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Abstract This paper revisits a powerful discretization technique, the Proper General-

ized Decomposition -PGD-, illustrating its ability for solving highly multidimensional

models. This technique operates by constructing a separated representation of the so-

lution, such that the solution complexity scales linearly with the dimension of the space

in which the model is defined, instead the exponentially-growing complexity charac-

teristic of mesh based discretization strategies. The PGD makes possible the efficient

solution of models defined in multidimensional spaces, as the ones encountered in quan-

tum chemistry, kinetic theory description of complex fluids, genetics (chemical master

equation), financial mathematics, ... but also those, classically defined in the standard

space and time, to which we can add new extra-coordinates (parametric models, ...)

opening numerous possibilities (optimization, inverse identification, real time simula-

tions, ...).

1 Introduction

Many models encountered in science and engineering are defined in multidimensional

spaces, as the ones involved in quantum chemistry, kinetic theory descriptions of materi-
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als (including complex fluids), the chemical master equation governing many biological

processes (e.g. cell signaling), models of financial mathematics (e.g. option pricing),

among many others. These models exhibit the redoubtable curse of dimensionality

when usual mesh-based discretization techniques are applied. Other times, standard

models can become multidimensional if some of the parameters that they involve are

considered as new coordinates. This possibility is specially attractive when these coef-

ficients are not well known, they have a stochastic nature, or when one is interested in

optimization or inverse identification.

The difficulty related to the solution of multidimensional models is quite obvious

and it needs the proposal of new appropriate strategies able to circumvent the curse of

dimensionality. One possibility lies in the use of sparse grids [12]. However, as argued

in [1], the use of sparse grid is restricted to models with moderate multidimensionality

(up to 20). Another technique able to circumvent, or at least alleviate, the curse of di-

mensionality consists of using a separated representation of the unknown field (see [44]

[10] for some numerical elements on this topic). Basically, the separated representation

of a generic function u(x1, · · · ,xD) (also known as finite sum decomposition) writes:

u(x1, · · · ,xD) ≈
i=NX

i=1

F 1
i (x1) × · · · × FD

i (xD) (1)

Remark 1 The coordinates xi, i = 1, · · · ,D, are defined in spaces of moderate dimen-

sion, i.e. xi ∈ Ωi ⊂ R
di , di ≤ 3. Thus, the dimension of the model results

Pi=D
i=1 di.

Eventually, one of these coordinates could be the time t ∈ I ⊂ R
+.
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This kind of representation is not new, it was widely employed in the last decades

in the framework of quantum chemistry. In particular the Hartree-Fock (that involves

a single product of functions) and post-Hartree-Fock approaches (as the MCSCF that

involves a finite number of sums) made use of a separated representation of the wave-

function [13] [19].

We proposed recently a technique able to construct, in a way completely trans-

parent for the user, the separated representation of the unknown field involved in a

multidimensional partial differential equation. This technique, originally described and

applied to multi-bead-spring FENE models of polymeric liquids in [3], was extended to

transient models of such complex fluids in [4]. More complex models (involving differ-

ent couplings and non-linearities) based on the reptation theory of polymeric liquids

were analyzed in [34].

In the current life when one is buying a car there are many choices concerning the

color, the power, ... In some cases the number of possible variants reaches astronomical

values: 1050 in the case of a highly appreciated luxury car. Thus, the construction of

a high dimensional matrix representing all the possible variants is simply impossible

(we must recall that the presumed number of elementary particles in our universe is

of around 1080!). Obviously, the only possibility of following the sales of such a car

is using a sparse storage structure. This is well known and widely used in practice.

However, our present interest is not only in storing information, but in solving models

defined in multidimensional spaces.

When the solution of highly multidimensional models explores the whole space there

is no possibility to follow or represent such a system. This is a well known phenomenon

in quantum systems. However, one could track the evolution of such a system in a
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time interval of moderate length by using a “sparse” representation. In our knowledge

two possibilities exist, the first one consists in using Monte Carlo simulations within

a stochastic framework. The second one, within a purely deterministic framework, lies

in using separated representations like the one expressed by Eq. (1) where the number

of sums increases as the solution explores the more and more larger domains. On the

other hand, if the solution only explores a small enough subdomain of the whole domain

the use of sparse grids or separated representations are some appealing candidates for

discretizing such models.

Coming back to models defined in spaces of moderate dimension (d×D, d = 1, 2, 3)

but whose solutions evolve in large time intervals, if one uses standard incremental

time-discretizations, in the general case (models involving time-dependent parameters,

non-linear models, ...), one must solve at least a linear system at each time step.

When the time step becomes too small as a consequence of stability requirements, and

the simulation time interval is large enough, standard incremental simulation becomes

inefficient. To illustrate this scenario, one could imagine the simple reaction-diffusion

model that describes the degradation of plastic materials, where the characteristic time

of the chemical reaction involved in the material degradation is in the order of some

microseconds and the one related to the diffusion of chemical substances (that also

represents the material degradation characteristic time itself) is of the order of years.

In this case standard incremental techniques must be replaced by other more efficient

strategies.

One possibility consists again in performing a separated representation of the un-

known field, that in the present case reduces to:

u(x, t) ≈
i=NX

i=1

Xi(x) · Ti(t) (2)

that allows, as we describe later, to non-incremental time integration strategies, which

can reduce spectacularly the CPU time.

This space-time separated representation is not a new proposal. In fact such de-

compositions were proposed many year ago by Pierre Ladeveze as an ingredient of the

powerful non-linear-non-incremental LATIN solver that he proposed in the 80s. Dur-

ing the last twenty years many works were successfully accomplished by the Ladeveze’s

group. The interested reader can refer to [29] [30] [32] and the references therein. In

the radial approximation approach (the name given in the pioneer works of Ladeveze)

functions depending on space and the ones depending on time were a priori unknown,

and they were computed by an appropriate minimization technique.

In what follows we are reporting the recent advances in the solution of multidimen-

sional models by applying the Proper Generalized Decomposition (PGD), that

is, a separated representation of the unknown fields.

1.1 Motivating the use of separated representations

From a historical point of view, separated representations were extensively used. The

analytical solution of PDEs (elliptic, parabolic and hyperbolic) that the reader can find

in any book devoted to the solution of PDEs starts assuming a separated representation:

the method of separation of variables. After some manipulations, simple but sometimes
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quite technical, the final solution could be some times found in the form expressed by

Eq. (1).

Another well established and widely employed technique allowing to define a sep-

arated representation of a given space-time function is based on the application of a

proper orthogonal decomposition. We are illustrating the main ideas related to this

technique.

Let u(x, t) be the solution of a certain transient model (in what follows x ∈ Ω ⊂ R
d,

d = 1, 2, 3, and t ∈ I ⊂ R
+). We are also assuming that this field is known in a discrete

manner, that is, at some points xi (the nodes of a mesh or a grid) and at certain times

tp = p×∆t, where i ∈ [1, · · · , Nn] and p ∈ [1, · · ·P ].

Now, we introduce the notation up
i ≡ u(xi, tp) and construct the matrix Q that

contains the snapshots:

Q =

0
BBBB@

u1
1 u2

1 · · · uP
1

u1
2 u2

2 · · · uP
2

...
...

. . .
...

u1
Nn

u2
Nn

· · · uP
Nn

1
CCCCA

(3)

The proper orthogonal decomposition (POD) of this discrete field consists in solving

the eigenvalue problem: “
QQ

T
”

φ = λφ (4)

that results in Nn couples eigenvalue-eigenvector (λi,φi), i = 1, · · · , Nn.

When the field evolves smoothly, the magnitude of the eigenvalues decreases very

fast, fact that reveals that the evolution of the field can be approximated from a reduced

number of modes (eigenvectors). Thus, if we define a cutoff value ǫ (ǫ = 10−8 × λ1 in

practice, λ1 being the highest eigenvalue) only a reduced number of modes are retained.

Let R (R << Nn) be the number of modes retained, i.e. λi ≥ 10−8 × λ1, i = 1, · · · , R
and λi < 10−8 × λ1,∀i > R (the eigenvalues are assumed ordered). Thus, one could

write:

u(x, t) ≈
i=RX

i=1

φi(x) · Ti(t) ≡
i=RX

i=1

Xi(x) · Ti(t) (5)

where for the sake of clarity the space modes φi(x) will be, from now on, denoted as

Xi(x). Eq. (5) represents a natural separated representation (also known as finite sums

decomposition).

These modes could be now used to solve other “similar” problems, that is, models

involving slight changes in the boundary conditions, model parameters, ... [39] [33] [46].

Other possibility is to compute the reduced basis from the standard transient solution

within a short time interval (with respect to the whole time interval in which the model

is defined) and then solve the remaining part of the time interval by employing the

reduced basis. Obviously, both strategies induce the introduction of an error whose

evaluation, control and reduction is a challenging issue.

One possibility to construct an adaptive reduced approximation basis, that should

be the best reduced approximation basis for the treated problem, consists in alternating

a reduction step (based on the application of the proper orthogonal decomposition) and

an enrichment stage to improve the quality of the reduced approximation basis in order

to capture all the solution features. We proposed recently an enrichment technique

based on the use of some Krylov’s subspaces generated by the equation residual. This
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technique known as ”a priori” model reduction was originally proposed in [47], widely

described in [48] and successfully applied for solving complex fluid flows within the

kinetic theory framework [2] [17] and for speeding up thermomechanical simulations

[18]. However, some difficulties were noticed in the application of this strategy: (i) the

enrichment based on the use of the Krylov’s subspaces is far to be optimal in a variety

of models (e.g. the wave equation); (ii) the incremental nature of the algorithm; ...

From the previous analysis we can conclude: (i) the transient solution of numerous

models can be expressed using a very reduced number of products each one involving

a function of time and a function of space; and (ii) the functions involved in these

functional products should be determined simultaneously by applying an appropriate

algorithm to guarantee robustness and optimality.

In what follows we are illustrating the simplest strategy able to compute these

separated functional couples.

2 Illustrating the Proper Generalized Decomposition

In this section we are illustrating the discretization of partial differential equations

using a separated representation (radial approximation in the Ladeveze’s terminology)

of the unknown field.

Let us consider the advection-diffusion equation

∂u

∂t
− a∆u+ v · ∇u = f(x, t) in Ω × (0, Tmax] (6)

with the following initial and boundary conditions


u(x, 0) = u0 x ∈ Ω,

u(x, t) = ug (x, t) ∈ ∂Ω × (0, Tmax]
(7)

where a is the diffusion coefficient and v the velocity field, Ω ⊂ R
d, 1 ≤ d ≤ 3,

Tmax > 0. The aim of the separated representation method is to compute N couples

of functions {(Xi, Ti)}i=1,...,N such that {Xi}i=1,...,N and {Ti}i=1,...,N are defined

respectively in Ω and [0, Tmax] and the solution u of this problem can be written in

the separate form

u(x, t) ≈
NX

i=1

Ti(t) ·Xi(x) (8)

The weak form of problem (6) yields:

Find u(x, t) verifying the boundary conditions (7) such that

Z Tmax

0

Z

Ω

u⋆

 
∂u

∂t
− a∆u+ v · ∇u− f(x, t)

!
dx dt = 0 (9)

for all the functions u⋆(x, t) in an appropriate functional space.

We compute now the functions involved in the sum (8). We suppose that the set

of functional couples {(Xi, Ti)}i=1,...,n with 0 ≤ n < N are already known (they have

been previously computed) and that at the present iteration we search the enrichment

couple (R(t), S(x)) by applying an alternating directions fixed point algorithm that
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after convergence will constitute the next functional couple (Xn+1, Tn+1). Hence, at

the present iteration, n, we assume the separated representation

u(x, t) ≈
nX

i=1

Ti(t) ·Xi(x) +R(t) · S(x) (10)

The weighting function u⋆ is then assumed as

u⋆ = S ·R⋆ +R · S⋆ (11)

Introducing (10) and (11) into (9) it results

Z Tmax

0

Z

Ω

(S ·R⋆ +R · S⋆) ·
 
S ·

∂R

∂t
− a∆S · R+ (v · ∇S) ·R

!
dx dt =

=

Z Tmax

0

Z

Ω

(S · R⋆ +R · S⋆) ·
 
f(x, t) −

nX

i=1

Xi ·
∂Ti

∂t
+

+a

nX

i=1

∆Xi · Ti −
nX

i=1

(v · ∇Xi) · Ti

!
dx dt (12)

We apply an alternating directions fixed point algorithm to compute the couple of

functions (R,S):

– Computing the function S(x).

First, we suppose that R is known, implying that R⋆ vanishes in (11). Thus, Eq.

(12) writes

Z

Ω

S⋆ · (αtS − aβt∆S + βt v · ∇S) dx =

=

Z

Ω

S⋆ ·
 
γt(x) −

nX

i=1

αi
tXi + a

nX

i=1

βi
t∆Xi −

nX

i=1

βi
t v · ∇Xi

!
dx (13)

where
8
>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

αt =

Z Tmax

0
R(t) ·

∂R

∂t
(t) dt

αi
t =

Z Tmax

0
R(t) ·

∂Ti

∂t
(t) dt

βt =

Z Tmax

0
R2(t) dt

βi
t =

Z Tmax

0
R(t) · Ti(t) dt

γt(x) =

Z Tmax

0
R(t) · f(x, t) dt; ∀x ∈ Ω

(14)

The weak formulation (13) is satisfied for all S⋆, therefore we could come back to

the associated strong formulation

αtS − aβt∆S + βt v · ∇S =

= γt −
nX

i=1

αi
tXi + a

nX

i=1

βi
t∆Xi −

nX

i=1

βi
t v · ∇Xi (15)

that one could solve by using any appropriate discretization technique.
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– Computing the function R(t).

¿From the function S(x) just computed, we search R(t). In this case S⋆ vanishes

in (11) and Eq. (12) reduces to

Z Tmax

0

Z

Ω

(S ·R⋆) ·
 
S ·

∂R

∂t
− a∆S ·R+ (v · ∇S) · R

!
dx dt =

=

Z Tmax

0

Z

Ω

(S · R⋆) ·
 
f(x, t) −

nX

i=1

Xi ·
∂Ti

∂t
+

+a
nX

i=1

∆Xi · Ti −
nX

i=1

(v · ∇Xi) · Ti

!
dx dt (16)

where all the spatial functions can be integrated in Ω. Thus, by using the following

notations

8
>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

αx =

Z

Ω

S(x) ·∆S(x) dx

αi
x =

Z

Ω

S(x) ·∆Xi(x) dx

βx =

Z

Ω

S2(x) dx

βi
x =

Z

Ω

S(x) ·Xi(x) dx

λx =

Z

Ω

S(x) · (v · ∇S(x)) dx

λi
x =

Z

Ω

S(x) · (v · ∇Xi(x)) dx,

γx(t) =

Z

Ω

S(x) · f(x, t) dx; ∀t

(17)

equation (16) reads

Z Tmax

0
R⋆ ·

 
βx
∂R

∂t
+ (λx − aαx)R− γx(t)

+

nX

i=1

βi
x

∂Ti

∂t
+

nX

i=1

(λi
x − aαi

x)Ti

!
dt = 0 (18)

As Eq. (18) holds for all S⋆, we could come back to the strong formulation

βx
∂R

∂t
= (a αx − λx)R+ γx(t) −

nX

i=1

βi
x

∂Ti

∂t
+

nX

i=1

(a αi
x − λi

x)Ti (19)

which is a first order ordinary differential equation that can be solved easily (even

for extremely small time steps) from its initial condition.
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These two steps must be repeated until convergence, that is, until verifying that

both functions reach a fixed point. If we denote by R(q)(t) and R(q−1)(t) the computed

functions R(t) at the present and previous iteration respectively, and the same for the

space functions: S(q)(x) and S(q−1)(x), the stoping criterion used in this work writes:

e =
‚‚‚R(q)(t) · S(q)(x) −R(q−1)(t) · S(q−1)(x)

‚‚‚
2
< 10−8 (20)

where 10−8 represents the square root of the machine precision.

We denote by Qn+1 the number of iterations for solving this non-linear problem

to determine the enrichment couple of functions Xn+1(x) and Tn+1(t). After reaching

convergence we write Xn+1(x) = S(x) and Tn+1(t) = R(t). The enrichment procedure

must continue until reaching the convergence of the enrichment global procedure at

iteration N , when the separated representation of the unknown field writes:

u(x, t) ≈
NX

i=1

Xi(x) · Ti(t) (21)

The more usual global stopping criteria are:

– For models whose exact solution uref is known:

E =

‚‚‚u− uref
‚‚‚
2‚‚uref

‚‚
2

< ǫ (22)

– For models whose exact solution is not known:

E =

‚‚‚‚‚
∂u

∂t
− a∆u+ v · ∇u− f(x, t)

‚‚‚‚‚
2

‖f(x, t)‖2

< ǫ (23)

with ǫ a small enough parameter (ǫ = 10−8 in our simulations and the L2-norm applies

in the whole space-time domain).

Discussion on the space-time separated representations The just proposed strategy

needs for the solution of about N × Q space and time problems (with Q = (Q1 +

· · · + QN )/N and N the number of functional couples needed to approximate, up to

the desired precision, the searched solution). Thus, one must compute N × Q d-D

problems, d = 1, 2, 3, whose complexity depends on the spatial mesh considered, and

also N×Q 1D problems (defined in the time interval I) that only need the solution of an

ordinary differential equation from its initial condition. Obviously, even for extremely

small time steps, the solution of these transient 1D problems does not introduce any

difficulty.

If instead the separated representation just discussed, one performs a standard

incremental solution, P dD models, d = 1, 2, 3, must be solved (P being the number

of time steps, i.e. P = Tmax/∆t, where the time step ∆t must be chosen for verifying

the stability conditions).

In all the analyzed cases N and Q are of the order of tens that implies the solution

of about hundred three-dimensional problems defined in Ω, instead the thousands (or

even millions) needed for solving those models using standard incremental solvers.

A first comparison between both kind of approaches (the one based on the separated

representation and the one based on standard incremental strategies) was presented in

[6].
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3 Recent advances

3.1 Some advances in kinetic theory, quantum chemistry and cell signaling

3.1.1 Solving the Fokker-Planck equation

The first works focusing in the solution of multidimensional models by applying the

PGD described in the previous section concerned the modeling of polymeric liquids.

These fluids are composed of an unimaginable number of molecules, that are mod-

eled as a series of dumbbells (on which the different forces arising from the flow drag,

interactions, solvent molecules bombardment, ... apply) connected by linear or non-

linear springs that represent the stiffness between each two consecutive dumbbells.

Let q1, · · · ,qD be the vectors defining the orientation and extension of each one of

these springs. A kinetic theory approach of the molecular nature of such fluids con-

sists of introducing a distribution function Ψ(x, t,q1, · · · ,qD) that represents the frac-

tion of molecules that at position x and time t have a conformation given by vectors

q1, · · · ,qD. As x ∈ Ωx ⊂ R
3, t ∈ I ≡ R

+ and qi ∈ Ωq ⊂ R
3, ∀i ∈ [1, · · · ,D],

the distribution function is then defined in a space of dimension 3 + 1 + 3 × D, i.e.

Ψ : Ωx ×Ωt × (Ωq)D → R
+.

Remark 2 In the case of linear springs Ωq = R
3, for non-linear springs of finite ex-

tension (let b be the maximum spring extension) Ωq reduces to the ball of radius b,

B(0, b). Finally, in the case of rigid rods of unit length, Ωq reduces to the surface of

the unit sphere S(0, 1).

2

The evolution of the molecular configuration q̇i, ∀i, is due to both advective and

diffusive terms, the first ones arising from the presence of a prescribed flow with non-

zero gradient of velocities. The system should verify the momentum balance at any

time, i.e. the equilibrium of forces in absence of inertia terms. For the particular ex-

pressions of q̇i the interested reader can refer to [11] that constitutes a huge catalogue

of physical systems.

The balance equation for the distribution function (also known as the Fokker-Planck

equation) writes:

DΨ

Dt
= −

i=DX

i=1

∂

∂qi
(q̇i · Ψ) (24)

where D
Dt denotes the material derivative.

The solution of this multidimensional equation by applying the PGD assumes a

separated representation of the distribution function

Ψ(x, t,q1, · · · ,qD) ≈
i=NX

i=1

Xi(x) · Ti(t) ·

0
@

j=DY

j=1

Qj
i (qj)

1
A (25)

The case of steady-state multi-bead-finite-extension-spring models of polymeric

liquids in homogeneous flows was addressed in [3]. Later, we considered the transient

case, in which the time was introduced as an additional coordinate being careful on

its upwinding discretization [4]. The case of short fiber suspensions in which the beads

connector is inextensible was addressed in [40]. All these models are linear even when



10

the spring behavior is strongly non-linear (the resulting Fokker-Planck equations (24)

are linear with respect to the unknown function Ψ).

In more complex systems like liquid crystalline polymers or entangled polymeric

systems involving double reptation and convective constraint release, as the one pro-

posed in [23], the resulting models are no more linear and a linearization procedure is

compulsory. In [34] we considered the simplest one, a fixed point strategy for solving

some models associated with entangled polymeric systems.

Finally the case of non-homogeneous flows was deeply analyzed in [40] and [35]. The

main issue in treating non-homogenous flows using the fully separated representation

(25) including physical space, time and conformation spaces lies in the convective

stabilization issues, because the stabilization in the conformation space depends on

the gradient of velocities that is defined in the physical space. Thus, the adequate

separated representation of the stabilization term remains an open issue.

In [17] we addressed the difficulty related to the reduced modeling of systems

composed of moving particles within the framework of Brownian dynamics simulations.

We provend that classical model reduction techniques based on the use of the proper

orthogonal decomposition fails, and that POD or PGD based discretizations perfectly

run as soon as the models are rewritten as Brownian configuration fields. Thus, the issue

related to updated Lagrangian simulations (the reference configuration is changing in

time) - of capital importance in material forming simulations, finite transformations

thermomechanic or molecular dynamics - moved to the first plane. We come back to

this challenging issue later.

3.1.2 Solving the Schrödinger equation

After treating kinetic theory models we were interested in models arising from quan-

tum chemistry. These models are redoubtable because the equations that govern the

electronic distribution, the Schrödinger equation or its fully relativistic counterpart

-the Dirac’s equation- are defined in spaces whose dimensionality scales with the num-

ber of elementary particles involved in the quantum system. The first one, within the

Born-Oppenheimer hypothesis (the wavefunction depends perimetrically on the nuclei

positions), writes:

i~
∂Ψ

∂t
= − ~

2

2me

e=DeX

e=1

∇2
eΨ +

e=De−1X

e=1

e′=DeX

e′=e+1

Vee′Ψ +

e=DeX

e=1

n=DnX

n=1

VenΨ (26)

where i =
√
−1, ~ is the Planck’s constant divided by 2π, me is the electron mass, De

andDn are the number of electrons and nuclei in the system respectively, Ψ (x1, · · ·xDe
, t;X1, · · · ,XDn

)

is the wavefunction, being xe the space in which the electron e lives (xe ∈ R
3), and

Xn the position of nuclei n. The differential operator ∇e refers to the gradient with

respect to the coordinates xe. Finally Vee′ and Ven represent the electron-electron and

electron-nuclei Coulomb potentials respectively.

The Schrödinger and Dirac equations are defined in a space that scales with the

number of elementary particles involved in the system, each one living in R
3. Thus,

when one considers few particles D, the time-independent Schrödinger equation is

defined in a space of dimension 3 ×D. However, we have proven in [19] that in many

systems the real issue is not the model multi-dimensionality, that could be circumvented

by using the PGD, but the Pauli’s exclusion principle that enforces the anti-symmetry

of the wavefunction. For enforcing this constraint, the use of Slater’s determinants
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is the simplest alternative, but the number of terms that these determinants involve

explodes as the number of concerned particles grows. The interested reader can refer

to [19] [5] for more details concerning the treatment of quantum systems by using the

PGD.

3.1.3 Solving the chemical master equation

We also considered recently in [7] the treatment of the chemical master equation, mod-

eling, among many other physics, the cell signaling. In chemical systems involving some

(or several) species each one composed by a few number of individuals, the state of

the system is given by a probability (the deterministic approach fails when the number

of individuals is too reduced for introducing the concept of chemical concentration):

P (z, t|z0, t0) where z = (#s1, · · ·#sD) and #si refers to the number of individuals of

each species si. Obviously #si is changing in time because the different chemical reac-

tions that are producing or destroying individuals in the population si. The chemical

master equation writes:

∂P (z, t|z0, t0)

∂t
=
X

j

`
aj(z − vj)P (z− vj , t|z0, t0) − aj(z)P (z, t|z0, t0)

´
(27)

where aj are the propensities (the chemical reaction j operates growing the population

z from z − vj : z − vj → z, and simultaneously population z decreases originating

individuals of other populations).

Despite the fact that this equation does not imply partial derivatives other that

the temporal one, we assumed a separated representation

P (z, t) ≈
i=NX

i=1

Ti(t) ·

0
@

j=DY

j=1

Sj
i (#sj)

1
A (28)

and we proceed in a standard manner as described in [7].

3.2 Further considerations on non-linear models

For illustrating the treatment of non linear models we are treating the following simple

nonlinear parabolic problem, that we considered in [6]

8
>><
>>:

∂u

∂t
− a∆u = u2 + f(x, t) in Ω × (0, Tmax]

u(x, t) = 0 on ∂Ω × (0, Tmax]

u(x, 0) = 0 in Ω

(29)

where Ω ⊂ R
d, d ≥ 1, Tmax > 0 and a > 0 is the diffusion coefficient. To build-up

the approximated solution of (29) by using a separated representation, we propose two

alternatives

– An incremental linearization

– A Newton linearization

which we describe in sections below.
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3.2.1 Incremental linearization

We look for writing the solution of problem (29) in the separated form

u(x, t) ≈
NX

i=1

Xi(x) · Ti(t)

We suppose that at iteration n, with n < N , the n first modes (Xi, Ti), i =

1, · · ·n, are already known and that at present iteration we search the new enrichment

functional product R(t) · S(x) such that the updated approximation writes

u(x, t) ≈
nX

i=1

Xi(x) · Ti(t) + S(x) · R(t) (30)

The weak form of problem (29) writes

Z Tmax

0

Z

Ω

u⋆

 
∂u

∂t
− a∆u− u2 − f(x, t)

!
dx dt = 0; ∀u⋆ (31)

The alternating directions scheme proceed by calculating S(x) from the temporal

function R(t) just computed, and then, updating R(t) from the just computed S(x),

as we described in section 2. The iteration procedure should continue until reaching

convergence. Here, the novelty is the treatment of the non-linear term u2. The simplest

possibility consists in computing this term at the previous iteration, that is, assuming

at the present iteration the following approximation of the non-linear term

u2 ≈
 

nX

i=1

Xi(x) · Ti(t)

!2

(32)

Thus, we can compute S(x) from

Z

Ω

S⋆ ·
 
αtS − aβt∆S +

nX

i=1

αi
tXi − a

nX

i=1

βi
t∆Xi − Φ(x) − γt(x)

!
dx = 0 (33)

where the notation introduced in section 2 is used again, and where Φ(x) and Γ (x) are

given by

Φ(x) =

Z Tmax

0
R(t) ·

 
nX

i=1

Xi(x) · Ti(t)

!2

dt (34)

The associated strong form writes

αtS − aβt∆S = −
nX

i=1

αi
tXi + a

nX

i=1

βi
t∆Xi + Φ(x) + γt(x) (35)

¿From this solution S(x), we can update the temporal function R(t), by solving its

associated strong form

βx

∂R

∂t
− aαxR+

nX

i=1

βi
x

∂Ti

∂t
− a

nX

i=1

αi
xTi − Ψ(t) − γx(t) = 0 (36)

where

Ψ(t) =

Z

Ω

S(x) ·
 

nX

i=1

Xi(x) · Ti(t)

!2

dx (37)
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3.2.2 Newton linearization

¿From now on we denote by un the solution computed at iteration n, i.e.

un(x, t) =
nX

i=1

Xi(x) · Ti(t) (38)

Now, after linearization, the solution at the next iteration can be written as un+1 =

un + eu where eu is the solution of the problem

∂eu
∂t

− a∆eu− 2 un eu = −
 
∂un

∂t
− a∆un − (un)2 − f(x, t)

!
(39)

whose weak formulation writes:

Z Tmax

0

Z

Ω

eu⋆

 
∂eu
∂t

− a∆eu− 2 un eu
!
dx dt =

=

Z Tmax

0

Z

Ω

eu⋆

 
−
∂un

∂t
+ a∆un + (un)2 + f(x, t))

!
dx dt, ∀eu⋆

(40)

Now, we assume eu(x, t) = R(t) · S(x) and eu⋆ = S · R⋆ + R · S⋆. To compute

both functions R(t) and S(x) we apply again the alternating directions method deeply

described in the previous sections.

3.2.3 Discussion

Both procedures converge but no significant differences in the number of required

iterations were noticed. The convergence rate and the computing time were similar.

In the case of linear models, if we solve the problem and then apply the POD (for

a given precision) we obtain

uPOD,N (x, t) =
NX

i=1

XPOD
i (x) · TPOG

i (t) (41)

When the numerical solution is computed using the PGD described in section 2,

the solution obtained using N sums uPGD,N

uPGD,N (x, t) =
NX

i=1

Xi(x) · Ti(t) (42)

is very close to uPOD,N even if the space functions XPOD
i and Xi, and the time

functions TPOD
i and Ti are very different.

In the case of non-linear models the situation is radically different. Even when the

exact solution can be represented by a single functional product, i.e.

uex(x, t) = Xex(x) · T ex(t) (43)

the non linear solver produces a solution composed of many sums

u(x, t) ≈
NX

i=1

Xi(x) · Ti(t) (44)
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with N > 1. The main reason is that the number of sums is in this case subsidiary of

the convergence rate of the non-linear solver.

In [42] we analyzed many other linearization schemes. When we considered the

improved fixed point, in which the non-linear term is approximated at iteration q of

the enrichment step (the one for computing the couple R(t) andS(x)) according to:

u2 ≈
 

nX

i=1

Xi(x) · Ti(t) +R(q−1)(t) · S(q−1)(x)

!2

(45)

then we proved, in the case described above, that the solver converges after computing

the first functional couple. In that sense the solver is optimal (only one couple was

required for representing the solution that contains a single functional couple) but the

computing time is similar to the one required by using the standard fixed point or the

Newton strategy previously described.

3.3 PGD tensor form

The procedure described in section 2 can be generalized by using a tensor notation [8]

[42].

We assume that the discrete problem, that we writes formally as U∗TAU = U∗TB,

can be written in a separated form:

A =

nAX

i=1

A
i
1 ⊗ A

i
2 ⊗ · · · ⊗ A

i
D

B =

nBX

i=1

B
i
1 ⊗ B

i
2 ⊗ · · · ⊗ B

i
D

U ≈
NX

i=1

u
i
1 ⊗ u

i
2 ⊗ · · · ⊗ u

i
D

(46)

where Ai, Bi and ui involve only the coordinate xi.

The separated representation of A and B comes directly from the differential op-

erators involved in the PDE weak form.

At iteration n, vectors ui
j , ∀i ≤ n and ∀j ≤ D are assumed known. Now we are

looking for an enrichment:

U =
nX

i=1

u
i
1 ⊗ · · · ⊗ u

i
D + R1 ⊗ · · · ⊗ RD (47)

where Ri, i = 1, · · · ,D, are the unknown enrichment vectors. We assume the following

form of the test field:

U∗ = R
∗
1 ⊗ R2 ⊗ · · · ⊗ RD + · · · + R1 ⊗ · · · ⊗RD−1 ⊗ R

∗
D (48)

Introducing the enriched approximation into the weak form, the following discrete

form results:
nAX

i=1

nX

j=1

(R∗
1)T A

i
1u

j
1 × · · · × (RD)T A

i
Du

j
D

+ · · ·+
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+

nAX

i=1

nX

j=1

(R1)T A
i
1u

j
1 × · · · × (R∗

D)T A
i
Du

j
D +

+

nAX

i=1

(R∗
1)T A

i
1R1 × · · · × (RD)T A

i
DRD + · · ·+

+

nAX

i=1

(R1)
T
A

i
1R1 × · · · × (R∗

D)T A
i
DRD =

=

nBX

i=1

“
(R∗

1)T B
i
1 × · · · × (RD)T B

i
D + · · · + (R1)T B

i
1 × · · · × (R∗

D)T B
i
D

”
(49)

For alleviating the notation we define:

nCX

i=1

C
i
1 ⊗ · · · ⊗C

i
D =

nBX

i=1

B
i
1 ⊗ · · · ⊗ B

i
D −

nAX

i=1

nX

j=1

A
i
1u

j
1 ⊗ · · · ⊗ A

i
Du

j
D (50)

where nC = nB + nA × n. This sum only contains known fields. Thus Eq. (49) can be

written as:
nAX

i=1

(R∗
1)T A

i
1R1 × · · · × (RD)T A

i
DRD + · · ·+

+

nAX

i=1

(R1)
T
A

i
1R1 × · · · × (R∗

D)T A
i
DRD =

=

nCX

i=1

“
(R∗

1)T C
i
1 × · · · × (RD)T C

i
D + · · · + (R1)T C

i
1 × · · · × (R∗

D)T C
i
D

”
(51)

This problem is strongly non linear. To solve it, a method of alternated directions

can be applied. The idea is, starting with the trial vectors R
(0)
i , i = 1, · · · , D or

assuming known these vector at iteration r − 1, R
(r−1)
i , i = 1, · · · ,D, update them

using an appropriate strategy. The simplest alternatives consist of:

– Update vectors R
(r)
i , ∀i, from R

(r−1)
1 , · · · ,R(r−1)

i−1 ,R
(r−1)
i+1 , · · · ,R(r−1)

D .

– Update vectors R
(r)
i , ∀i, from R

(r)
1 , · · · ,R(r)

i−1,R
(r−1)
i+1 , · · · ,R(r−1)

D
.

The last strategy converges faster but the advantage of the first one is the pos-

sibility of updating each vector simultaneously making use of a parallel computing

platform. The fixed point of this iteration algorithm allows defining the enrichment

vectors un+1
i = Ri, i = 1, · · · ,D.

When we look for vector Rk assuming known all the others Ri, i 6= k, the test field

reduces to:

U∗T = R1 ⊗ · · · ⊗ Rk−1 ⊗R
∗
k ⊗Rk+1 · · · ⊗ RD (52)

The resulting discrete weak form writes:

nAX

i=1

“
R

T
1 A

i
1R1 × · · · × R

∗T
k A

i
kRk × · · · × R

T
DA

i
DRD

”
=

=

nCX

i=1

R
T
1 C

i
1 × · · · × R

∗T
k C

i
k × · · · ×R

T
DC

i
D (53)
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Making use of the arbitrariness of R∗
K the following linear system can be easily

obtained:
 

nAP
i=1

 
DQ

j=1,j 6=k

RT
j Ai

jRj

!
Ai

k

!
Rk =

nCP
i=1

 
DQ

j=1,j 6=k

RT
j Ci

j

!
Ci

k (54)

which can be easily solved.

3.4 Decomposition optimality: residual minimization

The alternating direction strategy that we used in section 2 as well as in section 3.3

converges very fast in the case of symmetric differential operators. However, when we

include strong non-linearities, advection terms, parameters as additional coordinates,

... the alternating directions strategy fails (the computed functional couples do not

improve noticeably the solution). As Pierre Ladeveze proposed many years ago in the

framework of the LATIN method, in that case a more efficient strategy consists of

minimizing the residual [42]:

Res =

nAX

i=1

A
i
1R1 ⊗ · · · ⊗ A

i
DRD −

nCX

i=1

C
i
1 ⊗ · · · ⊗ C

i
D (55)

We denote by 〈., .〉 the scalar product and by ‖.‖ its associated norm. Using this

notation the residual norm writes:

‖Res‖2 =
nAP
i=1

nAP
j=1

“D
Ai

1R1,A
j
1R1

E
× · · · ×

D
Ai

DRD ,A
j
D

RD

E”
−

−2
nAP
i=1

nCP
j=1

“D
Ai

1R1,C
j
1

E
× · · · ×

D
Ai

DRD,C
j
D

E”
+

+
nCP
i=1

nCP
j=1

“D
Ci

1,C
j
1

E
× · · · ×

D
Ci

D,C
j
D

E”
(56)

The minimization problem with respect to Rk reads:

∂

∂Rk
〈Res,Res〉 = 0 (57)

or:

nAX

i=1

nAX

j=1

D
A

i
1R1,A

j
1R1

E
× · · · ×

D
A

i
k−1Rk−1,A

j
k−1Rk−1

E
×

×
D
A

i
k,A

j
k
Rk

E
×
D
A

i
k+1Rk+1,A

j
k+1 × Rk+1

E
× · · · ×

D
A

i
DRD ,A

j
D

RD

E
−

−
nAX

i=1

nCX

j=1

D
A

i
1R1,C

j
1

E
× · · · ×

D
A

i
k−1Rk−1,C

j
k−1

E
×

×
D
A

i
k,C

j
k

E
×
D
A

i
k+1Rk+1,C

j
k+1

E
× · · · ×

D
A

i
DRD ,C

j
D

E
= 0

(58)

The stoping criterion is defined from the residual norm:
‚‚‚‚‚

nCX

i=1

C
i
1 ⊗ · · · ⊗ C

i
D

‚‚‚‚‚
2

< ǫ (59)
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Despite the fact that this strategy is much more efficient than the alternating

directions strategy for non-symmetric operators, it is far to be optimal. Thus, in some

particular cases, even if the exact solution accepts a separated representation, the PGD

coupled with the residual minimization produces a solution that contains much more

functional products that the exact one.

We are at present exploring other strategies, based on concepts of information

theory (maximum entropy, ...). Other possibility consists in looking at each iteration

for some functional products (instead of a single one at each iteration). This strategy

improves the convergence rate reducing the number of sums in the computed decom-

position, but at present no strategy allows for a general optimal decomposition.

The reason of this lack of optimality was understood by performing a numerical

analysis (see [21] in the present issue). However, when we tried to enforce the enrich-

ment maximizing the residual diminution the numerical procedure exhibits locking.

Previously we identified two major issues of the PGD, we cited the convective

stabilization and the treatment of models defined in moving domains, now we should

add a third issue that concerns the decomposition optimality.

3.5 Non homogeneous essential boundary conditions and complex domains

In [25] we addressed another different topic, the one related to the enforcement of

non-homogeneous boundary conditions and the treatment of complex geometries.

3.5.1 Non homogeneous essential boundary conditions

The enforcement of homogeneous boundary conditions is quite simple, it suffices to

enforce at each enrichment stage that the first and last components of vectors Ri,

i = 1, · · · , D, vanish. However, consider the 3D problem:

−∆u = f(x) (60)

where x = (x, y, z) ∈ Ω = (0, L)3, with

u(x) = ug 6= 0, x ∈ Γ ≡ ∂Ω (61)

In [25] we proposed to determine a function ψ, regular enough (continuous in Ω

and ∆ψ ∈ L2(Ω)) such that ψ verifies the essential boundary condition, i.e. ψ(x) = ug ,

x ∈ Γ . This function can be constructed by using the transfinite interpolation method

[45].

Now, by applying the change of variable u = ψ + Υ , the problem (60) writes:

−∆Υ = f(x) +∆ψ (62)

where Υ (x) = 0, x ∈ Γ . Thus, the solution of problem (62) reduces to the ones that we

considered previously subjected to homogenous essential boundary conditions, where

the unknown field is searched in the separated form:

Υ ≈
i=NX

i=1

Xi(x) · Yi(y) · Zi(z) (63)
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The solution procedure simplifies if function ψ is given in a separated form, i.e.

ψ ≈
i=MX

i=1

Fi(x) ·Gi(y) ·Hi(z) (64)

This decomposition can be efficiently performed by invoking the SVD or its multi-

dimensional counterpart.

3.5.2 Complex domains

In [25] we also addressed the question of complex domains. Until now, the whole domain

Ω was considered as the direct product of the domains in which each coordinate is

defined, Ω = Ω1 × · · · × ΩD , i.e. Ωi, ∀i, does not depend on the other coordinates

x1, · · ·xi−1,xi+1, · · ·xD.

Due to this difficulty when we considered in section 3.1.1 models defined in the

physical (x) and conformation spaces (q1, · · ·qD) we considered the decomposition [3]

u(x,q1, · · · ,qD) ≈
i=NX

i=1

Xi(x) ·

0
@

j=DY

j=1

Qj
i (qj)

1
A (65)

where x ∈ Ω ⊂ R
3. Thus, this decomposition is not affected at all by the complexity

of Ω.

However, a full decomposition of the physical space would result in:

u(x,q1, · · · ,qD) ≈
i=NX

i=1

Xi(x) · Yi(y) · Zi(z) ·

0
@

j=DY

j=1

Qj
i (qj)

1
A (66)

that can be used without major difficulties if Ω is a parallelepiped, i.e. Ω = Ωx ×Ωy ×
Ωz. However, when it is not the case, a special treatment is required.

We considered again the problem (60) now with homogeneous boundary conditions

on ∂Ω ≡ Γ , with Ω quite complex in the sense discussed above.

A fictitious domain technique is considered. Thus, the real domain Ω is placed

inside a larger domain ω (Ω ⊂ ω and Ω ∩ ω = ∅), with ω = ωx × ωy × ωz.

Thus, we must solve the problem

−∆u = f(x) in ω (67)

with the unknown field u extended to the domain ω by using u = Φ · Υ . Function Φ is

regular enough, defined in the extended domain ω and it vanishes on Γ ≡ ∂Ω in order

to enforce the boundary conditions. In [25] we proposed the use of the R-functions

[45] for computing function Φ than should be rewritten again in a separated form by

invoking the SVD. Function Υ is searched again in the separated form

Υ ≈
i=NX

i=1

Xi(x) · Yi(y) · Zi(z) (68)
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3.6 Localization, interfaces and FE coupling

In this section we are modifying the technique just presented in order to capture

localized behaviors such as high gradients or weak and strong discontinuities.

This kind of behaviors induces too many functional products within a standard

separated representation. However, it is well known that they can be easily taken into

account within the finite element framework, by using adaptive local mesh refinement in

the first case or any of the techniques able to represent weak and strong discontinuities

(meshes compatible with the interfaces or enriched approximations when the meshes

are not compatible with the interfaces).

Thus, the main goal is how combining separated representations, able to approxi-

mate the solution in the most part of the domain where the model is defined, reducing

significantly the computational cost, and a localized finite element description, that

even if it is expensive in nature, it only applies in a small region of the whole domain

where the solution is expected to exhibit localized behavior. To this end, we proposed

in [9] a multi-scale approach that somewhat resembles the s-version of the finite ele-

ment method by J. Fish [24] or the multi-scale FEM proposed by Rank [43], but in

this case in a global (Ritz) and separated basis function setting.

For the sake of simplicity we consider a generic 2D problem

K (u(x, y)) + L (u(x, y)) = 0 (69)

where K and L are two differential operators. We are assuming that the first one only

involves derivatives with respect to the x-coordinate, the second one involving the

derivatives with respect to the other coordinate.

This model is defined in Ω = Ωx ×Ωy and we imagine that the solution u(x, y) is

smooth enough everywhere except in a small region Ωl ⊂ Ω. Now, we could imagine

an approximation combining both, the separated representation and a finite element

approximation, where the last one only applies in Ωl. We assume a mesh on Ωl com-

posed of Nl nodes. We also assume that the finite element shape functions related to

the finite element approximation cannot be expressed from the tensor product of the

one dimensional bases employed to build-up the separated representation to avoid rank

deficiency.

Now, the approximation in the whole domain can be written as:

u(x, y) = uSR(x, y) + uFE(x, y) (70)

where uSR(x, y) is defined in the whole domain Ω = Ωx×Ωy whereas the finite element

enrichment uFE(x, y) is only defined within Ωl. In order to ensure the continuity of

the resulting approximation we must enforce the nullity of the enrichment uFE(x, y)

on the boundary of Ωl, ∂Ωl.

The resulting approximation writes:

u(x, y) ≈
i=NX

i=1

Xi(x) · Yi(y) +

j=MX

j=1

Nj(x, y)uj (71)

where Nj(x, y) are the standard finite element shape functions and uj the associated

weights. Because of the contribution of uSR(x, y) in Ωl, uj does not correspond to the

values of the unknown field u(x, y) at the nodal positions (xj , yj), .
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Remark 3 We are assuming that the enrichment is performed by using standard finite

elements, but in fact any kind of compact support approximation could be used. In

order to represent interfaces involving weak discontinuities one could proceed within

the standard finite element method by ensuring that the interface coincides with the

elements edges. If the interface passes across the elements an enriched version of the

finite element method should be considered (e.g. the extended finite element [49]).

2

In [9] we illustrated the application of this enriched separated approximation when

model solutions exhibit localization or for gluing subdomains in which different sepa-

rated representations are defined, ...

3.7 On the coupling of local and global models: the local problem globalization

We are considering again the model given by Eq. (6) in absence of advection, i.e. v = 0,

and in a one-dimensional physical space Ω:

∂u

∂t
− a∆u = f(x, t) in Ω × (0, Tmax] (72)

with the following initial and boundary conditions


u(x, 0) = u0 x ∈ Ω,

u(x, t) = ug (x, t) ∈ ∂Ω × (0, Tmax]
(73)

We are assuming that the source term depends on the local value of r fields Ci(t, x),

i = 1, · · · , r:

f(x, t) =
i=rX

i=1

γi · Ci(x, t) (74)

where the time evolution of the r fields Ci(x, t) is governed by r simultaneous ordinary

differential equations (the so-called kinetic model). For the sake of simplicity we con-

sider the linear case, the non-linear one reduces to a sequence of linear problems by

applying an appropriate linearization strategy [6]. The system of linear ODEs writes

at each point x ∈ Ω:

dCi(x, t)

dt
=

j=rX

j=1

αij(x) Cj(x, t) (75)

We are assuming that the kinetic coefficients αij evolve smoothly in Ω, because in

practical applications these coefficients depend on the solution of the diffusion problem,

u(x, t). For the sake of simplicity and without loss of generality, from now on we assume

those coefficients constant (they were assumed evolving linearly in the physical space

in [20]).

Now, we are describing three possible coupled solution of Eqs. (72) and (75).

1. The simplest strategy consists in using a separated representation of the global

problem solution (72) whereas the local problems are integrated in the whole time

interval at each nodal position (or integration point). Obviously, this strategy im-

plies the solution of r ordinary differential equations at each node (or integration

point). Moreover, the resulting fields Ci(x, t), r = 1, · · · , r, don’t have a separated



21

structure, and by this reason before of injecting these fields into the global prob-

lem (72) we should separate them by invoking, for example, the singular value

decomposition (SVD) leading to:

Ci(x, t) ≈
q=mX

q=1

XC,i
q (x) · TC,i

q (t) (76)

As soon as the source term has a separated structure, the procedure illustrated in

previous sections can be applied again for computing the new trial solution of the

global problem that writes:

u(x, t) ≈
NX

i=1

Xu
i (x) · Tu

i (t) (77)

Thus, this coupling strategy requires the solution of many local problems (for all

species) and at all nodal positions (or integration points). Moreover, after these

solutions (that we recall that could be performed in parallel) a singular value de-

composition must be applied in order to separate these solutions prior to inject

them in the PGD solver of the global problem (72).

2. The second coupling strategy lies in globalizing the solution of the local problems.

Thus, we assume that the field related to each species can be written in a separated

form:

Ci(x, t) ≈
q=mX

q=1

XC,i
q (x) · TC,i

q (t) (78)

and now, we apply the procedure described in section 2 to build-up the reduced

separated approximation, i.e. for constructing all the functions involved in (78).

Thus, instead of solving the r ODEs in Eq. (76) (that define r one-dimensional

problems) at each nodal position (or integration point), we should solve only r

higher dimensional coupled models defined in the physical space and time. Obvi-

ously, if the number of nodes (or integration points) is important (mainly when 3D

physical spaces are considered) the present coupling strategy could offer significant

CPU time savings.

This strategy allows computing directly a separated representation, and then, with

respect to the previous one, the application of the SVD is avoided. However, if the

number of species is high, the computational efforts can become important, because

the space-time separated solver must be apply to each species.

3. The third alternative, that in our opinion is the more appealing one for solving

models involving many species, as large as one wants, implies the definition of a

new variable C(x, t, c), that as we can notice contains an extra coordinate c, with

discrete nature, and that takes integer values: c = 1, · · · , r, in such manner that

C(x, t, i) ≡ Ci(x, t), i = 1, · · · , r. Thus, we have increased the dimensionality of the

problem, but now, only a single problem should be solved, instead of one for each

species as was the case when using the previous strategy. This increase of the model

dimensionality is not dramatic because as argued in the first section of this work, the

separated representation allows circumventing the curse of dimensionality, allowing

for fast and accurate solutions of highly multidimensional models. Now, the issue

is the derivation of the governing equation for this new variable C(x, t, c) and the

separated representation constructor able to define the approximation:
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C(x, t, c) ≈
q=SX

q=1

XC
q (x) · TC

q (t) · Aq(c) (79)

As this strategy was retained in our simulations in [20] we are focusing in its

associated computational aspects in the next section.

3.7.1 Fully globalized local models

The third strategy just referred implies the solution of a single multidimensional model

involving the field C(x, t, c). This original introduction deserves some additional com-

ments. The first one concerns the discrete nature of the kinetic equations

dCi(x, t)

dt
=

j=rX

j=1

αij(x) · Cj(x, t) (80)

Now, by introducing C(x, t, c), such that C(x, t, i) ≡ Ci(x, t), the kinetic equations

could be written as:

dC

dt
= Lc(C) (81)

where Lc is an operator in the c-coordinate.

If for one second we try to discretize Eq. (81) by finite differences, we could write

at each node (xk, tp, i):

C(xk, tp, i) −C(xk, tp−1, i)

∆t
= Lc(C)|i (82)

where

Lc(C)|i =

j=rX

j=1

αij · C(xk, tp, j) (83)

represents the discrete form of the c-operator at point i.

Now, we come back to the separated representation constructor for defining the

approximation:

C(x, t, c) ≈
q=SX

q=1

XC
q (x) · TC

q (t) ·Aq(c) (84)

For defining such approximation one should repeat the procedure deeply illustrated

in section 2. As the operator here involved is less standard we are summarizing the

main steps.

We assume that the first n iterations allowed computing the first n sums of Eq.

(84)

C(x, t, c) ≈
q=nX

q=1

XC
q (x) · TC

q (t) ·Aq(c) (85)

and now, we look for the enrichment R(x) · S(t) ·W (c), such that
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C(x, t, c) ≈
q=nX

q=1

XC
q (x) · TC

q (t) ·Aq(c) +R(x) · S(t) ·W (c) =

= Cn(x, t, c) +R(x) · S(t) ·W (c) (86)

satisfies

Z

Ω

Z Tmax

0

Z r

0
C∗(x, t, c) ·

„
dC

dt
− Lc(C)

«
dc dt dx = 0 (87)

Obviously, due to the discrete character of the third coordinate, an integration

quadrature consisting of r points, c1 = 1, · · · , cr = r will be considered later.

Now, for computing the three enrichment functions we are considering again (as

in section 2) an alternating directions strategy, that proceeds in three steps (that are

repeated until reaching convergence):

1. Assuming functions S(t) and W (c) known, the trial function C∗(x, t, c) writes

C∗(x, t, c) = R∗(x) · S(t) ·W (c). Thus the weak form (87) reads:

Z

Ω

Z Tmax

0

Z r

0
R∗ · S ·W ·

`
R · S′ ·W −R · S · Lc(W )

´
dc dt dx =

−
Z

Ω

Z Tmax

0

Z r

0
R∗ · S ·W ·

q=nX

q=1

“
XC

q · (TC
q )′ ·Aq

”
dc dt dx +

+

Z

Ω

Z Tmax

0

Z r

0
R∗ · S ·W ·

q=nX

q=1

“
XC

q · TC
q · Lc(Aq)

”
dc dt dx (88)

where S′ = dS
dt and (TC

q )′ =
dT C

q

dt .

Now, time integrals and the ones involving the c-coordinate can be performed. The

ones involving the coordinate c write:

Z r

0
W ·W dc =

i=rX

i=1

W (ci)
2 (89)

where as just mentioned ci = i, ∀i,

Z r

0
W · Lc(W ) dc =

i=rX

i=1

0
@W (ci) ·

j=rX

j=1

αijW (cj)

1
A (90)

and similar expressions can be derived for the integrals involved in the right hand

member.

Thus, finally it results:

ξx
Z

Ωx

R∗ · R dx =

Z

Ωx

R∗Fx(x) dx (91)

where the coefficient ξx contains all the integrals in the time and c-coordinates

related to the left hand member of Eq. (88) and Fx(x) all the integrals appearing

in the right hand member. The strong form related to Eq. (91) writes:
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ξxR(x) = Fx(x) (92)

whose algebraic nature describes the fact that the kinetic model is local and then

it does not involve space derivatives.

2. Assuming functions R(x) and W (c) known, the trial function C∗(x, t, c) writes

C∗(x, t, c) = R(x) · S∗(t) ·W (c). Thus the weak form (87) reads:

Z

Ω

Z Tmax

0

Z r

0
R · S∗ ·W ·

`
R · S′ ·W −R · S · Lc(W )

´
dc dt dx =

−
Z

Ω

Z Tmax

0

Z r

0
R · S∗ ·W ·

q=nX

q=1

“
XC

q · (TC
q )′ ·Aq

”
dc dt dx +

+

Z

Ω

Z Tmax

0

Z r

0
R · S∗ ·W ·

q=nX

q=1

“
XC

q · TC
q · Lc(Aq)

”
dc dt dx (93)

Now, integrals defined in the physical space Ω must be computed, but this task

does not involve additional difficulties.

Finally it results:

Z Tmax

0
S∗ ·

„
ξtS + υt dS

dt

«
dt =

Z Tmax

0
S∗F t(t) dt (94)

where coefficients ξt and υt contain all the integrals in the space and the c-

coordinate related to the left hand member of Eq. (93) and F t(t) the associated

integrals appearing in the right hand member. The strong form related to Eq. (94)

writes:

υt dS

dt
+ ξtS(t) = F t(t) (95)

whose first order differential nature results from the first order time derivatives

involved by the kinetic model.

3. Assuming functions R(x) and S(t) known, the trial function C∗(x, t, c) writes

C∗(x, t, c) = R(x) · S(t) ·W ∗(c). Thus the weak form (87) reads:

Z

Ω

Z Tmax

0

Z r

0
R · S ·W ∗ ·

`
R · S′ ·W −R · S · Lc(W )

´
dc dt dx =

−
Z

Ω

Z Tmax

0

Z r

0
R · S ·W ∗ ·

q=nX

q=1

“
XC

q · (TC
q )′ ·Aq

”
dc dt dx +

+

Z

Ω

Z Tmax

0

Z r

0
R · S ·W ∗ ·

q=nX

q=1

“
XC

q · TC
q · Lc(Aq)

”
dc dt dx (96)

After performing integration in space and time, it results:

Z r

0
W ∗ ·

`
ξc W − υc Lc(W )

´
dc =

Z r

0
W ∗F c(c) dc (97)

where coefficients ξc and υc contain all the integrals in the space and time related

to the left hand member of Eq. (96) and F c(c) the associated integrals appearing

in the right hand member. The strong form related to Eq. (97) writes:
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−υc Lc(W ) + ξcW (c) = F c(c) (98)

that results in the algebraic system:

−υc
j=rX

j=1

αij W (cj) + ξcW (ci) = F c(ci), i = 1, · · · , r (99)

Again, its algebraic nature comes from the nature of the kinetic model.

Remark 4 For the sake of simplicity we illustrated the solution procedure within the

alternating directions framework, but the solutions reported in [20] were computed by

enforcing the residual minimization described in section 3.4.

2

3.8 Error estimation

In this section we are summarizing an error estimator procedure proposed in [8] and

based on the use of primal and dual formulations.

For this purpose we assume a generic multidimensional model whose weak form

writes

a(u, u∗) = b(u∗) (100)

defined in Ω = Ω1 × · · ·ΩD , where each Ωd (d = 1, 2, · · · ,D) involves a coordinate

xd not necessarily one-dimensional. From now on, the form (100) will be referred as

primal form.

The discrete counterpart of (100) reads

AU = B (101)

where

A =

nAX

j=1

A
j
1 ⊗A

j
2 ⊗ · · · ⊗ A

j
D

(102)

and

B =

nBX

j=1

B
j
1 ⊗ B

j
2 ⊗ · · · ⊗ B

j
D

(103)

The discrete separated representation of u at iteration nu writes:

U ≈
nuX

j=1

u
j
1 ⊗ u

j
2 ⊗ · · · ⊗ u

j
D (104)

where u
j
i is the discrete (nodal) form of uj

i (xi)

Now, we are interested in a certain function of u, o(u), of physical interest (the

model output). In what follows we assume that the operator defining the output is

linear. Thus, we could write

o(u) = O

0
@

nFX

j=1

u
j
1 ⊗ u

j
2 ⊗ · · · ⊗ u

j
D

1
A (105)
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If this operator accepts a separated representation, that is:

O =

nOX

j=1

O
j
1 ⊗O

j
2 ⊗ · · · ⊗O

j
D (106)

then, the output can be evaluated from:

o(u) =

nuX

j=1

nOX

i=1

“
u

jT
1 O

i
1

”
·
“
u

jT
2 O

i
2

”
· · ·
“
u

jT
D

O
i
D

”
(107)

Now, the error on the output, can be evaluated by solving the so-called dual problem

(see [8] and the references therein):

a(u∗, v) = o(u∗) (108)

whose discrete form writes:

ATV = O (109)

where O was already defined and where AT is given by

AT =

nAX

j=1

A
jT
1 ⊗ A

jT
2 ⊗ · · · ⊗ A

jT
D

(110)

A good error estimation needs for an accurate solution of the dual problem. Within

the separated representation framework the solution of the dual problem (109) (as-

sumed accurate enough) can be written as:

V ≈
nvX

j=1

v
j
1 ⊗ v

j
2 ⊗ · · · ⊗ v

j
D

(111)

Now, the error in the output can be evaluated from:

o(e) = b(v) − a(u, v) (112)

whose discrete counterpart writes:

o(e) = VTB − VTAU (113)

that is easily computed from:

o(e) =

nBX

i=1

nvX

j=1

“
v

jT
1 B

i
1

”
·
“
v

jT
2 B

i
2

”
· · ·
“
v

jT
D B

i
D

”
−

−
nAX

k=1

nuX

i=1

nvX

j=1

“
v

jT
1 A

k
1u

i
1

”
·
“
v

jT
2 A

k
2u

i
2

”
· · ·
“
v

jT
D

A
k
Du

i
D

”
(114)
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3.9 Parametric models

The case of parametric models was addressed in [42]. In this section we revisit the main

ideas in the treatment of such models. For this purpose we consider again the heat

equation but in which the thermal diffusivity is unknown. The most usual strategy

in that case lies in solving that equation for many values of the thermal diffusivity

(Monte Carlo procedure). If the statistical distribution of the realizations of the thermal

diffusivity represents accurately the real thermal diffusivity distribution, then from the

computed temperature fields we can infer different outputs (in a statistical sense).

However, this problem can also be solved in a fully deterministic way if the unknown

parameter is considered as a new coordinate (as the physical ones -space and time -

). Thus, the dimensionality of the problem increases, but this fact is not a serious

handicap for the PGD.

We consider again the one-dimensional heat equation

∂u

∂t
− ∂

∂x

„
k
∂u

∂x

«
= 0 ∀t ∈ Ωt ∀x ∈ Ωx (115)

where the thermal diffusivity is assumed depending on the temperature field, i.e. k(u):

k = au+ b (116)

where coefficients a and b are assumed unknown or badly known.

If we introduce the diffusivity expression into the heat equation (115) it results:

∂u

∂t
− b

∂2u

∂x2 − au
∂2u

∂x2 − a

„
∂u

∂x

«2

= 0 (117)

The goal in the solution of that equation is the calculation of the temperature at

each point and time, and for any value of the parameters a and b within theirs domains

of variability, i.e. u(t, x, a, b):

u(t, x, a, b) ≈
NX

i=1

Ti(t) ·Xi(x) ·Ai(a) ·Bi(b) (118)

In [42] we considered the approximations of the different functions Ti(t), Xi(x),

Ai(a) and Bi(b) performed by using standard one dimensional piecewise linear finite

element shape functions on a uniform mesh consisting of 500 nodes in each 1D-domain

Ωt, Ωx, Ωa and Ωb. If this problem is solved using a mesh-based strategy in the whole

domain the complexity scales with 5004. However, the Proper Generalized Decompo-

sition needed less than one minute for solving this problem using a personal laptop.

There is no restriction on the number of parameters that can be transformed into

additional model coordinates. In [42] we considered the thermal diffusivity, the source

term and the initial condition as additional coordinates.

Remark 5 The introduction of model parameters as extra-coordinates has not an im-

pact in the computational efforts, because as the departure model (the heat transfer

equation in the present case) does not involve derivatives with respect to those param-

eters, when we computes the functions related to these coordinates (associated to the

model parameters) only algebraic problems must be solved. Moreover, the use of the

residual minimization described in section 3.4 increases significantly the convergence

rate of the PGD.

2
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3.10 Solvers coupling and new integration procedures

As the PGD operates by solving the different functions involved in the separated rep-

resentation independently, one could imagine that different solvers could be applied for

solving the problems in the different coordinates.

A direct consequence of this fact was the definition of new integration procedures.

In [28] we considered the integration of transient models by applying the Boundary Ele-

ment Method (BEM). In what follows we revisit the main ideas on this non-incremental

boundary element strategy.

3.10.1 Non-incremental boundary element discretizations

The Boundary Element Method allows for an efficient solution of partial differential

equations whose kernel functions are known. The heat equation is one of these candi-

dates. When the model involves large physical domains and time simulation intervals

the amount of information that must be stored increases significantly.

We proposed in [28] an alternative radically different that leads to a separated

solution of the space and time problems within a non-incremental integration strategy.

The technique is based on the use of a space-time separated representation of the

unknown field that introduced in the residual weighting formulation allows to define

a separated solution of the resulting weak form. The spatial step can be then treated

by invoking the standard BEM for solving the resulting steady state problem defined

in the physical space. Then, the time problem that results in an ordinary first order

differential equation is solved using any standard appropriate integration technique

(e.g. backward finite differences).

In principle this procedure opens new possibilities for integrating transient models

(linear or non-linear) whose space-time fundamental solution is not known but whose

steady state fundamental solution is known.

We are illustrating the strategy for constructing these functional products in the

case of an academic transient problem, the transient linear heat equation:

∂u

∂t
− a∆u = f(x, t) in Ω × (0, Tmax] (119)

with the following initial and boundary conditions


u(x, 0) = u0 x ∈ Ω,

u(x, t) = ug (x, t) ∈ ∂Ω × (0, Tmax]
(120)

where a is the diffusion coefficient. The weak formulation yields:

Find u(x, t) verifying the boundary conditions (7) such that

Z Tmax

0

Z

Ω

u⋆

 
∂u

∂t
− a∆u− f(x, t)

!
dx dt = 0 (121)

for all the functions u⋆(x, t) in an appropriate functional space.

We compute now the functions involved in the sum (8). We suppose that the set

of functional couples {(Xi, Ti)}i=1,...,n with 0 ≤ n < N are already known (they have

been previously computed) and that at the present iteration we search the enrichment

couple (R(t), S(x)) by applying an alternating directions fixed point algorithm that



29

after convergence will constitute the next functional couple (Xn+1, Tn+1). Hence, at

the present iteration, n, we assume the separated representation

u(x, t) ≈
nX

i=1

Ti(t) ·Xi(x) +R(t) · S(x) (122)

The weighting function u⋆ is then assumed as

u⋆ = S ·R⋆ +R · S⋆ (123)

Introducing (10) and (11) into (9) it results

Z Tmax

0

Z

Ω

(S ·R⋆ +R · S⋆) ·
 
S ·

∂R

∂t
− a∆S ·R

!
dx dt =

=

Z Tmax

0

Z

Ω

(S ·R⋆ +R · S⋆) ·
 
f(x, t) −

nX

i=1

Xi ·
∂Ti

∂t
+ a

nX

i=1

∆Xi · Ti

!
dx dt (124)

We apply an alternating directions fixed point algorithm to compute the couple of

functions (R,S). Following the procedure described in section 2, functions S(x) and

R(t) satisfy:

αtS − aβt∆S = γt −
nX

i=1

αi
tXi + a

nX

i=1

βi
t∆Xi (125)

and

βx

∂R

∂t
= a · αx · R+ γx(t) −

nX

i=1

βi
x ·

∂Ti

∂t
+

nX

i=1

a · αi
x · Ti (126)

We can notice that Eq. (125) defines a steady-state elliptic equation with constant

coefficients. Being the Green solution associated to that equation known, one could

apply the BEM for solving it. The only issue in applying the BEM for solving Eq.

(125) is the integration of the right hand member that implies volumetric integrations

that need the definition of appropriate approximation everywhere in the domain. In

[28] the approximation was performed by using a moving least square technique. The

main advantage in using this strategy is the possibility of solving models for which

the Green solution of the space model is known even when it is not the case for the

space-time model.

The interested reader can refer to [28] for some numerical experiments and conver-

gence analysis on this non-incremental boundary element technique.
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3.11 Miscellaneous: High resolution solvers, multi-physics and mixed formulations

Separated representations involving ordinary models (transient or steady state; 2D or

3D) allow in several cases impressive computing time savings. In the transient case

is evident as discussed previously (see the discussion at the end of section 2). In the

case of rectangular domains is also possible to separate the different space coordinates

x, y and z (in the case of more complex domains the separated representation can

also be applied by using appropriate strategies, as the one proposed in [25] and here

summarized in section 3.5).

If a fully separated representation can be applied, only 1D problems have to be

solved. These boundary-value problems ca be solved efficiently even for extremely large

number of nodes distributed in the 1D interval, if the boundary value problem is

transformed into a initial value problem by using the technique proposed in [15] [14]

[16] that avoids the solution of any linear system. The combination of the PGD and

these advanced 1D boundary value solvers allows for impressive CPU time savings of

several orders of magnitude.

In [18] we considered linear computational homogenization of heterogeneous mate-

rials. A simple thermal model must be solved in a quite simple domain (a cube) but in

order to capture all the microstructure details a extremely fine mesh is needed (high

resolution). The use of a fully separated representation allows considering millions of

nodes in each space direction, solving models, at present, beyond the finite elements

expectations.

The same kind of techniques were applied for solving multi-physics models arising

in the composites manufacturing processes, where curing kinetics are coupled with

the non-linear thermal and thermo-mechanical behaviors [41]. The simplest coupling

lies in the use of a fixed point strategy, but the LATIN framework or the monolithic

approaches could be more efficient alternatives.

Recently we have also solved in a fully separated space description the incompress-

ible infinitesimal strain elasticity equations (that are the same the ones that govern

the flow of a Newtonian incompressible fluid - the Stokes equations-). The treatment

of these mixed formulations needs to satisfy the LBB conditions. At present there are

no mathematical results on this topic, but in our numerical experiments we noticed

that the one-dimensional meshes used for approximating the displacements field must

be richer than the ones used for approximating the pressure field (Lagrange multi-

plier associated with the incompressibility constraint) and moreover, we must enrich

the pressure separated representation one time for, at least, two displacement enrich-

ments. The understanding of these observation represents a work in progress.

4 Future developments

The separated representation methodology allows in many cases circumventing the re-

doubtable curse of dimensionality, or at least alleviating its impact. Thus, the PGD

seems to be an appealing and powerful strategy for solving models defined in high di-

mensional spaces including physical (space and time) and configurational (also known

as conformational) coordinates. Thus, the solution of many physical models suffer-

ing the curse of dimensionality illness is now possible, opening new possibilities in

quantum chemistry, the kinetic theory description of materials within the statistical

mechanics framework, the solution of the chemical master equation that is present in
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many branches of biology (genetics, cell-signaling, ...), several models encountered in

financial mathematics, ...

However, there are numerous other possibilities based in transforming usual mod-

els (defined in moderate dimensions, generally space and time) into higher dimensional

models that include all the desired model parameters as new model coordinates defined

in theirs respective intervals. Thus, if the increase in the model dimensionality is no

more a serious drawback (and it is the case if the PGD is applied) one could solve

a parametric equation only one time and then particularize the solution for different

choices of the parameters. This procedure only implies post-processing, the computa-

tion is performed off-line and only one time ! It is easy to infer the impact that such

procedure could constitute in the context of optimization or inverse identification.

There are many other possibilities, it suffices to change our mind, our way of modeling

the physics, without trying to enforce the models of physics to be three-dimensional:

the models of a physics taking place in the space and time could be multi-dimensional

(the mathematics accepts it!).

In this section we are addressing some comments in different potential and exciting

application of the Proper Generalized Decomposition.

– Optimization and inverse identification

Imagine that we are interested in optimizing a thermal process by choosing the

optimal thermal diffusivity k (that in what follows we consider constant), or that

we are interested in identifying this thermal diffusivity from the experimental data

recorded by a thermocouple placed at a certain position. In both cases, when one

uses any standard strategy, the solution of many direct problems is needed, as well

as a minimization strategy able to search the optimum value with respect to a

certain cost function.

Our approach consists in assuming the thermal diffusivity as a new coordinate of

the model, as described in section 3.9. By applying the PGD we can compute the

general solution

u(x, t, k) ≈
i=NX

i=1

Xi(x) · Ti(t) ·Ki(k) (127)

that represents the value at each position x, time t and for each value of the thermal

diffusivity k.

As soon as a trial thermal diffusivity ktrial is generated by the minimization al-

gorithm, the temperature field becomes defined at each point x ∈ Ωx and time

t ∈ I ≡ Ωt

u(x, t; ktrial) ≈
i=NX

i=1

Xi(x) · Ti(t) ·Ki(k
trial) (128)

that allows an easy and fast calculation of the cost function and its gradient. If we

denote the cost function C(u), its gradient reads:

∂C
∂k

=
∂C
∂u

· ∂u
∂k

(129)

that can be easily determined from the cost function expression and from the

derivative of Eq. (128):

∂u

∂k

˛̨
˛̨
ktrial

≈
i=NX

i=1

Xi(x) · Ti(t) ·
dKi(k)

dk

˛̨
˛̨
ktrial

(130)
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Moreover, for simple cost functions one could expect to find directly the extremum

points, that is, the points at which the derivative with respect to the design variables

(in the present case the thermal diffusivity) vanish:

∂C(u)

∂k
=
∂C
∂u

· ∂u
∂k

= 0 (131)

Let K be the set of such extremum points (K = {k1, · · · , kM}). Now, it suffices cal-

culating the cost functions for each value of the thermal diffusivity k ∈ K: C1, · · · CM

and select the minimum value, i.e. kop = kj such that Cj = min{C1, · · · CM}. Thus,

we could compute the global minimum, instead of a simple minimum (not necessary

the global one) obtained by using standard minimization techniques.

– Evolving domains

Some times we are interested in solving models defined in a domain that is evolv-

ing in time, i.e. the partial differential equations are defined in Ωx(t). There are

probably many ways to treat this kind of models, but a simple procedure consists

in writing the problem in the reference domain Ωref
x (that could be identified to

the domain at the initial time, i.e. Ωref
x = Ωx(t = 0)).

Now, if the kinematics is known, the function given the position at time t of a point

that occupied the position X at time t = 0 can be easily derived: x = x(X, t).

Now, the partial differential equation defined in Ωx(t) × Ωt can be transformed

in its counterpart now defined in Ωref
x × Ωt. This procedure is quite standard in

computational mechanics when one proceeds in the Lagrangian framework.

Now, with the problem defined in (X, t) ∈ Ωref
x ×Ωt, the natural separated repre-

sentation writes:

u(X, t) ≈
i=NX

i=1

Xi(X) · Ti(t) (132)

Because the global weak space-time formulation is first written, and then the func-

tions of space and time searched after integration in the time and space domains

respectively (we don’t enforce the balance equation at any particular time step as

is the case when using incremental strategies).

– Towards real time simulations

Many problems in engineering needs for very fast solutions, sometimes in the real

time range. As the models in engineering are quite complex (non-linear, involving

thousands or even millions degrees of freedom, ...) the real time constraint is an

intractable issue in numerical simulation by using the standard procedures, despite

the impressive recent progresses in the computational resources. Parallel platforms,

high performance computing ... do not suffice, at least at present, for reaching the

real time simulation requirements.

One area in which we are specially interested is the one that concerns surgery

simulators. In these applications, real time is not a caprice, real time is needed to

be a valuable surgery tool. Living tissues are non-linear, anisotropic, geometrically

complex, and the applied loads move on their surfaces ... all them making difficult

fast simulations.

In [36] [37] and [38] we explored the use of model reduction techniques based on

the use of Proper Orthogonal Decompositions (POD) combined with an advanced

non-linear solver (the asymptotic numerical method) that avoids the necessity of

recomputing the tangent matrix at each load updating. Despite these advanced
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computational ingredients, real time requirements were reached with some difficul-

ties.

At present we are considering the application of the PGD. We could solve the

non-linear elasticity problem (involving material and geometrical non-linearities)

including the moving load applying in the organ surface as a new model coordinate.

Let p the vector representing the applied force on the organ surface. The point at

which that force applies is designated by y. As we are considering quasi-static

behaviors we don’t need to specify the dependence y(t).

Now, the non-linear elasticity problem is solved assuming the separated represen-

tation of the displacement field given by:

u(x,y,p) ≈
i=NX

i=1

Xi(x) · Yi(y) · Pi(p) (133)

that represents the displacement u at point x when a load p applies at position y.

Now, as soon as the force and its location are given, pg and yg, the displacement

field is calculated

u(x;yg ,pg) ≈
i=NX

i=1

Xi(x) · Yi(y
g) · Pi(p

g) (134)

The construction of this general solution is made once, off line, and then used in-line

as a simple post-processing allowing to fulfill real time constraints.

– Homogenization

Many processes and/or materials exhibit many scales. Microstructure in materials

induces different space scales. Processes can also induce different time scales. Thus,

for example when one considers processes like ultrasonic welding [31] the scale

related to the load evolution is of some microseconds, whereas the characteristic

time related to the welding process itself is of some seconds.

When these scales are well separated (turbulence is a nice couner-example!) we

could consider separated (and independent) coordinates related to the different

scales. For the sake of simplicity we consider two time scales. The fastest one

implies a time τ being t̃ the one related to the slowest one. The characteristic times

of both scales define the scale factor ǫ: t̃ = ǫτ .

Thus, the time dependence of a generic field u(t) can be rewritten as u(t̃, τ ) and

then
du

dt
=
∂u

∂t̃
· ∂t̃
∂t

+
∂u

∂τ
· ∂τ
∂t

(135)

that taking into account that t̃ = t reduced to:

du

dt
=
∂u

∂t̃
+
∂u

∂τ
· 1

ǫ
(136)

and so on for the higher order derivatives. Thus, the partial differential equations

involved in the thermo-mechanical model of the process can be rewritten making

use of the two new time coordinates.

In general, for solving the resulting model an asymptotic expansion of the different

fields is performed, and then by identifying the equation at the different orders

the model is solved and the effects of the microscopic scale appears naturally in

the macroscopic one. However, in some situations this procedure becomes quite

technical.
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The use of the PGD avoids the asymptotic expansion because the multidimensional

problem that results by introducing the different independent time coordinates can

be efficiently solved without major difficulties by applying the PGD. Thus, the

solution is searched under the separated form:

u(τ, t̃) ≈
i=NX

i=1

Θi(τ ) · Ti(t̃) (137)

In general this procedure can be extended to models involving more than two time

scales, for the ones involving many space scales (rich microstructures with many

different characteristic lengths) and for the ones combining many space and time

scales.

– Convective stabilization

It is well-known that standard finite element (Galerkin) methods do not work well

for convection-diffusion or convection-diffusion-reaction equations, since they lead

to unstable, oscillating, solutions [22]. The first stabilization methods including

upwinding in the convective term in order to produce an artificial diffusion that

eventually lead to stable solutions were published in [26].

Among the very numerous methods that have been proposed for the stabilization

of convection-diffusion equations, the streamline-upwind/Petrov-Galerkin (SUPG)

method [27] is one of the most extended. The major drawback of this method is

that it introduces some cross-wind artificial numerical diffusion when applied to

two- or three-dimensional equations.

The use of PGD could circumvent, or at least alleviate this drawback. It has been

noticed that the use of such an approximation leads to a sequence of different one-

dimensional problems, for which “exact” SUPG stabilizations exist. In this way,

we can apply a standard SUPG method to a sequence of one-dimensional problems

to obtain a properly stabilized solution to a two- or three-dimensional convection-

diffusion(-reaction) problem.

For simplicity, we consider the steady-state 2D convection-diffusion(-reaction) equa-

tion. This equation is given by

v · ∇u−∇ · (a∇u) + σu = s in Ω ⊂ R
n, (138)

with n = 2, 3 and with boundary conditions

u = uD on ΓD, (139a)

n · a∇u = a
∂u

∂n
= t on ΓN , (139b)

where u is the scalar quantity to be transported and also the unknown field of

the problem, v is the advective velocity, a > 0 the diffusivity, assumed constant,

σ the reaction term and s(x) a volumetric source term. The function uD denotes

the prescribed value of u on the Dirichlet portion of the boundary given by ΓD

and t denotes the value of the normal diffusive flux on the Neumann boundary

ΓN . In what follows, for the sake of simplicity, we shall omit the reaction term of

the equation, since it does not imply any special difficulty for the technique here

developed.

The weak form of the problem given by Eqs. (138)-(139) is:
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Find u(x) ∈ S = {u ∈ H1(Ω)|u = uD on ΓD} such that for all w ∈ V = {w ∈
H1(Ω)|w = 0 on ΓD}

Z

Ω

w(v · ∇u)dΩ +

Z

Ω

∇w · (a∇u)dΩ =

Z

Ω

wsdΩ +

Z

ΓN

wtdΓ, (140)

which is very often expressed compactly with the help of the following notation:

a(w, u) =

Z

Ω

∇w · (a∇u)dΩ, (141a)

c(v;w, u) =

Z

Ω

w(v · ∇u)dΩ, (141b)

(w, s) =

Z

Ω

wsdΩ, (141c)

(w, t)ΓN
=

Z

ΓN

wtdΓ, (141d)

giving rise to the following compact form of the equation:

a(w, u) + c(v;w, u) = (w, s) + (w, t)ΓN
. (142)

The general form of the consistent stabilization techniques is [22]

a(w, u) + c(v;w, u) +
X

e

Z

Ωe

P(w)τR(u)dΩ = (w, s) + (w, t)ΓN
= l(w). (143)

where P(w) is some operator applied to the test functions and R(u) = L(u) − s is

the residual of the equation. In the SUPG method, P(w) = v · ∇w.

The exact nodal values for 1D convection-diffusion equation are obtained for a value

τ =
h

2v
(cothPe− 1

Pe
) (144)

where Pe is the mesh Péclet number, defined as Pe = vh/2a. h represents the

mesh size parameter and v the modulus of the convective velocity. The problem

with this type of stabilization is that, on one side, this value has been defined for

one-dimensional problems and linear finite elements in order to represent exactly

the problem solution.

Within the PGD framework, in the enrichment stage we look for an improved

representation of the essential field in the form

un+1(x, y) =
nX

i=1

Xi(x) · Yi(y) +R(x) · S(y), (145)

or, equivalently,

un+1(x, y) = un(x, y) +R(x) · S(y). (146)

The test function will then be given by

w∗(x, y) = R∗(x) · S(y) +R(x) · S∗(y). (147)
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When substituting Eqs. (146) and (147) into the weak form of the problem, Eq.

(143), we arrive at

a
`
R∗S +RS∗, RS

´
+ c

`
v;R∗S +RS∗, RS

´

= −a
`
R∗S +RS∗, un´− c

`
v;R∗S +RS∗, un´

+ l(R∗S +RS∗) −
X

e

Z

Ωe

v∇(R∗S +RS∗)τ
h
L(un+1) − s

i
dΩ,

(148)

where we have omitted, for clarity, the obvious dependence of R in x and S in y.

After applying such an approximation, the weak form of the problem given by Eq.

(148) is solved by using the fixed-point algorithm (extensively used throughout the

present paper) in which the R and S functions are sought iteratively.

For instance, assuming R(x) known, the resulting expression will be

a
`
RS∗, RS

´
+ c

`
v;RS∗, RS

´

= −a
`
RS∗, un´− c

`
v;RS∗, un´

+ l(RS∗) −
X

e

Z

Ωe

v∇(RS∗)τ
h
L(un+1) − s

i
dΩ,

(149)

Assuming ν constant, we have

L(un+1) = v · ∇un+1 −∇ · (ν∇un+1) = L(un) + v · ∇RS − ν∇2RS,

so that we arrive at

a
`
RS∗, RS

´
+ c

`
v;RS∗, RS

´

= −a
`
RS∗, un´− c

`
v;RS∗, un´

+ l(RS∗) −
X

e

Z

Ωe

v · ∇(RS∗)τ
h
v · ∇RS − ν∇2RS − s

i
dΩ

| {z }
A

−
X

e

Z

Ωe

v · ∇(RS∗) · τ · L(un) dΩ

| {z }
B

.

(150)

After some lengthy, yet simple, algebra and after taking into account that second

derivatives of functions R and S vanish if we approximate them by standard, first-

order, finite elements, we obtain for the term A,

A =
X

e

Z

Ωe

„
vx · dR

dx
· S∗ + vy · R · dS

∗

dy

«
·

· τ ·
„
vx · dR

dx
· S + vy · R · dS

dy
− s

«
dΩ.

(151)

For the term B we obtain

B =
X

e

Z

Ωe

„
vx · dR

dx
· S∗ + vy · R · dS

∗

dy

«
· τ ·
„
vx · ∂u

n

dx
+ vy · ∂u

n

dy

«
dΩ. (152)

The impact of the choice of τ is being evaluated and PGD solutions compared with

fully 2D SUPG stabilized solutions.
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– Separated representation of Molecular Dynamics

The molecular dynamic problems are based on the resolution of a set of Newton’s

equations for a given number of particles denoted here by N . The system is de-

scribed by a set of discrete positions varying during time x1(t), x2(t), ..., xN (t).

The dynamics of each particle depends on the position of the surrounding parti-

cles through an interaction potential as well as on its own position in the case of

an existence of an external field generating a force on each particle. The general

equations are then written in the next form:

d2xi(t)

dt2
=

1

mi
fi(x1, ..., xN ), i = 1, .., N (153)

mi is the mass and fi is the force applied on the ith particle which is non linearly

dependent on the system state. These N equations can be gathered into a compact

notation involving a vector x = (x1, ..., xN )T .

d2x

dt2
= L(x) (154)

where the vectorial discrete operator L contains all forces and masses contributions.

The main difficulty associated to the solution of this equations is associated to the

high number of iteration steps for which we have to solve high number of discrete

equations related to each particle. In the context of the PGD we can look for the

solution directly as a product of time functions Tj(t) by some configurations states

of the particles given by a position coordinates vector Xj . Xj could be interpreted

as a discrete significant mode of the position vector during the time evolution that

has been to be calculated ‘a priori’. If we look for a general solution that writes

x(t) ≈
RX

j=1

Xj .Tj(t) (155)

and if we assume known the first n couples of configuration states and time functions

(n < R) then the new couple Y, S(t) deriving from the enrichment process must

satisfy
nX

j=1

 
Xj

d2Tj

dt2

!
+ Y

d2S

dt2
= L(XjTj + YS) (156)

The residual minimization of section 3.4 could be applied onto this equation. The

main difficulty is related to the updating of the discrete operator L that accounts

for high non linearity. This requires a complete reconstitution of the time-space

solution for each enrichment stage (if we consider the simplest updating of the non

linearity described in section 3.2). Even if this technique allows to find the solution

with an ‘a priori’ estimation it costs, unfortunately, R times more expensive than

the direct simulation.

– New dreams

The possibility of solving efficiently multidimensional models including hundreds of

coordinates [4] opens new possibilities in that concerns the solution of models that

are in nature multidimensional (quantum chemistry, statistical mechanics, biology,

computational finance, ...) but also many others (standard in nature) that could

be transformed into highly multidimensional models.
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We could expect that some non-linear problems could be linear in a higher dimen-

sional spaces, making possible its solution in such spaces and then come back to

the initial one solving a non-linear algebraic problem. Other possibility that we re-

cently explored lies in the solution of some simple models that exhibit bifurcations

in theirs solution. The treatment of these models needs some appropriate technique

able to identify the bifurcation points and to follow each solution branch. Our idea

was to immerse these physics in higher dimensional spaces, such that the solution

can represent simultaneously all the solution richness. Thus, in the buckling of a

column in 2D, we obtained a solution that after reaching the critical load exhibit

all the possible solutions simultaneously. The price to be paid is obviously the

consideration of many extra-coordinates. Thus, if a solver able to address highly

multidimensional models is available, new and some times unimaginable possibili-

ties appears suddenly!

5 Conclusions

In this paper we presented the ability of the Proper Generalized Decomposition - PGD

- for solving highly multidimensional models. This technique operates by constructing

a separated representation of the solution, such that, the solution complexity scales

linearly with the dimension of the space in which the model is defined, instead the

exponentially-growing complexity characteristic of mesh based discretization strategies.

The PGD makes possible the efficient solution of models defined in multidimen-

sional spaces, as the ones encountered in quantum chemistry, kinetic theory description

of complex fluids, genetics (chemical master equation), financial mathematics, ... but

also those, classically defined in the standard space and time, to which we can add

new extra-coordinates (parametric models, ...) opening numerous possibilities (opti-

mization, inverse identification, real time simulations, ...).

Despite the first success in the treatment of the models described in this paper,

this numerical proposal is too recent to conclude about its limits, ... Thus, the analysis

should continue for identifying new opportunities but also its limitations.
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