized response of the model, f(u, t) and their Jacobians, F i and H i,

see Eq. (2), is mandatory. In order to achieve so, we propose here the employ

of a particular model order technique known as Proper Generalized Decom-

position [6] [7] [8] [10]. Other techniques that assume an affine parametric

dependence of the unknown field [26] [25], such as for instance Reduced Basis,

could benefit from this same approach in an equally advantageous manner.
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3. Order reduction of the response function

As previously introduced in Section 2, the non-linear mapping f rep-

resents a sort of response or transfer function that, given the state of the

system at time ti (and possibly at time ti−1 too, depending of the chosen

time integrator), provides its subsequent state at time ti+1 = ti + ∆t. Under

real-time constraints, it is extremely advantageously to compute it off-line,

if possible, so as to avoid computations on the fly.

In this framework, Eq. (1) represents actually a sort of parametric re-

sponse surface, whose parameters are the vector of nodal displacements ui

(and, as mentioned before, possibly ui−1 too). Thus, we can imagine an

alternative form of Eq. (1) as

ui+1 = f(x,ui).

In general, extended Kalman filters can also be employed advantageously

to estimate parameters of the model [9]. This is especially interesting for

biomedical applications, where variations in material parameters can be huge

from patient to patient [1]. So one could envisage an expression of the form

ui+1 = f(x,ui,µ),

where µ ∈ P ⊂ Rp represents the set of parameters of the model.

The Proper Generalized Decomposition (PGD) method [7] [8] [10] sug-

gests to approximate this complex parametric form as a finite sum of separate

functions:

ui+1 ≈
m∑
k=1

F k(x) ◦Gk(ui) ◦ P 1
k(µ1) ◦ · · · ◦ P p

k(µp), (3)

where “◦” stands for the Hadamard or Schur entry-wise product of vectors.

Functions F k, Gk, P
j
k represent an unknown set of functions that, once
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conveniently expressed on a finite element basis, will provide the sought ap-

proximation.

Classically, PGD obtains the precise form of the separate approximation,

Eq. (3), by employing a greedy algorithm in which one sum is computed at a

time. Within each loop of the greedy algorithm (i.e., for a fixed k value), the

obtention of one product of functions leads to a non-linear problem, which

we usually solve by employing a fixed-point, alternating directions strategy.

The interested reader can consult, for instance, [7] for more details.

Note that the general expression Eq. (3) includes a function depending

on ui (and possibly a second one depending on ui−1). These represent indeed

a set of potentially many nodal three-dimensional displacement values. In

other words: too many parameters for this expression to be useful.

In [17] the authors proposed a strategy consisting in the employ of a

reduced-order approximation to the displacement field. Thus, by employ-

ing Proper Orthogonal Decompositions (POD) [21] [24] one arrives to an

alternative approximation for the displacement field in the form

ui ≈
nrb∑
`=1

ζ`iφ` = Bζi,

with φ the global basis functions provided by the POD approximation and

ζ`i their counterpart weights or degrees of freedom in the reduced basis. We

therefore obtain a much less costly expression for our system’s response func-

tion of the form

ui+1 = f(x, ζi,µ),

which is amenable for a PGD approximation

ui+1 ≈
m∑
k=1

F k(x) ◦Gk(ζi) ◦ P 1
k(µ1) ◦ · · · ◦ P p

k(µp). (4)

This gives rise to an iterative method in which we obtain ui+1, project it

onto the reduced-order basis φ(x) to obtain ζi+1 and re-inject it again, so as
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to obtain ui+2 from Eq. (4). In practice, see for instance [17], we have found

that the number of reduced-order degrees of freedom ζ remains bounded and

can be truncated to a manageable number. The interested reader can consult

also [10], that includes a detailed implementation and the matrix form of the

resulting equations.

The PGD approximation to the transfer function, Eq. (4), provides a

very convenient means of obtaining the Jacobian matrices given by Eq. (2),

since

F i ≈
∂f i(ζ)

∂ζ

∣∣∣∣
ζ(û−)=ζ̂

−

≈
m∑
k=1

F k(x) ◦ ∂Gk(ζi)

∂ζ

∣∣∣∣
ζ(û−)=ζ̂

−
◦ P 1

k(µ1) ◦ · · · ◦ P p
k(µp),

being straightforward to obtain the derivatives of functions Gk, since they

are conveniently expressed in a finite element form.

We thus obtain a sort of reduced-order Kalman filter in which the vari-

ables are no longer the nodal displacement vectors but their reduced-order

counterparts ζi.

4. Numerical examples

In what follows we focus on linear and non-linear solid dynamics. We

present firstly an example with two degrees of freedom, for which there is

no need to work on a reduced-order setting. We then move to a fully three-

dimensional beam bending problem in the non-linear setting, and end by

considering an example of manipulation of a hyperelastic liver.

4.1. Example 1: Frame structure

We revisit the example in [17]. It represents the frame structure depicted

in Fig. 1, that can be modeled with two degrees of freedom (there is no need
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Figure 1: Frame structure considered in Section 4.1.

for any model reduction yet and both degrees of freedom can be considered

as parameters of the response function). Slabs are assumed perfectly rigid,

of masses m2 = 2m1 = 4000 kg, while the stiffness of the columns is such

that 12EI
L3 = 105 N/m.

The frame is subjected to a step load h(t) = 10000 N, applied for t > 0.

Following [17], the frame has been modeled by considering one single beam

representing both columns, discretized into two finite elements. Only the

horizontal displacements u1 and u2 are considered in the model by assuming

perfectly rigid slabs. To obtain pseudo-experimental results, a forward-Euler

explicit time integration algorithm has been employed.

The system has been modeled by considering a transfer function of the

form:

ui+1(x,ui,ui−1,hi) =
N∑
k=1

F k(x) ◦Gk(ui) ◦Hk(ui−1) ◦ Jk(hi),

where the applied load at each time instant, hi (considered constant within

each time step) has been considered as parameter of the system.

Eight modes (i.e., m = 8 in Eq. (3)) have been considered in this case for
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almost a perfect agreement with the analytical solution. They are depicted

in Fig. 2. In general, some error estimation must be available to determine

the number of modes necessary for a prescribed error tolerance [3] [22] [32].

A measurement process is assumed to take place at the first nodal degree

of freedom, with assumed Gaussian noise of 5% standard deviation. The

system model is assumed to be perturbed by another Gaussian noise of stan-

dard deviation 1%. Results for this filtering process are plotted in Fig. 3.

As expected, the filtering process provides a prediction for the displacement

in between the experimental measurements and the predictions given by the

reduced order model.

4.2. Dynamics of a cantilever beam

The second example represents a cantilever beam of size 0.2 × 0.2 × 1.5

subjected to a dynamic, varying load. The beam is modeled under the hy-

perelastic framework by the Kirchhoff-Saint Venant theory, with Young’s

modulus E = 2 · 1011, Poisson coefficient ν = 0.3 and density ρ = 2.5 · 104.

This geometry, see Fig. 4, is meshed into linear tetrahedral finite elements

with 3× 3× 16 nodes along each direction.

The beam is subjected to an impulsive load of 10 kN at the end tip during

the interval t ∈ (0, 0.25] seconds, then progressively lowered down to zero at

t = 0.5 seconds. The beam remains then vibrating free.

In this example we have employed an energy and momentum-conserving

integration scheme developed by K. J. Bathe [5]. Its discrete form employs

two substeps, whose PGD implementation assumes a displacement field of

the form:

ui+ 1
2
(x, ζi, ζ̇i, ζ̈i,hi, s)

=
N∑
k=1

F 1
k(x) ◦G1

k(ζi) ◦H1
k(ζ̇i) ◦L1

k(ζ̈i) ◦ J1
k(hi) ◦ S1

k(s),
(5)
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ui+1(x, ζi, ζ̇i, ζi+ 1
2
,hi, s)

=
2N∑

k=N+1

F 2
k(x) ◦G2

k(ζi) ◦H2
k(ζ̇i) ◦L2

k(ζi+ 1
2
) ◦ J2

k(hi) ◦ S2
k(s).

(6)

Here, the displacement field has been expressed in terms of the reduced-

order degrees of freedom ζi, as mentioned before. These are obtained after

applying POD to full-order finite element simulations (snapshots) made for

selected load cases. Details of the matrix implementation of this integration

scheme can be found in Appendix A.

The response of the beam is analyzed following Eq. (4), giving the PGD

modes shown in Fig. 5. When solved through PGD, the dynamical response

of the beam to a particular loading history is shown in Fig. 6 (in continuous,

blue line) while its PGD approximation is shown in dashed red lines.

Here, a Gaussian noise with zero mean and 10% of standard deviation

is assumed. When applied in an extended Kalman filter context, the PGD

reduced order model is able to provide with very fast results in the prediction

of filtered displacement values, see Fig. 7. In particular, for nmeas = 144 nodes

(those on the free surface of the beam), the just developed method is able

to provide filtered results at 556 Hz, much more than the needed 30 Hz for

visual applications.

It is worth noting that the proposed procedure is therefore able to track all

the nodes in the surface of the beam and to provide filtered values for them,

at a feedback frequency much higher than needed. The proposed method is

aimed at improving mainly the performance of the method in terms of CPU

gain. It is also worth noting that the filtered results, despite the well-known

limitations of extended Kalman Filters for non-linear problems, remain well

close to the reference solution. It is observed how the filtered results are

always well within the model’s prediction and the measurements.

14



4.3. Dynamics of liver palpation

As mentioned in the introduction, one of our main objectives in the devel-

oping the proposed technique is that of being employed for augmented reality

purposes. In this situation, video streams should be analyzed by any of the

available structure from motion algorithms, able to track selected points in

the frames. This is particularly noteworthy for augmented reality systems for

laparoscopic surgery, where the internal structure of the organs is not visible

to the surgeon. Filtering video streams so as to determine patient-specific

elastic moduli or the displacement field of the organ is therefore of utmost im-

portance. To test the validity of the proposed technique in this framework,

we have considered the problem of liver palpation during cholecystectomy

(gall bladder removal surgery). See some of our previous works for details

on the validity of the model [34]. In particular, a finite element mesh of the

liver composed by 2853 nodes and 10519 tetrahedra is considered, see Fig.

8. It is considered as a Kirchhoff-Saint Venant material with E = 0.17 MPa

and ν = 0.48, thus quasi incompressible.

The dynamics of the liver vibration is characterized by employing 7 POD

modes (see our previous work [17] for a detailed discussion on the influence

of the number of POD modes on the accuracy of the results). The PGD

approximation to the response function f , Eq. (1), is composed by 11 modes

for each of the two substeps of the Bathe’s time integration scheme [5]. The

first three of these modes are depicted in Fig. 9.

We consider the liver as subjected to a 1N load-unload process. Again,

we consider Gaussian noise perturbations of both the model (thus account-

ing for the uncertainty on the true load applied by the surgeon) and the

measurements of 10% standard deviation. The filtered response of one par-

ticular node in the model, compared to the ground truth provided by a PGD
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model of double number of modes, is depicted in Fig. 10. Notice how, after

the application of the load and its release, the liver remains vibrating with

small amplitude, in the absence of any viscous damping to the constitutive

equations.

In this case we monitored some 30 nodes and the proposed methodology

(Matlab R2017a code prototypes) was able to provide a filtered response at

35 Hz on a MacBook Pro (3.3 GHz Intel core i7, 16 Gb RAM), still faster

than the usual threshold of 30 frames per second.

Again, the conclusion to be drawn is the the proposed methodology is

able to track a reasonable amount of points in the surface of the liver and

provide for them the best estimate of their position.

5. Conclusions

We have proposed a reduced order methodology for data assimilation un-

der severe real-time constraints. The developed method employs a reduced

order approximation of the response function of the system under consider-

ation. Here, Proper Generalized Decompositions were used, but in general

any method assuming an affine parametric decomposition of the response,

such as Reduced Basis, is equally valid.

It has been demonstrated how, despite the assumed hyperelastic response

of the solids, the extended Kalman filter approach continues to provide accu-

rate results and no significative deviation from the Gaussian hypothesis has

been noticed. Under these assumptions, the proposed method has demon-

strated to provide results between 350 and 35 Hz for realistic models.

It is important to note that the current state of the art in the field,

represented by references such as [1], includes linear elastic finite element

plate models of the visible surface of the model including a few tens of degrees
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of freedom. These models ran at about 3 to 8 frames per second, still far

from the real time threshold imposed by video rendering.

Thus, we believe that the proposed methodology constitutes an appealing

approach to the data assimilation process when severe feedback constraints

are imposed. At present we work on the development of methods that do not

rely on first-order linearizations of the response of the system, such as EKF,

but more exact hypothesis, given the hyperelasticity-type of non-linear con-

stitutive equations. It has been proved, however, that very accurate results

can be found at the prescribed feedback rates, thus opening the possibility of

employing the just developed technique for augmented reality, for instance.

Appendix A. Matrix form of the Bathe time integrator in a PGD

framework

The integration scheme developed in [5] begins by integrating in space

the strong form of the solid dynamics equation. Then, the semi-discretized

equilibrium equation is integrated in time by means of two sub-steps: a

predictor of the nodal displacement vector at time step ui+ 1
2

in the first one

and subsequently a correction ui+1 in the second sub-step.

The first sub-step has the following form:

Mmüi+ 1
2

+Kmui+ 1
2

= f i+ 1
2
,

where Mm, Km and f represent, as usual, the mass and stiffness matrices

and the force vector, respectively.

Time derivatives are approximated by classical finite difference schemes:

üi+ 1
2

=
u̇i+ 1

2
− u̇i

∆t/4
− üi,

u̇i+ 1
2

=
ui+ 1

2
− ui

∆t/4
− u̇i.
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By substituting in the first sub-step, we obtain its final expression:[[
16

4t2

]
Mm +Km

]
·ui+ 1

2
= f i+ 1

2
+

[
16

4t2

]
Mm·ui+

[
8

4t

]
Mm·u̇i+Mm·üi.

(A.1)

By employing the same rationale, the second sub-step acquires the form:

Mmüi+1 +Kmui+1 = f i+1,

which, by substituting classical finite difference expressions leads to

üi+1 =
u̇i
4t
−
[

4

4t

]
u̇i+ 1

2
+

[
3

4t

]
u̇i+1,

u̇i+1 =
ui
4t
−
[

4

4t

]
ui+ 1

2
+

[
3

4t

]
ui+1.

We arrive therefore to a final expression for the second sub-step:[[
9

4t2

]
Mm +Km

]
· ui+1

= f i+1 −
[

19

4t2

]
Mm · ui −

[
5

4t

]
Mm · u̇i +

[
28

4t2

]
Mm · ui+ 1

2
.

However, the key of the success of the algorithm here developed lies in

the projection of the displacement vectors at time steps i and i + 1
2

onto

a reduced basis obtained by POD. Therefore, the classical Bathe integrator

will acquire a new form, which is developed next.

As usual in the finite element method, we discretize any field variable

F (x) = N (x)F , where N (·) represents the matrix of finite element shape

functions and F its associated vector of nodal values. This discretization is

done for all the separate functions in Eqs. (5) and (6).

For each sub-step within the time integration scheme we compute the

18



PGD approximation to the solution ui+ 1
2

and ui+1 such that,

ui+ 1
2
(x, ζt, ζ̇t, ζ̈t,hi, s)

=
n∑
k=1

N>(x)F 1
k·N>(ζt)G

1
k·N>(ζ̇t)H

1
k·N>(ζ̈t)L

1
k·N>(hi)J

1
k·N>(s)S1

k,

(A.2)

and

ui+1(x, ζt, ζ̇t, ζi+ 1
2
,hi, s)

=
n∑
k=1

N>(x)F 2
k·N>(ζt)G

2
k·N>(ζ̇t)H

2
k·N>(ζi+ 1

2
)L2

k·N>(hi)J
2
k·N>(s)S2

k,

(A.3)

where x represents the physical space, ζi is the vector of (reduced) displace-

ment degrees of freedom at time step t, ζ̇i is the vector of (reduced) velocity

degrees of freedom at time step t, ζ̈i is the vector of nodal accelerations at

time step t, ζi+ 1
2

is the vector of (reduced) nodal displacements at time step

t+(4t/2), hi is the amplitude of the applied load, its value varying continu-

ously in the interval [0, 1]. It allows us to apply or not a load at a particular

time step or to apply a ramp load, for instance. Finally, s represents the

position of the load.

Taking also into account that the density parameter ρ and the symmetric

gradients ∇s depend solely on space coordinates, we can write the mass ma-

trix, and the stiffness matrix of the problem in separated form as emanating

fro the multiply-weak form of the problem, as

Mm =

[∫
Ωx

N>(x)ρN (x)dΩx

]
·

[∫
Ωζi

N>(ζi)N (ζi)dΩζi

]
· . . .

·

[∫
Ωhi

N>(hi)N (hi)dΩhi

]
·
[∫

Ωs

N>(s)N (s)dΩs

]
,

19



Km =

[∫
Ωx

∇sN
>(x)C∇sN (x)dΩx

]
·

[∫
Ωζi

N>(ζi)N (ζi)dΩζi

]
· . . .

·

[∫
Ωhi

N>(hi)N (hi)dΩhi

]
·
[∫

Ωs

N>(s)N (s)dΩs

]
.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: One-dimensional functions used to approximate the response of the frame in Fig.

1 subjected to a step load. (a) F k(x). Note that the frame was modeled with the help of

one single bar, discretized into two finite elements, and hence the nine degrees of freedom

in the abscisa. Only the two non-clamped horizontal displacements are free (degrees of

freedom 8 and 9 in the figure). (b) and (c) represent, respectively, the dependence of the

solution on u1
i and u1

i−1. (e) and (d) represent equivalent modes for the second degree of

freedom of the problem, u2. (f) represents functions Jk(h0). An interval of variation for

h between 1000 and 15000N has been considered.
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Figure 3: Results of the filtering process applied to the frame structure. Blue dots represent

the pseudo-experimental measurements, while the red, dotted line represents the result of

the filtering process, that follows closely the model’s prediction rather than experimental

measurements, which are assumed to have higher noise.
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Figure 4: Geometry of the cantilever beam model.
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Figure 5: PGD modes of the cantilever beam model. z-component of modes F 1
1(x), F 1

2(x),

F 1
3(x), and F 2

1(x) (out of 2N = 40 total modes employed in the approximation of this

problem) are represented.
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Figure 6: Reference finite element solution and approximated PGD solution to the vibra-

tion problem of the beam.
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Figure 7: Extended Kalman filter prediction of the beam tip displacement.
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Figure 8: Model of the liver. Red dots represent clamped nodes.
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(a) Mode 1 (b) Mode 2

(c) Mode 3

Figure 9: First three spatial modes of the PGD approximation of the response function of

the liver.
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Figure 10: Filtered response of the liver to ramp load-unload process. The reference

solution is composed by a PGD model of double number of modes.
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