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Abstract

Optimization of manufacturing processes or structures involves the optimal

choice of many parameters (process parameters, material parameters or ge-

ometrical parameters). Usual strategies proceed by defining a trial choice of

those parameters and then solving the resulting model. Then, an appropriate

cost function is evaluated and its optimality checked. While the optimum is

not reached, the process parameters should be updated by using an appro-

priate optimization procedure, and then the model must be solved again for

the updated process parameters. Thus, a direct numerical solution is needed

for each choice of the process parameters, with the subsequent impact on the
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computing time. In this work we focus on shape optimization that involves

the appropriate choice of some parameters defining the problem geometry.

The main objective of this work is to describe an original approach for com-

puting an off-line parametric solution. That is, a solution able to include

information for different parameter values and also allowing to compute read-

ily the sensitivities. The curse of dimensionality is circumvented by invoking

the Proper Generalized Decomposition (PGD) introduced in former works,

which is applied here to compute geometrically parametrized solutions.

Keywords: Model reduction, Proper Generalized Decomposition,

Parametric models, Shape optimization.

1. Introduction

The main objective of this work is to propose an original methodological

approach to perform efficient numerical modeling and optimization. More

specifically, the aim is to obtain approximations of the solution for models

with parametrized geometries. These parametric approximations could then

be employed for performing efficient shape optimization for example.

Optimization problems rely usually on iterative approaches. Optimal

parameters (for instance, geometrical parameters describing the family of

possible shapes) are obtained as extrema of a cost function. In general,

for computational mechanics problems and, more particularly, in shape op-

timization, the evaluation of the cost function implies the resolution of a

boundary value problem (BVP). Therefore, at each iteration, given a set of

trial parameters, the feasibility and the optimality (value of the cost func-

tion) require the resolution of a non trivial problem. Thus, until convergence

a large number of, possibly costly, problems must be solved.

There are also a large variety of techniques to determine the updates
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on the trial parameters. If available, the derivatives of the cost function

with respect to the design parameters are an important asset to improve the

performance of convergence. The evaluation of these derivatives is, in general,

not an easy task. They require to evaluate sensitivities of the solution of the

BVP with respect to the design parameters and, although many techniques

are available, this can have a computational cost non-negligible. In some

cases the cost is of the order of the resolution of the BVP or even higher when

the derivatives are evaluated using finite difference techniques, for instance.

The focus here is not to discuss particular optimization strategies, but

pointing out that standard optimization strategies need numerous direct so-

lutions of the problem, at least, one solution for each tentative geometry.

The solution of such models is a tricky task that demands important com-

putational resources and usually implies extremely large computing times,

although good examples of commercial software exist nowadays.

Other works in the field such as [1–7] present efficient developments for

shape and/or topology optimization techniques. Particularly noteworthy is

the work covered in [3, 4] where in order to characterize the topology of the

domain, the design variables define a field (a function) which describes the

geometry.

In this paper a radically different approach is proposed and, to the au-

thors’ knowledge, never previously explored. The main contribution of the

suggested approach is to determine the solution of the BVP for any value of

the unknown geometrical parameters (i.e. any value of the design variables).

To this end, the design variables are viewed as new coordinates of the model

and a separated representation is used to describe this general solution. In

fact, coordinates, or space dimensions, represent the (non-necessarily phys-

ical) locations at which the solution is to be represented. Thus, strictly
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speaking, one could compute the solution of the problem for any value of the

unknown parameters (in a bounded interval). This transforms the parame-

ters in new dimensions of the space in which the model is defined.

How to determine this general function for any value of the geometrical

parameters is discussed later. Note however, that determining this general

function is done only once. Then, given its analytical expression (as a sepa-

rated representation) determining the solution of the BVP for any set of trial

design parameters is a simple post-process (very fast computation). More-

over, determining the sensibility of the solution of the BVP to any design pa-

rameter (geometry parameter) is also easy and fast because of the separated

representation. The shape optimization consists then into the evaluation of

an objective function (and, probably, some restrictions). Note that such an

evaluation is now also very fast and efficient since the solution of the BVP is

known for any design parameter and thus does not require to solve the BVP.

Moreover, the general solution of the BVP is independent of the particular

objective function.

To illustrate these ideas, consider a simple model, viz. the steady heat

equation defined in the domain sketched in Figure 1, whose parametric space

reduces to the horizontal and vertical displacement of the upper right corner,

µ1 and µ2. The traditional optimization procedures based on the minimiza-

tion of a cost function Cost(µ1, µ2) can be summarized as follows:

• Until a minimum of Cost(µ1, µ2) is reached, proceed to:

1. Compute the unknown field related to the trial choice of the ge-

ometry, i.e. u(x;µ1, µ2).

2. Compute the cost function Cost(µ1, µ2) from the just calculated

thermal field.

3. Check the optimality: while the optimum is not reached, update
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Figure 1: Parametric domain

the geometry, i.e. modify µ1 and µ2, by using an appropriate strat-

egy and go back to step 1 to solve again the model in the newly

updated geometry.

The methodology proposed here is substantially different. It is as follows:

• Determine a general solution of the thermal field for any possible ge-

ometry (here the location of the upper-right corner plays the same role

that the space coordinates), the problem becoming multidimensional.

This general solution is written as a sum of separable functions.

• Until a minimum of Cost(µ1, µ2) is reached, proceed to:

1. Particularize the general parametric solution at the considered

values of the geometrical parameters (very fast).

2. Compute the cost function Cost(µ1, µ2).

3. Check the optimality: while the optimum is not reached, update

the geometry by using an appropriate strategy (if sensitivities are

needed use the known separated expression of the general solution

to efficiently evaluate derivatives of the thermal field with respect

to design parameters) and go back to step 1 to particularize again

the parametric solution.
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Thus, in the methodology proposed here, the model is solved only once

and then it is particularized for any choice of the geometry. The price to pay

is to solve a multidimensional thermal model that now has as coordinates

the usual physical space x and all the geometrical parameters, in the present

example the two extra-coordinates µ1 and µ2 defining the location of the

upper-right corner.

Obviously, the solution of the resulting multidimensional model is a tricky

task if one considers a standard mesh based discretization strategy because

the number of degrees of freedom increases exponentially with the dimension-

ality of the model. Thus, for a hypercubic domain, the number of degrees

of freedom scales with the number of nodes along each spatial direction to

the power of the number of dimensions. For instance, in 2D if 100 nodes

are used along each direction with a single degree of freedom per node, the

resulting number of degrees of freedom is 1002. In 3D, the number of degrees

of freedom rises to 1003 and so on. This exponential increase of the number

of degrees of freedom can be literally out of reach for todays computers even

if the number of dimensions increases only moderately. This phenomenon

is known as curse of dimensionality. Although efficient techniques exist for

moderate number of spatial dimensions, such as sparse grid methods, they

fail when the dimensionality increases.

To circumvent this serious difficulty, the Proper Generalized Decomposi-

tions (PGD) is used. It considers a separated representation of the unknown

field and was originally introduced in [8, 9] for addressing multidimensional

steady state and transient models, respectively. The interested reader can

refer to [10, 11] and the references therein for a complete review of PGD

techniques. PGD techniques construct an approximation of the solution by

means of a sequence of products of separable functions, circumventing the
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curse of dimensionality. These functions are determined “on the fly”, as the

method proceeds, with no initial assumption on their structure.

As can be readily noticed, the potential of the technique for inverse iden-

tification, optimization, among others, seems to be huge. This approach

has been applied to optimization of structures and processes as well as for

identification and simulation based control [12–16]. An alternative approach

combining PGD and an efficient exploration of the parametric domain was

considered in [17] within the non-linear-non-incremental LATIN framework

[18–20]. Other related works in the field include [19, 21]. On a related basis,

[22] includes the management of high-dimensional experimental data in a

PGD framework in order to construct surface response approaches to a given

problem.

In Section 2 the basic ideas to construct a PGD separated representation,

are revisited. In Section 3 the procedure and difficulties to include the geo-

metrical parameters as extra-coordinates, are described for a model problem.

This methodology is generalized and formalized in Section 4. Finally, Section

5 presents some numerical examples for illustrating the potentialities of the

proposed approach.

2. Rationale of Proper Generalized Decomposition in a generic lin-

ear parametric model

Suppose the standard elliptic problem
−∇ ·K∇u = f in Ω,

n ·K∇u = t on Γ,

u = 0 on ∂Ω\Γ,

(1)

where the source term and the Neumann conditions are assumed constant

to simplify the presentation, and the conductivity (diffusivity/permeability)
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matrix K(x,µ) has a spatial variation characterized by parameters µ ∈ Rm.

More precisely, µ ∈ I1 × I2 × · · · × Im where Ij is the range of variation of

parameter µj.

A major contribution of the PGD approach is to view these parameters µ

characterizing conductivity K as new coordinates. Thus, instead of solving

an excessively large number of thermal models for each different discrete

value of these parameters, the objective is to solve at once a more general

problem with µ as extra coordinates. The price to pay being an increase of

the problem dimensionality, since now µ play the role of new coordinates in

the model. However, as the complexity of the PGD scales only linearly (and

not exponentially) with the space dimension, consideration of µ as extra

coordinates does not preclude to efficiently obtain an accurate solution.

The weak problem equivalent to (1) is obtained using a weighted residual

argument, namely, find u for all δu in the selected appropriate functional

space such that

A(u, δu) = L(δu) (2a)

with

A(u, δu) :=

∫
I1

∫
I2

· · ·
∫
Im

(
K∇u,∇δu

)
Ω
dµ1dµ2 . . . dµm (2b)

L(δu) :=

∫
I1

∫
I2

· · ·
∫
Im

[(
f, δu

)
Ω

+
〈
t, δu

〉
Γ

]
dµ1dµ2 . . . dµm, (2c)

where
(
u, v
)

Ω
and

〈
u, v
〉

Γ
denote, respectively, the L2 scalar product of func-

tions u and v in Ω and its traces over Γ.

The PGD approach assumes, see [23], that the solution of (2) can be

approximated by a rank-n separable approximation of the solution, u(x,µ),
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namely,

u(x,µ) ≈ un(x,µ) =
n∑
s=1

vs(x)
m∏
j=1

ωsj (µj),

= un−1(x,µ) + v(x)
m∏
j=1

ωj(µj),

(3)

where v and vs ∈ H1
ΓD

while ωj and ωsj ∈ L2(Ij) for j = 1, . . . ,m and

s = 1, . . . , n, with

H1
ΓD

:= {v ∈ H1(Ω) : v = 0 on ΓD}. (4)

Note that each ωsj can be normalized in the natural norm of its space.

Assume un−1(x,µ) already known, then, the n-enrichment requires the

evaluation of v and ωj for j = 1, . . . ,m. Note that PGD is an a priori

reduced order model where the separable functions are evaluated from the

weak problem. The final number of terms n for convergence requires an error

estimate, see, for instance, [24]. In practice, convergence is fast enough in

elliptic problems to avoid the need for implementing an error estimator.

After substitution of (3) into (2), the weak problem becomes

A(v
m∏
j=1

ωj, δu) = L(δu)− A(un−1, δu), (5a)

with the test functions are also separated as

δu = δv
m∏
j=1

ωj +
m∑
k=1

v δωk

m∏
j=1
j 6=k

ωj. (5b)

Note that (5) defines a non-linear problem that must be solved by means of a

suitable iterative scheme. Newton’s method is a straightforward alternative,

see, for instance, [8, 9]. However, simpler linearization strategies can also be

applied, see [11]. The simplest one is an alternating direction, fixed-point
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algorithm, which was found remarkably robust in the present context. Each

iteration consists of as many stages as separated functions, m+1 in this case,

that are repeated until convergence.

For simplicity in the exposition suppose m = 2. Thus, Equation (5b)

becomes

δu = δv ω1 ω2 + v δω1 ω2 + v ω1 δω2,

and, consequently, Equation (5a) is transformed in the following three stages

1. Find v ∈ H1
ΓD

for all δv ∈ H1
ΓD

(ω1 and ω2 assumed known) such that

A(v ω1 ω2, δv ω1 ω2) = L(δv ω1 ω2)− A(un−1, δv ω1 ω2).

2. Find ω1 ∈ L2(I1) for all δω1 ∈ L2(I1) (v and ω2 assumed known) such

that A(v ω1 ω2, v δω1 ω2) = L(v δω1 ω2)− A(un−1, v δω1 ω2).

3. Find ω2 ∈ L2(I2) for all δω2 ∈ L2(I2) (v and ω1 assumed known) such

that A(v ω1 ω2, v ω1 δω2) = L(v ω1 δω2)− A(un−1, v ω1 δω2).

These three stages are iterated until convergence. The first stage is at most

3D (size of the spatial dimension), and all other stages, for each parameter,

are 1D. Moreover, it is interesting to note, see Equation (2b), that each

equation for function ωj associated to parameter µj is algebraic (there are

no derivatives with respect to the parameters µj).

In summary, for each enrichment step of the separable approximation, see

Equation (3), this nonlinear three-stage procedure is required. In general, the

number of iterations for each enrichment does not exceed ten. Although the

exact n-value (rank of the approximation) needed to accurately approximate

the solution depends on the solution separability and regularity, numerical

evidence in elliptic problems reveals that n ranges between a few tens and

a few hundreds. Thus, at most, the complexity of the PGD procedure is a

few hundreds spatial problems (the cost of each 1D algebraic problem being
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negligible compared to the 3D one). This is, in general, orders of magnitude

less expensive that the full dimensional problem (3+m) dimensions or solving

each spatial (3D) problem for a given set of parameters. Note that in the

previous example, with m = 2, sampling for ten values of µ1 and µ2 is already

equivalent to a hundred 3D problems. Clearly, the CPU time savings by

applying the PGD can be of several orders of magnitude (see [9]).

Finally, it is important to note that if the structure of the operator A(·, ·)

is separable, as it is the case many practical examples, see [11], each stage in

of the nonlinear process can be drastically simplified.

3. Model problem introducing geometrical parameters as extra-

coordinates

This section presents in a simple problem the inherent difficulties asso-

ciated to the use parameters modifying the geometry. It also illustrates for

this elementary problem depicted in Figure 1 the proposed solution. The

model problem described in (1) is further simplified with K as the identity

matrix and Γ = ∅, namely−∇ · ∇u = f in Ω(µ) ⊂ R2,

u = 0 on ΓD(µ) := ∂Ω(µ),
(6)

where it is explicitly indicated the dependence of the computational domain

and its boundary in the parameters µ ∈ [−a, a] × [−a, a] ⊂ R2, with a <

1, in fact, in the example below a = 0.7. Thus, the weak problem is a

particularization of (2), whose solution in the proper finite dimensional spaces

gives an approximation of the general solution u(x,µ) where µ are treated

as extra-coordinates.

In order to solve the problem using µ as extra-coordinates a mapping

relating the spatial domain Ω(µ) to a reference one Ωξ is required. Note
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that while the mapping is obviously dependent on µ, Ωξ is independent on

these parameters. In fact, Ω(µ) is the image of Ωξ for a given mappingMµ,

namely

Ω(µ) :=Mµ(Ωξ) =
{
x ∈ R2 : x =Mµ(ξ), ∀ξ ∈ Ωξ

}
.

In what follows a strategy to define a convenient mapping is proposed. In

any case, this mapping allows writing the weak problem (2) over the reference

domain with no dependence on µ, namely

A(u, δu) = L(δu) (7a)

with

A(u, δu) :=

∫
I1

∫
I2

· · ·
∫
Im

(
J−1∇ξu,J

−1∇ξδu detJ
)

Ωξ
dµ1dµ2 . . . dµm, (7b)

L(δu) :=

∫
I1

∫
I2

· · ·
∫
Im

(
f, δu detJ

)
Ωξ
dµ1dµ2 . . . dµm, (7c)

where J = [∂x/∂ξ] is the Jacobian matrix of the mapping and detJ its

determinant, white ∇ξ is the gradient in reference coordinates.

Remark 1. Note the similarity between (7b) and (2b) with the following

definition of K = detJ [J−TJ−1].

3.1. A first tentative geometrical transformation

In order to explicit the dependence of the model on both geometrical

parameters, consider a first tentative geometrical transformation from the

parameter space ξ ∈]0, 1[×]0, 1[ to the physical spatial domain x ∈ Ω(µ):

x =Mµ(ξ) := ξ +
1

2

(
ξT

0 1

1 0

 ξ)µ,
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which entails a linear Jacobian matrix

J =
[∂x
∂ξ

]
=

1 0

0 1

+

0 1

1 0

µTξ =

1 + ξ2µ1 ξ2µ2

ξ1µ1 1 + ξ1µ2

 .

The determinant of J and its inverse are respectively,

detJ = 1 + ξT

0 1

1 0

µ,
J−1 =

[ ∂ξ
∂x

]
=

1

detJ

1 + ξ1µ2 −ξ2µ2

−ξ1µ1 1 + ξ2µ1

 .

Replacing these definitions into (7) allows to apply the PGD methodology

developed in Section 2. It is important to note that with this mapping

most of the terms in (7) can be expressed in a separated form, implying a

finite sum of products of functions of ξ, functions of µ1 and functions of µ2.

However, the inverse of the Jacobian, i.e. J−1 see (7b), introduces detJ in

the denominator. This is a key issue because: (i) the expression of the inverse

of a separated function in a separated form can involve many terms, and (ii)

in order to build-up such separated representation

1

detJ
≈

N∑
i=1

Jξ
i (ξ) Jµ1i (µ1) Jµ2i (µ2)

a high-order singular value decomposition (HOSVD) is required. In a multi-

dimensional space involving many extra-coordinates, the implementation of

HOSVD becomes delicate and in any case non optimal.

Remark 2 (Small perturbations). The particular case of small pertur-

bations allows for a separated representation of the inverse of the Jacobian

with a reduced number of terms. Only for the assumption of small pertur-

bation a general mapping induces a weak problem, see (7), where a PGD
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methodology produces approximations with a reasonable number of terms,

see [5]. In this work, however, general perturbations are considered and

consequently more efficient transformations are proposed.

3.2. Looking for simpler transformations

To facilitate a separate representation of the inverse of detJ even in the

presence of large perturbations, an alternative mapping is proposed. As in

the previous section, the same quadrilateral domain depicted in Figure 1 is

studied. And, again, the unit square is distorted perturbing the position of

the upper left corner with parameters µ = (µ1, µ2)T . That is, the coordinates

of the four vertices Pi are xi, for i = 1, . . . , 4 defined as

x1 = (0, 0)T ,

x2 = (1, 0)T ,

x3 = (1 + µ1, 1 + µ2)T ,

x4 = (0, 1)T .

(8)

The new mapping requires a partition of the original geometry in non-

overlapping triangles. In this case, two triangles Ω1 and Ω2 are defined;

the first one is characterized by points (P1,P3,P4) and the second one by

(P1,P2,P3).

The reference triangle T is defined in the reference domain of coordinates

ξ and its vertices are T1 = (0, 0), T2 = (1, 0), and T3 = (0, 1). The mapping

of the parametric spatial domain Ω(µ) = Ω1(µ)∪Ω2(µ) into a reference con-

figuration independent of µ is described by two geometrical transformations

T → Ω1 and T → Ω2. That is,

Ω(µ) =
2⋃
i=1

Ωi(µ) with

Ωi(µ) =Mi
µ(T ) =

{
x ∈ R2 : x =Mi

µ(ξ), ∀ξ ∈ T
}

for i = 1, 2.
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In this case, the mapping for each element follows the well-known finite

element strategy for a linear triangle. In particular, the interpolation of any

function u(ξ) defined in T is prescribed by

u(ξ) = u1N1(ξ) + u2N2(ξ) + u3N3(ξ)

where ui, for i = 1, 2, 3, denote the values of the field u at vertices T1, T2

and T3 respectively, and where the well-known shape functions Ni(ξ),
N1(ξ1, ξ2) = 1− ξ1 − ξ2,

N2(ξ1, ξ2) = ξ1,

N3(ξ1, ξ2) = ξ2,

verify the Kroenecker’s delta property.

Thus, the two mappings prescribing the domain transformation arex(ξ,µ) =M1
µ(ξ) := x1(µ)N1(ξ) + x3(µ)N2(ξ) + x4(µ)N3(ξ) for Ω1,

x(ξ,µ) =M2
µ(ξ) := x1(µ)N1(ξ) + x2(µ)N2(ξ) + x3(µ)N3(ξ) for Ω2,

where xi, coordinates of points Pi for i = 1, . . . , 4, are defined in (8). Note,

that, in this case, only x3 depends on the parameters µ.

Consequently, the Jacobian related to M1
µ(T ) = Ω1(µ) becomes:

J1 =

x3 − x1 y3 − y1

x4 − x1 y4 − y1

 =

1 + µ1 1 + µ2

0 1

 ,

and analogously for the transformation M2
µ(T ) = Ω2(µ)

J2 =

x2 − x1 y2 − y1

x3 − x1 y3 − y1

 =

 1 0

1 + µ1 1 + µ2

 .

Finally, for this particular case, detJ1 = 1 + µ1 and detJ2 = 1 + µ2, whose

inverse can be written from a single functional product.
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These expressions for the Jacobian are substituted in (7), taking into ac-

count that the spatial forms are now integrated in each element, for instance

(
J−1∇ξu,J

−1∇ξδu detJ
)

Ωξ
=

2∑
i=1

(
J−1
i ∇ξu,J

−1
i ∇ξδu detJ i

)
T .

3.3. Separated form approximation

Following Section 2 and more particularly equation (3), for this example,

the model solution is approximated in the separated form as

u(x) ≈ un
(
x(ξ,µ)

)
=

n∑
s=1

vs(ξ)ωs1(µ1)ωs1(µ2)

= un−1
(
x(ξ,µ)

)
+ v(ξ)ω1(µ1)ω1(µ2),

where the approximation un
(
x(ξ,µ)

)
is defined piecewise by its restriction

to Ω1 and Ω2. As usual an incremental process is designed where un−1 is

assumed known while v, ω1 and ω2 are the unknown functions to be deter-

mined with the standard PGD approach. They are evaluated iterating with

the three stages described in Section 2.

It is important to note that finite dimensional subspaces of H1
ΓD

, L2(I1)

and L2(I2) must be chosen to solve numerically the problem. While any 1D

discretization is possible for L2(Ii), i = 1, 2, for the spatial discretization

two alternatives are possible. The first option to determine function v is to

create a nested mesh of finite elements inside the triangles Ω1 and Ω2 used to

describe the geometry. That is the submesh for computations, which in this

case is also composed by triangles, has no elements crossing the interface

Γ = Ω1 ∩ Ω2. This is the best option because it induces optimal rates of

convergence. Whereas suboptimal rates of convergence, see [25], are induced

by the second alternative, which consists in generating a mesh independent

of the macro triangles used to define the geometry and then assign to each

Gauss point the corresponding Jacobian of the transformation.
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Here Ii := [−0.7, 0.7] for i = 1, 2 and, consequently, an approximation of

the solution is obtained for any geometry perturbing the upper-right corner

of the unit square in this range along the horizontal and vertical directions.

Figure 2 depicts the limit solutions obtained from (µ1, µ2) = (−0.7,−0.7)

and (µ1, µ2) = (0.7, 0.7). Both solutions were compared with the ones com-

puted by using finite elements in both geometries and both agree with two

significant digits; the L2 error over the domain is 0.91 · 10−3 and 0.29 · 10−2.

4. General framework for domain dependence on PGD coordinates

To present the general approach for PGD problems where the geometry

is described with parameters a simplified model problem is studied. Without

loss of generality, the problem statement is restricted to 2D with homogenous

Dirichlet boundary conditions, namely
−∇ · ∇u = f in Ω(µ) ⊂ R2,

n · ∇u = t on Γ(µ),

u = 0 on ΓD(µ) := ∂Ω(µ)\Γ(µ),

(9)

where it is explicitly indicated the dependence of the computational domain

and its boundary in the parameters µ ∈ Rm. The classical weak problem

equivalent to (9) is: find u ∈ H1
ΓD

such that

(
∇u,∇δu

)
Ω

=
(
f, δu

)
Ω

+
〈
t, δu

〉
Γ

∀δu ∈ H1
ΓD
. (10)

Recall the definition of H1
ΓD

in Equation (4).

Assume for simplicity that ∂Ω(µ) is defined piecewise linearly, that is,

∂Ω(µ) is a polygon. Moreover, assume that parameters µ correspond to the

(perturbation of the) coordinates of a subset of the vertices of that polygon.

Note that no restriction is imposed on this polygon (convexity, holes, etc.).

17



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

x real domain

PGD Solution a = −0.7 b = −0.7    ε  = 0.00090849

 

y
 r

e
a
l 
d
o
m

a
in

0

2

4

6

8

10

x 10
−3

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8  

x real domain

PGD Solution a = 0.7 b = 0.7    ε  = 0.0028923

 

y
 r

e
a
l 
d
o
m

a
in

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 2: Solution of the thermal model for: (top) (µ1, µ2) = (−0.7,−0.7) and (bottom)

(µ1, µ2) = (0.7, 0.7)
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Under these assumptions there exists a partition on ntg non overlapping

triangles covering the complete domain. Denote by Ωe a general triangle,

e = 1, . . . , ntg.

Remark 3. It is important to observe that perturbations in the position of

one vertex only affect triangles connected to this vertex. This locality of the

perturbation will facilitate the separability among parameters µ. It is ob-

vious, that parameters associated to vertices belonging to different triangles

are independent.

Following the same rationale as in standard finite elements based on tri-

angular discretization, for each triangle Ωe, there is a linear mapping be-

tween the reference coordinates ξ ∈ T and the physical ones x ∈ Ωe, i.e.

x =Me
µ(ξ) for e = 1, . . . , ntg. It is crucial to note that, in each triangle, the

Jacobian matrix, J e :=
[
∂x/∂ξ

]
for e = 1, . . . , ntg, is “constant” (i.e. it does

not depend on ξ) and it is only dependent on µ.

With these definitions, the weak problem (10), can be rewritten as

ntg∑
e

(
∇u,∇δu

)
Ωe

=

ntg∑
e

(
f, δu

)
Ωe

+

ntg∑
e

〈
t, δu

〉
Γ∩∂Ωe

∀δu ∈ H1
ΓD
,

or more explicitly

ntg∑
e

(
Ke∇ξue,∇ξδue

)
T det(J e)

=

ntg∑
e

(
fe, δue

)
T det(J e) +

ntg∑
e

〈
te, δue

〉
Γ∩∂T det(JΓ

e ), (11)

where Ke = J−Te J−1
e , ue = u|Ωe , ∇ξ is the gradient with respect to the

reference coordinates in the reference triangle T , Γ ∩ ∂T represent (symbol-

ically) the edges of T where Neumann conditions are applied, and det(JΓ
e )

the Jacobian along these edges. Note that ue for e = 1, . . . , ntg can not be
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approximated independently for each triangle because continuity must be

ensured.

This new expression of the weak problem, see (11), hints a separable

approximation of the solutions. Because, for every e = 1, . . . , ntg, ue, δue, fe,

and te only depend on ξ whereas J−1
e (and consequently Ke), det(J e) and

det(JΓ
e ) only depend on µ.

Under these circumstances, the major hypothesis of the PGD approach,

which assumes that the solution of (10) can be approximated by a rank-n

separable approximation, seems reasonable. This rank-n separable approxi-

mation is explicitly written as

u(x) ≈ un
(
x(ξ,µ)

)
=

n∑
s=1

vs(ξ)
m∏
j=1

ωsj (µj)

= un−1
(
x(ξ,µ)

)
+ v(ξ)

m∏
j=1

ωj(µj),

(12)

where the approximation un
(
x(ξ,µ)

)
∈ H1

ΓD
is defined by each restriction

to Ωe for e = 1, . . . , ntg, and, in the following, un−1 is assumed known while

v and ωj (with j = 1, . . . ,m) are the unknown functions.

Since the new variables µ prescribing the geometry are now seen as extra

coordinates, the weak problem, see (10) and (11), is now defined over a larger

set of coordinates. In particular, (10) can be rewritten as∫
I1

∫
I2

· · ·
∫
Im

(
∇u,∇δu

)
Ω
dµ1dµ2 . . . dµm

=

∫
I1

∫
I2

· · ·
∫
Im

(
f, δu

)
Ω
dµ1dµ2 . . . dµm

+

∫
I1

∫
I2

· · ·
∫
Im

〈
t, δu

〉
Γ
dµ1dµ2 . . . dµm,

where Ij is the range of parameter µj, for j = 1, . . . ,m. More precisely,
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replacing (12) in (11) gives∫
I1

ω1(µ1)

∫
I2

ω2(µ2)· · ·
∫
Im

ωm(µm) det(J e)

ntg∑
e

(
Ke∇ξve,∇ξδue

)
T dµ1dµ2 . . . dµm = r(δu), (13a)

where r(δu) is the residual evaluated for the n− 1 separation and defined as

r(δu) =

∫
I1

∫
I2

· · ·
∫
Im

det(J e)

ntg∑
e

(
fe, δue

)
T dµ1dµ2 . . . dµm

+

∫
I1

∫
I2

· · ·
∫
Im

det(JΓ
e )

ntg∑
e

〈
te, δue

〉
Γ∩∂T dµ1dµ2 . . . dµm

−
∫
I1

∫
I2

· · ·
∫
Im

det(J e)

ntg∑
e

(
Ke∇ξu

n−1,∇ξδue
)
T dµ1dµ2 . . . dµm. (13b)

Note that once the test functions are also separated, recall (5b)

δu = δv
m∏
j=1

ωj +
m∑
k=1

v δωk

m∏
j=1
j 6=k

ωj,

the rationale of PGD exposed in Section 2 can be readily applied and the

iterative process to determine v and ω is automatically determined.

5. Numerical results

In this section, the proposed approach is applied to more complex sce-

narios.

5.1. Quadrilateral with one parametrized edge

The first numerical experiment concerns problem (6) with a unitary source

term on a domain Ω(µ) obtained by perturbing the rectangular domain

Ω(0) =]0, 3[×]0, 1[. For this purpose, assume that ∂Ω(µ) is described by the
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Table 1: Coordinates of the points describing the boundary of the perturbed domain

P1 P2 P3 P4 P5 P6 P7 P8

x 0 1 2 3 3 2 1 0

y 0 0 0 0 1 + µ1 1 + µ2 1 + µ3 1 + µ4

Figure 3: Triangulation defining the geometrical transformation.

position of eight control points Pi, i = 1, . . . , 8. Moreover, four of those con-

trol point are allowed to move vertically and the parameters describing this

perturbation are µ = (µ1, µ2, µ3, µ4)T . In this example µi ∈ Ii := [−0.3, 0.3],

for i = 1, . . . , 4. See Table 1 for the coordinates of these points prescribing

∂Ω(µ).

In order to apply the procedure previously described consider the six

triangles: Ω1 = (P1,P7,P8), Ω2 = (P1,P2,P7), Ω3 = (P2,P6,P7), Ω4 =

(P2,P3,P6), Ω5 = (P3,P5,P6) and Ω6 = (P3,P4,P5), as depicted in Figure

3.

The resulting solution separated representation involves 40 terms

u(x(ξ,µ)) ≈
40∑
s=1

vs(ξ)
4∏
j=1

ωsj (µj). (14)

Functions ωsj (µj) were approximated using a 1D discretization consisting of

13 nodes uniformly distributed in the interval [−0.3, 0.3]. Functions vs(ξ)

were approximated using a nested mesh of linear finite element depicted in
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Figure 4: Finite element nested mesh used to approximate the spatial functions vs(ξ)

Figure 4.

Figure 5 depicts the first three functions vs(x) (i.e. s = 1, 2, 3) and Figure

6 also presents the first three functions ωsj (µj), for j = 1, . . . , 4.

Figure 7 compares the finite element solution obtained directly over a

domain perturbed by µ1 = −0.15, µ2 = 0.3, µ3 = −0.3, and µ4 = 0.3 and the

results of a particularization of the PGD parametric solution for the same

perturbation. The difference between both solution was, using a L2 norm,

of around 10−2. Moreover, Figure 8 shows the evolution or the residual as

a function of the number of terms involved in the separated representation.

Recall the definition of the residual in (13b). Notice that Figure 8 goes

beyond the 40 terms used in all the comparisons presented here and also

shows the residue up to 80. This is done to illustrate that as the number

of terms increases the error decreases depending on the optimality of the

method and the separability of the solution. Moreover, as also depicted in

Figure 8, the error between the PGD approximation and the direct finite
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Figure 5: Three most significant spatial modes.
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Figure 7: Comparing the finite element solution (left) with the particularized PGD para-

metric solution (right).

element (FE) approximation decreases with the number of terms. Note that

for s = 40 the difference between a post processed PGD approximation and a

FE solution is already below 10−4. Obviously, as the number of terms in the

PGD approximation is increased the error can be reduced. Note that, this

off-line solution is the general thermal solution for any point in space and

any design parameter (geometric parameters). That is, a six-dimensional

problem with 341 nodes in space and 13 nodes for each geometric parameter.

Since four geometry parameters are used, only 45 seconds are needed in

PGD to approximate the solution of 134 = 28 561 configurations that would

imply (when proceeding with standard techniques) the solution of 28 561

two-dimensional spatial problems, each with 341 nodes, or, equivalently, a

6D problem with 9 739 301 number of degrees of freedom, and the error

compared to FE is below 10−4.

Finally, Figure 9 depicts the finite element solutions and the particular-

ized parametric PGD solutions for two other different geometries. Again,

both solutions agree to a great level of precision.

Obviously, adding more parameters as extra-coordinates is not a major is-
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Figure 8: Evolution of the total residual (left) and the error between PGD and FE (right)

with the number of terms involved in the separated representation.
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Table 2: Coordinates of the points describing the boundary of the perturbed domain

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

x 0 1 2 3 4 5 5 4 3 3 1 0

y 0 0 0 0 0 0 1 + µ1 1 + µ2 1 + µ3 1 + µ4 1 + µ5 1 + µ6

Figure 10: Triangulation defining the geometrical transformation.

sue, the strategy for building-up the separated representation proceeds in the

same manner, but because the solution is now richer, the separated represen-

tation involves more terms. Assume now that Ω(µ) is defined by 12 control

points, and that, as previously, the position of the top ones, 6 in this case is

perturbed. See Table 2 for the coordinates of these points prescribing ∂Ω(µ)

and note that µ = (µ1, µ2, µ3, µ4, µ5, µ6)T is such that µi ∈ Ii := [−0.3, 0.3],

for i = 1, . . . , 6. Figure 10 depicts the triangulation for Ω(0).

28



0 1 2 3 4 5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y

FE Solution:μ
1
=−0.3, μ

2
=0.3, μ

3
=0.3, μ

4
=−0.3, μ

5
=0.3, μ

6
=0.3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Figure 11: Comparison of the PGD and finite element approximations for Ω(µ)perturbed

by µ1 = −0.3, µ2 = 0.3, µ3 = 0.3, µ4 = −0.3, µ5 = 0.3, and µ6 = 0.3.

The resulting solution separated representation involves 70 terms

u(x(ξ,µ)) ≈
70∑
s=1

vs(ξ)
6∏
j=1

ωsj (µj). (15)

Figure 11 compares the particularization of the general PGD approximation

(15) when considering the geometry perturbed by µ1 = −0.3, µ2 = 0.3,

µ3 = 0.3, µ4 = −0.3, µ5 = 0.3, and µ6 = 0.3 with the finite element solution

computed directly on the perturbed domain. Again, both solutions are in

perfect agreement. It is important to notice that also in this case all the

intervals Ii = [−0.3, 0.3] for i = 1, . . . , 6 are discretized with 13 uniformly

distributed nodes. Thus, separated representation in Eq. (15) represents the

solution for 136 different geometries, that is, for 4.826.809 possible domain

geometries.

5.2. First steps towards multi-criteria efficient shape optimization

This section is dedicated to show, in an academic problem, the advantages

of a generalized (on-line) solution to address optimization problems. As noted

in the introduction, optimization problems rely on iterative procedures that
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require the evaluation of an objective function (and/or multiple criteria). An

efficient optimization scheme would reduce the number of iterations, however

as the number of parameters and criteria increases the optimization processes

becomes more and more time-consuming. Obviously, such a methodology is

extremely sensitive to the cost of evaluation a solution for a set of parameters.

Suppose that the problem at hand requires to minimize the volume and

maximize the heat flux along the top surface of the quadrilateral problem de-

scribed in Section 5.1. Consequently, the objective is to optimize the shape

of the parametrized quadrilateral domain minimizing volume V (µ) and max-

imizing heat flux through the upper surface, ΓUp, defined by the segments

joining points P5,P6,P7 and P8, namely

Φ(µ) :=

∫
ΓUp(µ)

n · ∇u(x(ξ,µ)) dΓ

Recall that µ ∈ I1 × · · · × I4 with Ii = [−0.3, 0.3] for i = 1, . . . , 4. The

optimization iterative process can be performed solving for each iteration

(for each set of parameters) problem (6) or evaluating for each iteration the

approximated PGD solution (14).

A first alternative to optimize the shape defined by µ is to combine both

objectives (volume and head flux) in one single objective function. Consider

for instance an objective function defined as

Cost(µ, λ) = λV (µ) + (1− λ)
(
1/Φ(µ)

)
, (16)

where the relative weight between both objectives, controlled by λ, must be

user-defined a priori.

This particular optimization problem does not present major difficulties

and can be readily solved with a large number of techniques for any given

λ ∈]0, 1[. Nevertheless, thanks to the PGD parametric solution, see the ex-

pression (14), a direct particularization of the parametric solution is readily
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obtained for each tentative value of the parameters at every iteration. This

not the case of standard procedures, they would require to solve problem (6)

at every iteration with the new set of tentative parameters. Moreover, with

the PGD solution it is trivial to implement Newton’s method to find the

stationary point of (16). Whereas, classical approaches requiring the resolu-

tion of problem (6) at each iteration necessitate an extra effort to evaluate

sensitivities in order to construct the tangent matrix, see for instance [1].

For instance, for λ = 0.5, after some four Newton iterations the optimal

values are obtained, namely

(−0.6,−0.2,−0.6,−0.6) = arg min
µ∈I1×···×I4

Cost(µ, 0.5)

The advantages of having a parametric solution of a problem, such as

(6), are more evident in multiobjective optimization, in particular, with the

construction of Pareto’s fronts. Suppose, that for each parameter µi, in this

case, for i = 1, . . . , 4 ten values are used to sample the range Ii. The total

number of possible geometries is 104. Particularizing the solution, see (14),

and then computing each objective, 104 times is not at all an expensive

procedure. Thus for each possible geometry defined by a given µi for i =

1, . . . , 104 the volume, V (µi), and the inverse of the flux 1/Φ(µi) are readily

evaluated. The resulting 104 points are depicted in Figure 12. The convexity

of the resulting cloud indicates that, in this case, the Pareto’s front can be

calculated by minimizing the cost function Cost(µ, λ), see (16), for any of

λ ∈]0, 1[. This methodology is extremely easy and fast when the parametric

solution is available. Figure 13 depicts five points on the Pareto’s front.

6. Conclusions

This work is a first attempt at considering parametric models in which

the parameters controlling the geometry are treated as extra-coordinates.
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Figure 13: Five optimal solutions in the Pareto’s sense.
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An approximation of the solution is obtained invoking a proper generalized

decomposition. This solution circumvents the curse of dimensionality do

to the increased number of coordinates and induces an expression that is

readily used in any optimization procedure. Moreover, Pareto fronts are also

efficiently computed in multi-objective optimization.

A key ingredient is to overcome the difficulties related to the separated

representation of the inverse of the Jacobian of the transformation. They

have been alleviated by considering simpler mappings, as the ones associated

with linear triangles that in many cases allows for exact separated represen-

tations of the inverse of the Jacobian.

The consideration of geometrical parameters coming for a CAD descrip-

tion or even the ones related to a isogeometric description of the domain

boundary constitutes some of the works in progress.
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