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Abstract: In this paper the coupling of a parabolic model with a system of local
kinetic equations is analyzed. A space-time separated representation is proposed
for the global model (this is simply the radial approximation proposed by Pierre
Ladeveze in the LATIN framework [12]). The main originality of the present
work concerns the treatment of the local problem, that is firstly globalized
(in space and time) and then fully globalized by introducing a new coordinate
related to the different species involved in the kinetic model. Thanks to the
non-incremental nature of both discrete descriptions (the local and the global
one) the coupling is quite simple and no special difficulties are encountered by
using heterogeneous time integrations.
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1 Introduction

Some models encountered in science and engineering are sometimes defined in
multidimensional spaces (e.g. the ones involved in quantum mechanics or ki-
netic theory descriptions of materials, including complex fluids) that exhibit
the redoubtable curse of dimensionality when usual mesh-based discretization
techniques are applied. Other times, models involve transient fields, that even
when they are defined in three-dimensional physical spaces, they must be solved
in large time intervals using very small time steps. Moreover, standard mod-
els can become multidimensional if some of the parameters that they involve
are considered as new coordinates. This possibility is specially attractive when
these coefficients are not well known or they have a stochastic nature.

The difficulty related to the solution of multidimensional models is quite
obvious and it needs the proposal of new appropriate strategies able to circum-
vent the curse of dimensionality. One possibility lies in the use of sparse grids
[7]. However, as argued in [1], the use of sparse grid is restricted to models
with moderate multidimensionality (up to 20). Another technique able to cir-
cumvent, or at least alleviate, the curse of dimensionality consists of using a
separated representation of the unknown field (see [20] [6] for some numerical
elements on this topic). Basically, the separated representation of a generic
function u(x1, · · · , xD) (also known as finite sums decomposition) writes:

u(x1, · · · , xD) ≈

i=N
∑

i=1

F 1
i (x1) × · · · × FD

i (xD) (1)

This kind of representation is not new, it was widely employed in the last
decades in the framework of quantum chemistry. In particular the Hartree-Fock
(that involves a single product of functions) and post-Hartree-Fock approaches
(as the MCSCF that involves a finite number of sums) made use of a separated
representation of the wavefunction [8] [11].

We proposed recently a technique able to construct, in a way completely
transparent for the user, the separated representation of the unknown field in-
volved in a multidimensional partial differential equation. This technique, orig-
inally described and applied to multi-bead-spring FENE models of polymeric
systems in [3], was extended to transient models of such complex fluids in [4].
Other more complex models (involving different couplings and non-linearities)
based on the reptation theory of polymeric liquids were analyzed in [15].

Now, we come back to models defined in spaces of moderate dimension (dD,
d = 1, 2, 3) but whose solutions evolve in large time intervals. In this context, if
one uses standard incremental time-discretizations, in the general case (models
involving time-dependent parameters, non-linear models, ...), one must solve
at least a linear system at each time step. When the time step becomes too
small as a consequence of the stability requirements, and the simulation time
interval is large enough, the simulation becomes inefficient. To illustrate this
scenario, one could imagine the simple reaction-diffusion model that describes
the degradation of plastic materials, where the characteristic time of the chem-
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ical reaction involved in the material degradation is of some microseconds and
the one related to the diffusion of chemical substances (that also represents the
material degradation characteristic time itself) is of the order of years. In this
case standard incremental techniques must be replaced by other more efficient
techniques.

One possibility consists in performing a separated representation of the un-
known field:

u(x, t) ≈

i=N
∑

i=1

Xi(x) · Ti(t) (2)

that allows, as we describe later, to non-incremental time integration strategies,
which can reduce spectacularly the CPU time.

This space-time separated representation if not a new proposal. In fact
such decompositions were proposed many year ago by Pierre Ladeveze as an
ingredient of the powerful non-linear-non-incremental LATIN solver that he
proposed in the 80s. During the last twenty years many works were successfully
accomplished by the Ladeveze’s group. The interested reader can refer to [12]
[13] [16] and the references therein. In the radial approximation approach (the
name given in the pioneer works of Ladeveze) functions depending on space and
the ones depending on time were a priori unknown, and they were computed by
an appropriate minimization technique.

In this paper we are exploring some new possibilities based on separated
space-time representations, that are closely inspired from some existing and
well established strategies [4] [12]. In the next section we motivate the use of
separated representations and its connection with other more experienced tech-
niques, as the model reduction techniques based on the use of proper orthogonal
decompositions. In section 3 we illustrate the application of the Proper Gen-
eralized Decomposition through an academic parabolic model. In section 4 we
consider the coupling between global and many species kinetic local models and
the issue related to the existence of different characteristic times of both the
local and global model. This issue was addressed in the context of proper gen-
eralized decompositions in [17]. Finally, in section 5 we address a numerical
example.

2 Motivating the use of separated space-time

representations

A well established and widely employed technique allowing to define a separated
representation of a given space-time function is based on the application of a
proper orthogonal decomposition. We are illustrating the main ideas related to
this technique.

Let u(x, t) be the solution of a certain transient model (in what follows
x ∈ Ω ⊂ R

d, d = 1, 2, 3, and t ∈ I ⊂ R
+). We are also assuming that this

field is known in a discrete manner, that is, at some points xi (the nodes of a
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mesh or a grid) and at certain times tp = p × ∆t, where i ∈ [1, · · · , Nn] and
p ∈ [1, · · ·P ].

Now, we introduce the notation up
i ≡ u(xi, tp) and construct the matrix Q

that contains the snapshots:

Q =











u1
1 u2

1 · · · uP
1

u1
2 u2

2 · · · uP
2

...
...

. . .
...

u1
Nn

u2
Nn

· · · uP
Nn











(3)

The proper orthogonal decomposition (POD) of this discrete field consists
in solving the eigenvalue problem:

(

QQT
)

φ = λφ (4)

that results in Nn couples eigenvalue-eigenvector (λi, φi), i = 1, · · · , Nn.
When the field evolves smoothly, the magnitude of the eigenvalues decreases

very fast, fact that reveals that the evolution of the field can be approximated
from a reduced number of modes (eigenvectors). Thus, if we define a cutoff value
ǫ (ǫ = 10−8 × λ1 in practice, λ1 being the highest eigenvalue) only a reduced
number of modes are retained. Let R (R << Nn) be the number of modes
retained, i.e. λi ≥ 10−8 × λ1, i = 1, · · · , R and λi < 10−8 × λ1, ∀i > R (the
eigenvalues are assumed ordered). Thus, one could write:

u(x, t) ≈

i=R
∑

i=1

φi(x) · Ti(t) ≡

i=R
∑

i=1

Xi(x) · Ti(t) (5)

where for the sake of clarity the space modes φi(x) will be, from now on, denoted
as Xi(x). Eq. (5) represents a natural separated representation (also known as
finite sums decomposition).

These modes could be now used to solve other ”similar” problems, that is,
models involving slight changes in the boundary conditions, model parameters,
... [18] [14] [21]. Other possibility is computing the reduced basis from the
standard transient solution within a short time interval (with respect to the
whole time interval in which the model is defined) and then solve the remaining
part of the time interval by employing the reduced basis. Obviously, both
strategies induce the introduction of an error whose evaluation, control and
reduction is a challenging issue.

One possibility to construct an adaptive reduced approximation basis, that
should be the best reduced approximation basis for the treated problem, con-
sists in alternating a reduction step (based on the application of the proper
orthogonal decomposition) and an enrichment stage to improve the quality of
the reduced approximation basis in order to capture all the solution features. We
proposed recently an enrichment technique based on the use of some Krylov’s
subspaces generated by the equation residual. This technique known as ”a pri-
ori” model reduction was originally proposed in [22], widely described in [23]
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and successfully applied for solving complex fluid flows within the kinetic the-
ory framework [2] [9] and for speeding up thermomechanical simulations [10].
However, some difficulties were noticed in the application of this strategy: (i)
the enrichment based on the use of the Krylov’s subspaces is far to be optimal
in a variety of models (e.g. the wave equation); (ii) the incremental nature of
the algorithm; ...

From the previous analysis we can conclude: (i) the transient solution of
numerous models can be expressed using a very reduced number of products
each one involving a function of time and a function of space; and (ii) the func-
tions involved in these functional products can be determined simultaneously
by applying an appropriate algorithm.

In what follows we are illustrating the simplest strategy able to compute
these separated functional couples. As just commented this strategy was pro-
posed by Ladeveze many years ago.

3 Illustrating the Proper Generalized Decom-

position

In this section we are illustrating the discretization of partial differential equa-
tions using a separated representation (radial approximation in the Ladeveze’s
terminology) of the unknown field.

Let us consider the advection-diffusion equation

∂u

∂t
− a∆u + v · ∇u = f(x, t) in Ω × (0, Tmax] (6)

with the following initial and boundary conditions
{

u(x, 0) = u0 x ∈ Ω,
u(x, t) = ug (x, t) ∈ ∂Ω × (0, Tmax]

(7)

where a is the diffusion coefficient and v the velocity field, Ω ⊂ R
d, d ≥ 1,

Tmax > 0. The aim of the separated representation method is to compute N
couples of functions {(Xi, Ti)}i=1,...,N such that {Xi}i=1,...,N and {Ti}i=1,...,N

are defined respectively in Ω (Ω being the closure of Ω) and [0, Tmax] and the
solution u of this problem can be written in the separate form

u(x, t) ≈

N
∑

i=1

Ti(t) · Xi(x) (8)

The weak form of problem (7) yields:
Find u(x, t) verifying the boundary conditions (7) such that

∫ Tmax

0

∫

Ω

u⋆

(

∂u

∂t
− a∆u + v · ∇u − f(x, t)

)

dx dt = 0 (9)

for all the functions u⋆(x, t) in an appropriate functional space.
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We compute now the functions involved in the sum (8). We suppose that the
set of functional couples {(Xi, Ti)}i=1,...,n with 0 < n < N are already known
(they have been previously computed) and that at the present iteration we
search the enrichment couple (R(t), S(x)) by applying an alternating directions
fixed point algorithm that after convergence will constitute the next functional
couple (Xn+1, Tn+1). Hence, at the present iteration, n + 1, we assume the
separated representation

u(x, t) ≈
n
∑

i=1

Ti(t) · Xi(x) + R(t) · S(x) (10)

The weighting function u⋆ is then assumed as

u⋆ = S · R⋆ + R · S⋆ (11)

Introducing (10) and (11) into (9) it results

∫ Tmax

0

∫

Ω

(S · R⋆ + R · S⋆) ·

(

S ·
∂R

∂t
− a∆S · R + (v · ∇S) · R

)

dx dt =

=

∫ Tmax

0

∫

Ω

(S · R⋆ + R · S⋆) ·

(

f(x, t) −
n
∑

i=1

Xi ·
∂Ti

∂t
+

+a

n
∑

i=1

∆Xi · Ti −

n
∑

i=1

(v · ∇Xi) · Ti

)

dx dt (12)

We apply an alternating directions fixed point algorithm to compute the
couple of functions (R, S):

• Computing the function S(x).

First, we suppose that R is known, implying that R⋆ vanishes in (11).
Thus, Eq. (12) writes

∫

Ω

S⋆ · (αtS − aβt∆S + βt v · ∇S) dx =

=

∫

Ω

S⋆ ·

(

γt(x) −
n
∑

i=1

αi
tXi + a

n
∑

i=1

βi
t∆Xi −

n
∑

i=1

βi
t v · ∇Xi

)

dx (13)
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where


































































αt =

∫ Tmax

0

R(t) ·
∂R

∂t
(t) dt

αi
t =

∫ Tmax

0

R(t) ·
∂Ti

∂t
(t) dt

βt =

∫ Tmax

0

R2(t) dt

βi
t =

∫ Tmax

0

R(t) · Ti(t) dt

γt(x) =

∫ Tmax

0

R(t) · f(x, t) dt; ∀x ∈ Ω

(14)

The weak formulation (13) is satisfied for all S⋆, therefore we could come
back to the associated strong formulation

αtS − aβt∆S + βt v · ∇S =

= γt −
n
∑

i=1

αi
tXi + a

n
∑

i=1

βi
t∆Xi −

n
∑

i=1

βi
t v · ∇Xi (15)

that one could solve by using any appropriate discretization technique for
computing the space function S(x).

• Computing the function R(t).

From the function S(x) just computed, we search R(t). In this case S⋆

vanishes in (11) and Eq. (12) reduces to

∫ Tmax

0

∫

Ω

(S · R⋆) ·

(

S ·
∂R

∂t
− a∆S · R + (v · ∇S) · R

)

dx dt =

=

∫ Tmax

0

∫

Ω

(S · R⋆) ·

(

f(x, t) −
n
∑

i=1

Xi ·
∂Ti

∂t
+

+a
n
∑

i=1

∆Xi · Ti −
n
∑

i=1

(v · ∇Xi) · Ti

)

dx dt (16)

where all the spatial functions can be integrated in Ω. Thus, by using the
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following notations























































































αx =

∫

Ω

S(x) · ∆S(x) dx

αi
x =

∫

Ω

S(x) · ∆Xi(x) dx

βx =

∫

Ω

S2(x) dx

βi
x =

∫

Ω

S(x) · Xi(x) dx

λx =

∫

Ω

S(x) · (v · ∇S(x)) dx

λi
x =

∫

Ω

S(x) · (v · ∇Xi(x)) dx,

γx(t) =

∫

Ω

S(x) · f(x, t) dx; ∀t

(17)

equation (16) reads

∫ Tmax

0

R⋆ ·

(

βx

∂R

∂t
+ (λx − aαx)R − γx(t)

+

n
∑

i=1

βi
x

∂Ti

∂t
+

n
∑

i=1

(λi
x − aαi

x)Ti

)

dt = 0 (18)

As Eq. (18) holds for all S⋆, we could come back to the strong formulation

βx

∂R

∂t
= (a αx − λx)R + γx(t) −

n
∑

i=1

βi
x

∂Ti

∂t
+

n
∑

i=1

(a αi
x − λi

x)Ti (19)

which is a first order ordinary differential equation that can be solved
easily (even for extremely small times steps) from its initial condition.

These two steps must be repeated until convergence, that is, until verifying
that both functions reach a fixed point. If we denote by R(q)(t) and R(q−1)(t) the
computed functions R(t) at the present and previous iteration respectively, and
the same for the space functions: S(q)(x) and S(q−1)(x), the stoping criterion
used in this work writes:

e =
∥

∥

∥R(q)(t) · S(q)(x) − R(q−1)(t) · S(q−1)(x)
∥

∥

∥

2
< 10−8 (20)

where 10−8 represents the square root of the machine precision.
This iteration scheme converges very fast (in about 5 iterations), at least for

all the models that we considered in our former works previously referenced.
We denote by Qn+1 the number of iterations for solving this non-linear

problem to determine the enrichment couple of functions Xn+1(x) and Tn+1(t).
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After reaching convergence we write Xn+1(x) = S(x) and Tn+1(t) = R(t).
The enrichment procedure must continue until reaching the convergence of the
enrichment global procedure at iteration N , when the separated representation
of the unknown field writes:

u(x, t) ≈

N
∑

i=1

Xi(x) · Ti(t) (21)

The more usual global stopping criteria are:

• For models whose exact solution uref is known:

E =

∥

∥u − uref
∥

∥

2

‖uref‖2

< ǫ (22)

• For models whose exact solution is not known:

E =

∥

∥

∥

∥

∂u

∂t
− a∆u + v · ∇u − f(x, t)

∥

∥

∥

∥

2

‖f(x, t)‖2

< ǫ (23)

with ǫ a small enough parameter (ǫ = 10−6 in our simulations).

Discussion. The just proposed strategy needs for the solution of about N×Q
space and time problems (with Q = (Q1 + · · · + QN )/N and N the number
of functional couples needed to approximate, up to the desired precision, the
searched solution). Thus, one must compute N × Q dD problems, d = 1, 2, 3,
whose complexity depends on the spatial mesh considered, and also N × Q
1D problems (defined in the time interval I) that only need the solution of
an ordinary differential equation from its initial condition. Obviously, even for
extremely small time steps, the solution of these transient 1D problems does
not introduce any difficulty.

If instead the separated representation just discussed, one performs a stan-
dard incremental solution, P dD models, d = 1, 2, 3, must be solved (P being
the number of time steps, i.e. P = Tmax/∆t, where the time step ∆t must be
chosen for verifying the stability conditions).

In all the analyzed cases N and Q are of the order of tens that implies the
solution of about hundred three-dimensional problems defined in Ω, instead the
thousands (or even millions) needed for solving those models using standard
incremental solvers.

A first comparison between both kind of approaches (the one based on the
separated representation and the one based on standard incremental strategies)
was presented in [5].

In what follows we are introducing new coordinates in the model and by
this reason we need to address the solution of more general models that could
contain coordinates other than space and time. We proposed in [3] and [4] a
technique based on the used of separated representations for treating steady or
transient multidimensional models that is a simple generalization of the just
presented strategy.
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4 Efficient coupling of global and local models

We are considering the model given by Eq. (6) in absence of advection, i.e.
v = 0, and in a one-dimensional physical space Ω:

∂u

∂t
− a∆u = f(x, t) in Ω × (0, Tmax] (24)

with the following initial and boundary conditions
{

u(x, 0) = u0 x ∈ Ω,
u(x, t) = ug (x, t) ∈ ∂Ω × (0, Tmax]

(25)

We are assuming that the term source depends on the local value of r fields
Ci(x, t), i = 1, · · · , r:

f(x, t) =

i=r
∑

i=1

γi · Ci(x, t) (26)

where the time evolution of the r fields Ci(x, t) is governed by r coupled ordinary
differential equations (the so-called kinetic model). For the sake of simplicity
we consider the linear case, the non-linear one reduces to a sequence of linear
problems by applying an appropriate linearization strategy [5]. The system of
linear ODEs writes at each point x ∈ Ω:

dCi(x, t)

dt
=

j=r
∑

j=1

αij(x) Cj(x, t) (27)

We are assuming that the kinetic coefficients αij evolves smoothly in Ω,
because in practical applications these coefficients depend on the solution of
the diffusion problem, u(x, t). For the sake of simplicity and without loss of
generality, the alpha coefficients will be assumed later evolving linearly in x,
but in the description that follows we assume those coefficients constant.

Now, we are describing three possible procedures for solving Eqs. (24) and
(27).

1. The simplest strategy consists in using a separated representation of the
global problem solution (24) whereas the local problems are integrated
in the whole time interval at each nodal position (or integration point).
Obviously, this strategy implies the solution of r coupled ordinary dif-
ferential equations at each node (or integration point). Moreover, the
resulting fields Ci(x, t), r = 1, · · · , r, don’t have a separated structure,
and by this reason before to injecting these fields into the global problem
(24) we should separate them by invoking, for example, the singular value
decomposition (SVD) leading to:

Ci(x, t) ≈

q=m
∑

q=1

XC,i
q (x) · T C,i

q (t) (28)
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As soon as the source term has a separated structure, the procedure il-
lustrated in the previous sections can be applied again for computing the
new trial solution of the global problem that writes:

u(x, t) ≈
N
∑

i=1

Xu
i (x) · T u

i (t) (29)

Thus, this coupling strategy requires the solution of many local problems
(for all the coupled species at all nodal positions (or integration points)).
Moreover, after these solutions (that we recall that could be performed
in parallel) a singular value decomposition must be applied in order to
separated these solutions prior to inject them in the PGD solver of the
global problem (24).

2. The second coupling strategy lies in globalizing the solution of the local
problems. Thus, we assume that the field related to each species can be
written in a separated form:

Ci(x, t) ≈

q=m
∑

q=1

XC,i
q (x) · T C,i

q (t) (30)

and now, we apply the procedure described in section 2 to build-up the
reduced separated approximation, i.e. for constructing all the functions
involved in (30). Thus, instead of solving the r coupled ODEs in Eq.
(28) at each nodal position (or integration point), we should solve only r
higher dimensional coupled models defined in the physical space and time.
Obviously, if the number of nodes (or integration points) is important
(mainly when 3D physical spaces are considered) the present coupling
strategy could offer significant CPU time savings.

This strategy allows computing directly a separated representation, and
then, with respect to the previous one, the application of the SVD is
avoided. However, if the number of species is high, the computational
efforts can become important, because the space-time separated solver
must be applied to each species.

3. The third alternative, that in our opinion is the more appealing one for
solving models involving many species, as large as one wants, implies the
definition of a new variable C(x, t, c), that as we can notice contains an
extra coordinate c, with discrete nature, and that takes integer values:
c = 1, · · · , r, in such manner that C(x, t, i) ≡ Ci(x, t), i = 1, · · · , r. Thus,
we have increased the dimensionality of the problem, but now, only a single
problem should be solved, instead one for each species as was the case when
using the previous strategy. This increase of the model dimensionality
is not dramatic because as argued in the first section of this work, the
separated representation allows circumventing the curse of dimensionality,
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allowing for fast and accurate solutions of highly multidimensional models.
Now, the issue is the derivation of the governing equation for this new
variable C(x, t, c) and the separated representation constructor able to
define the approximation:

C(x, t, c) ≈

q=S
∑

q=1

XC
q (x) · T C

q (t) · Aq(c) (31)

As this strategy will be retained in our simulations we are focusing in its
associated computational aspects in the next section.

4.1 Fully globalized local models

The third strategy just referred implies the solution of a single multidimensional
model involving the field C(x, t, c). This original introduction deserves some
additional comments. The first one concerns the discrete nature of the kinetic
equations

dCi(x, t)

dt
=

j=r
∑

j=1

αij(x) · Cj(x, t) (32)

Now, by introducing C(x, t, c), such that C(x, t, i) ≡ Ci(x, t), the kinetic
equations could be written as:

dC

dt
= Lc(C) (33)

where Lc is an operator in the c-coordinate.
If for one second we try to discretize Eq. (33) by finite differences, we could

write at each node (xk, tp, i):

C(xk, tp, i) − C(xk, tp−1, i)

∆t
= Lc(C)|i (34)

where

Lc(C)|i =

j=r
∑

j=1

αij · C(xk, tp, j) (35)

represents the discrete form of the c-operator.
Now, we come back to the separated representation constructor for defining

the approximation:

C(x, t, c) ≈

q=S
∑

q=1

XC
q (x) · T C

q (t) · Aq(c) (36)
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For defining such approximation one should repeat the procedure deeply
illustrated in section 3. As the operator here involved is less standard we are
summarizing the main steps.

We assume that the first n iterations allowed computing the first n sums of
Eq. (36)

C(x, t, c) ≈

q=n
∑

q=1

XC
q (x) · T C

q (t) · Aq(c) (37)

and now, we look for the enrichment R(x) · S(t) · W (c), such that

C(x, t, c) ≈

q=n
∑

q=1

XC
q (x) · T C

q (t) · Aq(c) + R(x) · S(t) · W (c) =

= Cn(x, t, c) + R(x) · S(t) · W (c) (38)

satisfies

∫

Ω

∫ Tmax

0

∫ r

0

C∗(x, t, c) ·

(

dC

dt
− Lc(C)

)

dc dt dx = 0 (39)

Obviously, due to the discrete character of the third coordinate, an integra-
tion quadrature consisting of r points, c1 = 1, · · · , cr = r will be considered
later.

Now, for computing the three enrichment functions we are considering again
(as in section 3) an alternating directions strategy, that proceeds in three steps
(that are repeated until reaching convergence):

1. Assuming functions S(t) and W (c) known, the trial function C∗(x, t, c)
writes R∗(x) · S(t) · W (c). Thus the weak form (39) reads:

∫

Ω

∫ Tmax

0

∫ r

0

R∗ · S · W · (R · S′ · W − R · S · Lc(W )) dc dt dx =

−

∫

Ω

∫ Tmax

0

∫ r

0

R∗ · S · W ·

q=n
∑

q=1

(

XC
q · (T C

q )′ · Aq

)

dc dt dx +

+

∫

Ω

∫ Tmax

0

∫ r

0

R∗ · S · W ·

q=n
∑

q=1

(

XC
q · T C

q · Lc(Aq)
)

dc dt dx (40)

where S′ = dS
dt

and (T C
q )′ =

dT C
q

dt
.

Now, time integrals and the ones involving the c-coordinate can be per-
formed. The ones involving the time are performed as indicated in section
3. The ones involving the coordinate c write:
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∫ r

0

W · W dc =

i=r
∑

i=1

W (ci)
2 (41)

where as just mentioned ci = i, ∀i,

∫ r

0

W · Lc(W ) dc =

i=r
∑

i=1



W (ci) ·

j=r
∑

j=1

αijW (cj)



 (42)

and similar expressions can be derived for the integrals involved in the
right hand member.

Thus, finally it results:

ξx

∫

Ωx

R∗ · R dx =

∫

Ωx

R∗F x(x) dx (43)

where the coefficient ξx contains all the integrals in the time and c-
coordinates related to the left hand member of Eq. (40) and F x(x) all
the integrals appearing in the right hand member. The strong form re-
lated to Eq. (43) writes:

ξxR(x) = F x(x) (44)

whose algebraic nature derives from the fact that kinetic model is local
and then it does not involve space derivatives.

2. Assuming functions R(x) and W (c) known, the trial function C∗(x, t, c)
writes R(x) · S∗(t) · W (c). Thus the weak form (39) reads:

∫

Ω

∫ Tmax

0

∫ r

0

R · S∗ · W · (R · S′ · W − R · S · Lc(W )) dc dt dx =

−

∫

Ω

∫ Tmax

0

∫ r

0

R · S∗ · W ·

q=n
∑

q=1

(

XC
q · (T C

q )′ · Aq

)

dc dt dx +

+

∫

Ω

∫ Tmax

0

∫ r

0

R · S∗ · W ·

q=n
∑

q=1

(

XC
q · T C

q · Lc(Aq)
)

dc dt dx (45)

Now, integrals defined in the physical space Ω must be computed, but this
task does not involve additional difficulties.

Finally it results:

∫ Tmax

0

S∗ ·

(

ξtS + υt dS

dt

)

dt =

∫ Tmax

0

S∗F t(t) dt (46)
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where coefficients ξt and υt contain all the integrals in the space and the
c-coordinate related to the left hand member of Eq. (45) and F t(t) the
associated integrals appearing in the right hand member. The strong form
related to Eq. (46) writes:

υt dS

dt
+ ξtS(t) = F t(t) (47)

whose first order differential nature derives from the form of kinetic mod-
els.

3. Assuming functions R(x) and S(t) known, the trial function C∗(x, t, c)
writes R(x) · S(t) · W ∗(c). Thus the weak form (39) reads:

∫

Ω

∫ Tmax

0

∫ r

0

R · S · W ∗ · (R · S′ · W − R · S · Lc(W )) dc dt dx =

−

∫

Ω

∫ Tmax

0

∫ r

0

R · S · W ∗ ·

q=n
∑

q=1

(

XC
q · (T C

q )′ · Aq

)

dc dt dx +

+

∫

Ω

∫ Tmax

0

∫ r

0

R · S · W ∗ ·

q=n
∑

q=1

(

XC
q · T C

q · Lc(Aq)
)

dc dt dx (48)

After performing integration in space and time, it results:

∫ r

0

W ∗ · (ξc W − υc Lc(W )) dc =

∫ r

0

W ∗F c(c) dc (49)

where coefficients ξc and υc contain all the integrals in the space and time
related to the left hand member of Eq. (48) and F c(c) the associated
integrals appearing in the right hand member. The strong form related to
Eq. (49) writes:

−υc Lc(W ) + ξcW (c) = F c(c) (50)

that results in the algebraic system:

−υc

j=r
∑

j=1

αij W (cj) + ξcW (ci) = F c(ci), i = 1, · · · , r (51)
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4.2 Heterogeneous time integration

In section 3 we illustrated the construction of a separated representation of
standard global models, as the one defined in Eq. (24). In this section we
illustrated some original possibilities for globalizing local models consisting in
kinetic equations. Now, the separated representation of the different kinetic
fields Ci can be extracted from the general solution:

C(x, t, c) ≈

q=S
∑

q=1

XC
q (x) · T C

q (t) · Aq(c) (52)

by writing:

Ci(x, t) = C(x, t, ci) = C(x, t, i) ≈

q=S
∑

q=1

XC
q (x) · T C

q (t) · Aq(i) (53)

Thus, we obtain a fast separated representation of the source term in Eq.
(24) allowing solving this equation as described in section 3. However, it remains
a detail that deserves some comments. The characteristic time related to local
and global problems could differ in some orders of magnitude. In that case
functions T C

q are defined using a time step δt much lower that the one employed
for defining functions T u

i appearing in the separated representation of the global
problem solution u(x, t)

u(x, t) ≈

N
∑

i=1

Xu
i (x) · T u

i (t) (54)

Thus, the issue is knowing Ci(x, t) with a time resolution of δt, what is the
simplest consistent transfer to the solution of the global problem that is per-
formed with a time resolution of ∆t? It is easy to prove that the simplest choice
consistent with a first order discontinuous Galerkin time integration of the ODE
involved in the computation of functions T u

i (t) (that ensures the conservation
of the integrated variable) consists of defining Ci(x, t) with a resolution of ∆t,
such that

Ci(x, t = n × ∆t) =
1

∆t

∫ n×∆t

(n−1)×∆t

Ci(x, t) dt (55)

In any case, and contrary to the experiences in using standard incremental
strategies, the use of the proper generalized decomposition reduced significantly
the impact that heterogeneous time integrations have in the total amount of
CPU time. This is due to the fact that the time step only affects to the solution
of the one dimensional equations solved for computing functions T u

i and T C
q ,

and this step is much more faster than the one needed for computing the space
functions in the global problem Xu

i (x) that requires the solution of a steady state
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2D or 3D problem. Thus, when the differences of the characteristic times of both
models is not too large we could perfectly consider the lowest characteristic time
step in the integration of both models.

4.3 Numerical example

We are illustrating the fully globalization of local kinetic models deeply de-
scribed in the previous section, because the solution of global models and its
coupling do not involves major difficulties, and both aspects were reported in
some of our previous works [5] [19].

To enforce a spatial dependance of the kinetic model solution we are consid-
ering a kinetic model in which the kinetic coefficients evolves linearly in space.
For the sake of simplicity we are also considering a one-dimensional physical
space and 10 species (i.e. r = 10).

The associated kinetic equations write:

dCi(x, t)

dt
=

j=r
∑

j=1

αij(x) Cj(x, t) (56)

where

αij(x) = α′

ij + x · α′′

ij (57)

The coefficients α′

ij and α′′

ij were defined by

α′

ij =
1

r2
i × j − 0.5 (58)

α′′

ij =
1

r2
(r + 1 − i) × (r + 1 − j) − 0.5 (59)

The procedure described in section 4 was applied and a separated represen-
tation of the field C(x, t, c) was obtained after 11 iterations, i.e. the solution
contains 11 sums:

C(x, t, c) ≈

q=11
∑

q=1

XC
q (x) · T C

q (t) · Aq(c) (60)

Figs. 1-3 depicts the computed functions XC
q (x), T C

q (x) and AC
q (x), that

were denoted by F1, F2 and F3 respectively. Obviously, in Fig. 3 only the
values of the different curves for c = 1, 2, · · · , 10 have sense.

Figures 4 and 5 depict the space-time distribution of species 1 to 5 and 6 to
10 respectively.
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Figure 2: Separated representation: time functions.
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Figure 3: Separated representation: functions defined on the species coordinate.

Discussion. Because neither the PGD based solver nor the incremental one
are computationally optimized, we are not addressing the computing time in-
volved in the simulation. However, we could quantify the advantage in using
the PGD based solver by evaluating the number of operations involved in both
solutions. We are assuming the simplest numerical choices: explicit incremental
integration, ...

We recall the notation previously introduced: N is the number of functional
products involved in the separated approximation of field C(x, t, c) being Q the
number of iterations of the alternating direction fixed point algorithm needed
for computing each one of the functional products. We consider Nn nodes in
which the dynamical system must be integrated, being P the number of time
steps and r the number of species involved by the kinetic model.

When a standard incremental technique is used (without any kind of com-
putational improvement) the number of operations scales with Nn × P × r,
whereas when using the PGD based solver the number of operations scales with
N ×Q× (Nn +r2 +P ) (this estimation can be easily derived from the algorithm
given in section 4.1).

When we consider a simple problem characterized by Nn = 1000, P = 1000
and r = 10, the PGD based solver requires of about N × Q ≈ 1000 iterations.
Thus, the number of operations involved by the incremental technique is of order
107 whereas the one related to the PGD based solver requires about 106. In
this case there is not a clear advantage in using the PGD based solver. Now, if
Nn = 106, P = 106 and r = 10, the incremental solver needs 1013 operations
instead of the 109 involved in the PGD based solver. In this case the CPU
time savings is of four orders of magnitude, and this ratio can be increased by
assuming more complex simulation scenarios involving more nodes, time steps
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Figure 4: Space-time distribution of species 1 to 5.

20



0
0.2

0.4
0.6

0.8
1

0

0.5

1

0.2

0.4

0.6

0.8

1

xt 0
0.2

0.4
0.6

0.8
1

0

0.5

1

0.5

1

1.5

xt

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0.5

1

1.5

2

xt 0
0.2

0.4
0.6

0.8
1

0

0.5

1

0.5

1

1.5

2

2.5

xt

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0.5

1

1.5

2

2.5

3

xt

Figure 5: Space-time distribution of species 6 to 10.
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or species.

5 Conclusions

In this paper we presented some recent developments in the Proper Generalized
Decomposition. This technique allows defining non-incremental strategies that
can be easily coupled for solving multiscale models. Even if sophisticated and
powerful coupling techniques exist for solving non-linear coupled models (the
LATIN proposed by Pierre Ladeveze [12] is an excellent candidate) in this paper
we applied a simple coupling based in a fixed point that is enough efficient for
the models involving parabolic and local kinetics couplings. The main origi-
nality of the present work is the globalization of kinetic models as well as the
introduction of an additional dimension for accounting for the different species
involved by the kinetic model. Thus, instead of solving many local problems
(one for each species) at any nodal position (or integration point), we propose
a model that only requires the solution of a single problem defined in a mul-
tidimensional space that includes the physical space, the time and an extra
coordinate related to the different species. The curse of dimensionality is not
an issue for Proper Generalized Decompositions because its separated represen-
tation nature. In that representations the complexity scales linearly with the
dimension of the space instead of the usual exponential growing of standard
mesh based strategies. Moreover the decoupling of the time representations al-
lows simple integrators and facilitate the use of different time steps for solving
local and global models.
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