Computational Mechanics manuscript No.
(will be inserted by the editor)

Data-driven non-linear elasticity

Constitutive manifold construction and problem discretization
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Abstract The use of constitutive equations calibrated from data has been imple-
mented into standard numerical solvers for successfully addressing a variety prob-
lems encountered in simulation-based engineering sciences (SBES). However, the
complexity remains constantly increasing due to the need of increasingly detailed
models as well as the use of engineered materials.

Data-Driven simulation constitutes a potential change of paradigm in SBES. Stan-
dard simulation in computational mechanics is based on the use of two very different
types of equations. The first one, of axiomatic character, is related to balance laws
(momentum, mass, energy, ...), whereas the second one consists of models that scien-
tists have extracted from collected, either natural or synthetic, data. Data-driven (or
data-intensive) simulation consists of directly linking experimental data to comput-
ers in order to perform numerical simulations. These simulations will employ laws,
universally recognized as epistemic, while minimizing the need of explicit, often phe-
nomenological, models. The main drawback of such an approach is the large amount
of required data, some of them inaccessible from the nowadays testing facilities. Such
difficulty can be circumvented in many cases, and in any case alleviated, by consid-
ering complex tests, collecting as many data as possible and then using a data-driven
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inverse approach in order to generate the whole constitutive manifold from few com-
plex experimental tests, as discussed in the present work.

Keywords Data-driven computational mechanics - data-intensive simulation -
inverse problems - constitutive manifold.

1 Introduction

Machine and manifold learning techniques, and more specifically nonlinear dimen-
sionality reduction, as for example locally linear embedding (LLE), kernel-PCA (the
nonlinear counterpart of principal component analysis —PCA), referred as k-PCA,
local-PCA, among many other choices, allows us to remove correlations in data [10,
19,17,20,21]. Such data, free of correlation, constitute the real information, often
very limited when compared with the big data from which it was extracted.

This information is then translated into knowledge, and from it to decision mak-
ing. For the human being knowledge is primordial: we are interested in understanding
the intimate and subtle mechanisms about the nature of things. However, when deal-
ing with machines, these intellectual needs are not inherent to their nature, and deci-
sions can be made from a new kind of (artificial) intelligence that, more than based
on mathematical expressions, are based on data via data mining and data analytics.

In many models, the extraction of uncorrelated parameters remains a tricky issue.
It is the case of parameters describing microstructures or shapes for example, often
referred to as latent parameters. As soon as the uncorrelated parameters are extracted,
two main options have been considered to date: (i) when a new case, not included
in the data, must be analyzed, its solution is simply interpolated on the manifold
(constructed from the training data) from its closest neighbors [12] so that decisions
can be taken in real time; and (ii) an explicit parametric solution could be constructed
by using the just extracted uncorrelated parameters so that it could be particularized
in real-time [6,7].

Data-Driven simulation constitutes another appealing opportunity. Furthermore,
in our humble opinion, it constitutes a real change of paradigm in simulation-based
engineering sciences (SBES), with plenty of potential [1,11,13,14,15,16,18].

Standard simulation in classical mechanics is based on the use of two very differ-
ent types of equations. The first one, of axiomatic or epistemic character, is related to
balance (conservation) laws (momentum, mass, energy...). The second one consists
of models extracted from collected data.

Data-driven simulation consists of directly employ data in order to perform nu-
merical simulations. These simulations will employ universal laws while minimizing
the need of explicit, often phenomenological, models. They are based on manifold
learning methodologies able to extract the uncorrelated behavior of constitutive rela-
tions from a huge amount of collected data [9,8].

This approach is especially interesting when considering complex engineered ma-
terials (meta-materials), for which constitutive relations become hard to write, be-
cause there are (too) many possible designs, and the intimate nature of most of them
remains inaccessible and/or confidential.
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The main drawback of such an approach is the huge amount of required data,
some of them inaccessible from the nowadays testing facilities. Such difficulty can be
circumvented in many cases, and in all cases alleviated, as proved in the present work,
by considering complex tests, collecting as many data as possible and then using a
data-driven inverse approach in order to generate the whole constitutive manifold
[8], in a subtle alliance of testing machines, devices for collecting data and powerful
computers for treating these huge amount of data in a variety of ways (machine and
deep learning).

To better understand the data-driven rationale here addressed, let us consider, for
the sake of clarity, a very simple problem: linear elasticity. In that case, the balance
of (linear and angular) momenta leads to the existence of a symmetric second-order
tensor o (the so-called Cauchy’s stress tensor) verifying equilibrium, expressed in the
absence of body forces and inertia effects, as

f &:odx= J u*t dx, (D
Q Ty

Vu* regular enough and vanishing on Iy (portion of the domain boundary I' = 0Q
where the displacement is prescribed), being the tractions t known in the comple-
mentary boundary region Iy, with Ip Uy =T and [, NIy = 0.

In order to solve problem (1) some relationship linking kinematic and mechanical
(static) variables is required, the so-called constitutive equation. The simplest one,
giving rise to isotropic linear elasticity, is known as Hooke’s law (even if, more than
a law, it is simply a constitutive model), and reads

o = ATr(e)l + pe, 2

where Tr(e) denotes the trace operator, € is the strain tensor, and A and p are the Lamé
coefficients directly related to the Young modulus E and the Poisson coefficient v.

By introducing the constitutive model, Eq. (2), into the weak form of the balance
of momentum, Eq. (1), the so-called virtual work principle, a problem is obtained
that can be formulated entirely in terms of the displacement field u. By discretizing
it, using standard finite element approximations, for instance, and performing numer-
ically the integrals involved in Eq. (1), we finally obtain a linear algebraic system of
equations, from which the nodal displacements can be obtained.

In the case of linear elasticity there is no room for discussion: the approach is
simple, efficient and has been applied successfully to many problems of practical in-
terest. Today, there are numerous commercial codes making use of this mechanical
behavior and nobody doubts about its pertinence in engineering practice. However,
there are other material behaviors for whom simple models fail to describe any exper-
imental finding. These models lack of generality (universality) and due to this reason
a mechanical system is usually associated to different models that are progressively
adapted and/or enriched from collected data.

The biggest challenge could then be formulated as follows: can simulation pro-
ceed directly from data by circumventing, or at least alleviating, the necessity of es-
tablishing a constitutive model? In the case of linear elasticity it is obvious that such
an approach lacks of interest. However, in other branches of engineering science and
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technology it should be an appealing alternative to standard constitutive model-based
simulations.

In [8] we proposed some methods for performing simulation employing the just
developed concept of constitutive manifolds arising from data. However, in that work
the issue related to the data-collection and curation was nos addressed. The present
work constitutes a first tentative in that direction.

As argued in [8], the main issue related to data-based approaches lies in the huge
amount of data required in order to represent the mechanical behavior. Thus, con-
structing the behavior manifold by carrying out a sequence of homogeneous tests
with the purpose of activating all the possible strain states, seems today too expen-
sive, but probably not in the future where data is expected playing a major role. In the
present paper we consider an alternative route. If instead of performing simple tests,
we consider one involving complex and evolving loads applying on a quite complex
geometry, numerous mechanical states will coexist in the part, and having access for
example to the strain in a region of the specimen, we could by using an inverse iden-
tification strategy, identifying a large part of the behavior manifold. This is the main
idea explored in the present paper.

However, this inverse technique can be performed in different ways. In this paper
we consider two strategies. The first consists in gradually constructing the manifold
from data collected during the loading. Thus, at each loading step the elastic tensor for
anew strain value is identified. However, such a procedure has as main drawbacks the
fact of using the elastic tensor as main mechanical variable as well as its complexity
in the case of nonlinear behaviors, as discussed later. Another appealing possibility
consists of constructing a polynomial approximation of the elastic energy, whose
second derivative results in the elastic tensor, and whose identification from collected
dada seems to be more robust, as discussed later.

Both strategies will be presented in sections 2 and 3 respectively, and then their
efficiency checked ad discussed in section 4.

2 Progressive construction of the behavior manifold
2.1 Linear setting

We consider first, for simplicity, mechanical tests conducted on a perfectly lin-
ear elastic material, in a specimen exhibiting uniform stresses and strains. We will
later consider issues related to data generation and curation. Thus, for M randomly
applied external loads, we assume ourselves able to collect M couples (o, €;,,),
m = 1,..., M. Each stress-strain couple could thus be represented as a single point
P,, in a phase space of dimension D = 12 (the six distinct components of the stress
and strain tensors, respectively). In the sequel Voigt notation will be considered, i.e.
stress and strain tensors will be represented as vectors and consequently the fourth-
order elastic tensor reduces to a 6 x 6 square matrix.

Each vector P,, thus defines a point in a space of dimension D and, therefore, the
whole set of samples represents a set of M points in IR”. We conjecture that all these
points belong to (or can be embedded into) a certain low-dimensional manifold em-
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bedded into the high-dimensional space RP allowing for a nonlinear dimensionality
reduction as discussed in [8].

As soon as the elastic manifold C(¢) is determined from a locally-linear interpo-
lation, we can proceed from the standard weak form

j e (x):o(x)dx = J u*(x) - t(x) dx, 3)
Q

In

that using Voigt notation and the behavior derived from the constitutive manifold,
becomes
J £ (x)- (Cle(x))e(x)) dx = J u’(x) - t(x) dx. 4
Q Ty
By using an appropriate linearization, this last expression allows one to compute (at
convergence) every mechanical field.

However, as previously argued, prior to proceed with the calculations summarized
above and analyzed in detail in [8], one must accomplish the construction of the so-
called constitutive manifold.

Taking as reference the strain- and stress-free reference configuration of the solid,
the problem can be expressed in the incremental form (particularly interesting in the
nonlinear case addressed in Section 2.2)

J Ag*(x)-Ao(x) dx = J‘ Au*(x) - At dx, (5)
Q

In

with Ag*(x) the virtual strain field related to the kinematically admissible increment
of displacement test field Au*. By introducing the linear behavior the previous inte-
gral equation reads

j Ag*(x) - (CrAe(x)) dx = j Au’(x) - At dx, (6)
Q

In

where the tangent matrix Cr (that coincides with the secant one C because of the
assumed linearity) is unknown. However, because of the assumed linear elastic be-
havior, it remains constant everywhere in the domain.

Using a c-term parametrization of 6 x 6 matrices (being the more general one that
using canonical matrices fulfilling symmetry constraints) we can write

C
Cr= ZaiMi, (7)
i=1

with coefficients «; unknown.
By introducing this tangent matrix representation into the equilibrium weak form

it results
(o3
J AE*(X) . [[Z(X,‘Ml'
Q i=1

Aa(x)] dx = J Au*(x) -t dx, (8)
In
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whose discrete form reads

C

ZaiKi

i=1

AU"- AU =AU"-T, 9

with K; the stiffness matrices corresponding to the canonical behaviors and AU the
nodal vectors of incremental displacements.

We assume that local displacements, and consequently their associated strains, are
accessible (experimentally measurable) at a certain region of the domain (in general
a portion of its boundary). Their associated degrees of freedom are hereafter referred
to with the superscript ¢ . Thus, making use of a partition of the displacement vector
AU and AU referring to the observable and hidden displacements, respectively,
the previous discrete system reads

c c
HH HO
Z OCiKZ- Z ain
i=1 i=1

- OH ¥ 00
) a;K; ) a;K;
i=1 i=1

AUMY
AUC |~

TH)'

10 (10)

This system of equations is obviously complemented with appropriate Dirichlet bound-
ary conditions on I'p. In the previous algebraic system, vectors T and T’ refer to
the nodal traction contributions at nodes related to the observable and hidden dis-
placements, respectively.

The algebraic system (10) has as unknowns the hidden displacements AU and
the constitutive coefficients «;, being known the observable displacements AU©. If
the number of known displacements that corresponds with the size of vector AU? is
large enough (in all cases larger than the number of alpha-coefficients, c) it is thus
possible to solve the resulting nonlinear algebraic problem to compute both the un-
known displacements AU’ and the coefficients defining the material behavior «;. In
the opposite case it is always possible to apply some regularization to solve the un-
determined resulting problem (e.g. Tikhonov regularization). In the sequel we focus
in the former scenario.

System (10) can be rewritten as follows

- HH 1 HO ALIO wongo \[ AV
El a;K; K{AUY ... KYAU a; ™
C WOH 100 ATIO 00 A0 : :(TO ) (n
2 a;K; K7YAUY ... KZYAU :
i=1 248
or, by defining vector @ and matrices x’1© and x¥9° as

a=(ay,,a)
«MO = (KMOAUOY, .., KIOAUO) , (12)
x90 = (K{PAUY, ..., KQOAUP)
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the previous system can be rewritten as

C
4K7"'iH HO
ig ail; K AUH 3 TH
o = 1o | 13)
Y a;K9" x00 «
i1
that represents an overdetermined nonlinear algebraic system.
By premultiplying by the transpose of the matrix, a square algebraic system is
obtained,

C T C C T
Y aiKZ'lH x 1O Y aiKz"H xHo Y a,-K?{H xHo
i=1 i=1

= AU T
S KOH o on a ) I RC—y TO )
Y a;K; x90 Y oK x99 Y @K x@9
i=1 i=1 i=1
(14)

that allows us to calculate AU and a by using an adequate nonlinear solver (e.g.
fixed point, Newton, etc.).

When considering a linear behavior the resulting displacements, strains and stresses
can easily be derived from U = AU = (AU, AU®)T by considering

u(x) = )rf U;N;(x)

i=1
v , (15)

o=Ce

where C = Cr, nd is the number of nodes considered to approximate the displace-
ment field u(x) and N;(x) the associated shape functions. V,(e) denotes the symmet-
ric component of the gradient operator and Cy results from «;

C
Cr= ZaiMi. (16)
i=1
2.2 Nonlinear elastic behavior
In the nonlinear case a major difficulty appears: since the behavior depends on
strain, and it can be different at each physical point x € Q), the procedure just pro-

posed and described to address the linear case must be adapted accordingly.
The external traction t is progressively applied, that is

l
t= ZAt]-, (17)
j=1

with traction increments small enough to ensure the accuracy of the identified behav-
ior. Thus, from the stress- and strain-free reference state the application of the first
traction increment At; results in the equilibrium weak form

J.Q e (x)-oq(x)dx = J‘ u’(x)-t; dx, (18)

In
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or its incremental counterpart taking into account that o = o + Aoy (with oy = 0)
and ty =ty + Atl (with ty = 0)

J A€*(x)- Ao (x) dx :J‘ Au*(x)- Aty dx, (19)
Q Iy
whose linearized form writes
f Ag*(x) - (Cr, Ae1(x)) dx :J u'(x)- Aty dx, (20)
Q Iy

where the tangent matrix CT1 , assumed unknown, can be considered almost constant
everywhere in the domain as soon as the first traction increment is taken small enough
to ensure that this first loading produces a linear response everywhere in the domain
Q), i.e. the first tests considered for starting the construction of the behavior manifold
should avoid the appearance of stress or strain localization.

Applying the same rationale that was employed in the linear case, we consider
the c-term parametrization

C
Cr,=) alM;, 1)
i=1
that, together with
alz(a%,...’a};)’r
M0 = (KIOAUY, .., KIOALY) , (22)
«{9 = (KP9AUY, .-, KOAUY)
leads to
¢ omn HON (& 1wHH L HO < omH HO\
ar K x ar K K a: K K
5 i~ 1 i; i~ 1 AUI;‘K _ i; i~ 1 AT;)
%) %) < %) AT )
£ ol 0| | £ ot o L at 17| a0 | am
i=1 i=1 i=1
(23)

that allows us to calculate AU? and a! and, from them, displacements, strains and
stresses, according to

U1 =U0+AU1 = AU]
&1 = €0+A€1 :A€1 . 24)
01 :O'()+AO'1 = O'0+CT1A£1 :CTlAsl

This last equation makes use of the constitutive matrix Cr,

[
Cr, = Za}Mi. (25)
i=1

Consider now a second loading step At,. The process is repeated to calculate the
sequence (&5, 07), ..., (&7, 0¢). However, in the second and subsequent iterations the
situation is a bit different with respect to the first one just described, deserving some
additional comments.
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After the first loading step, in which a uniform stress-strain state was assumed
due to the small traction increment, now the different points in () will be subject to a
non-uniform strain field and consequently we cannot assume that a constant Cr, will
apply in the whole domain. Because the very small magnitude of the applied loading
increments only the points having the maximum deformation energy at the previous
iteration are potential candidates to exhibit at the present iteration a tangent behavior
different to one of the previously identified. Thus, two groups of finite elements are
considered: (i) first, the ones whose stress-strain couple remains close enough to any
of the ones previously identified, and (ii) the ones that do not fulfill that condition.
For the first group the already identified tangent behavior can be considered (up to a
tolerance) still valid, whereas for the second group the strains are checked to verify
if they are close enough among them. If it is the case, a common unknown tangent
behavior (parametrized according to Eq. (7)) is assigned to all them. This constitu-
tive clustering can be performed by using an appropriate classifier. In our case we
employed k-means with two populations.

Assume therefore that the domain Q can be decomposed in two parts QY and
QA, the former involving elements belonging to the cluster whose behavior is as-
sumed unknown (thus far from all the behaviors already identified) and the last the
one that concerns elements whose behavior, already identified, is assumed to remain
valid. The linearized equilibrium at the loading increment j can be written accord-
ingly as

As*(x)-(CTjAej(x)) dx = f u*(x)- At; dx.

In
(26)
The first integral defines a linear contribution, whereas the second one remains non-
linear because it involves the unknown displacement vector as well as the unknown
constitutive coefficients, grouped into the tangent matrix CT]..

LA Ae*(x)-(Cr(x)Ag;(x)) dx+j

QU

3 Polynomial approximation of the constitutive manifold

As proposed in [4] a simple and still appealing possibility to describe the con-
stitutive manifold consists of approximating it in an adequate polynomial basis. The
simplest alternative consists of approximating the elastic energy (as a function of the
strain) whose first derivative results in the stress tensor and the second one leads to
the elastic tensor.

Proceeding to identify the energy seems to be a better alternative than identifying
the elastic tensor, for two important rasions. The first because it ensures a thermo-
mechanical consistency and then recovering all the behavior symmetries. The second
raison is based on the fact that the polynomial approximation of all the components
of the elastic tensor is much more expensive computationally than the approxima-
tion of a single scalar function, the energy in the present case, and the identification
procedure much more robust from a computational viewpoint.

The choice of the approximation basis deserves some comments. Imagine for a
while the approximation of a one-dimensional function f(&)inZ = [£7,EF]. A natu-
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ral possibility consists of using piecewise continuous linear functions N;(&) to define
its approximation, as it is usual within the finite element framework, by consider-
ing a mesh composed of q nodes uniformly distributed in Z, with coordinates ¢&;,
i=1,...,q( =& and &, = &™), from which the approximation reads

q
fE&)=) FENI(E), @7

=1

where N;(&), for 1 < i < q writes

fehifeelgigl

N;(&) = % if £€(&, &l (28)
0 elsewhere

o ifEel6,8]
Ny (&)= , (29)
0 elsewhere

and
E=&q-1 .
éq*—;ql if ‘5 € [‘Sq—h éq]
Ny(&) = . (30)
0 elsewhere

If the solution is known at different positions = js j=1,...,i, Eq. (27) will read

g
FE)=) FENIE), j=100i, 31)

that results in the linear system

Ni(E1) ... Ng(Eq)\( f(&r) f(E1)

NE) - NaED N\ Fea) &)

[1]

At this point, different situations can be found:
— An undetermined system if j < q;
— A determined one, if j = q;
— An overdetermined one, if j > q. However, even when j > q the resulting system
can become undetermined if at least for one node &;, no point & js Vj, falls in its
support, [ 1, &i.1 .
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In these circumstances different algebraic solutions exist (e.g. pseudo-inverse,
“matlab backslash”, L2 or L! optimization, ...). However, in this work we decided to
consider global approximation functions in [£7,&*]. To avoid the issues related to
high-order Lagrange approximations, we consider approximations based on the use
of orthogonal polynomials, and more precisely Chebyshev polynomials. Thus, Eq.
(27) is replaced by

q
fE&)=) %T(&) (33)
i=1

where T;(&) refer to Chebyshev polynomials and the weights y; are computed from
its associated linear system

q
fEN=) yTE)) j=1o0i, 34)
i=1

where singularity issues are circumvented as soon as j > q and there are not repeated
points.

However, problems arise as soon as the approximation becomes multidimen-
sional. This is the case when approximating the elastic energy w as a function of the
6 components of the strain tensor &, using the same degree (q) for each component.
In this case, the approximation

q6

©(©)~ ) VijmnTi(e11)Tj(12) Te(e13) Ti(€22) T(€23) Tuless),  (39)
ijklmn

contains too many coefficients y; jxjm, (in fact q®), and consequently the accuracy re-
quires the same number of data points (even if sparse sampling could be an appealing
alternative). Of course the approximation could be limited to a certain degree D by
considering in the previous sum indexes verifying i + j+k+[+m+n < D.

An alternative approximation makes use of a separated representation (usually
considered within the proper generalized decomposition (PGD) framework [2,3]) that
reads

p
w(e)~ ) E'(en) E(e12) B (e13) EP(e20) EP(e23) EP(e33).  (36)

1

This separated representation is specially appropriate when € is defined in the
hyper-hexahedral domain £ = [e7,, €7, ] x [€],,€],] X -+ X [€35,€35]. However, ad-
missible deformations imply non separable domains. The application of separated
representation in non-separable domains was deeply addressed in [S] where the use
of R-functions succeeded to represent complex non-separable geometries.

To avoid singularity issues, functions E Zkl, are approximated by using global Cheby-
shev polynomials, according to

Akl

Efen) ~ ) v Ti(en). (37)
j=1
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Starting from the weak form

f 8*-0dx:J. u*-tdx, (38)
Q Iy

we substitute the constitutive relationship

Je*-Csdx:J u-tdx, (39)
Q I

with the elastic tensor expressed as the second order derivative of the energy.

Note that functions E lkl, as well as the unknown nodal displacements, should be
computed from the knowledge of the measurable nodal displacements accessible in a
part of the domain (), as was the case in the procedures discussed previously.

As in the case of the PGD constructor, we consider a greedy algorithm that com-
putes sequentially these functions [3]. Thus at iteration n, n < p, we assume that the
rank-n approximation of the elastic energy w” was already computed, i.e.,

w(e) ~ w"(e) = ZE}l(sn)...E§3(a33). (40)

At present iteration we look for the new functional product leading to the updated
enriched rank-# + 1 expression of w"*!(g) from

0" e) = w"(e)+ ELL (e11)...EX (e33) = 0" (&) + Aw(e), 41)
that introduced into the weak form results
J e -(C*e)+AC(e))e dx = J u"-tdx. (42)
Q Iy

where AC(e) results from the second derivative of the energy enrichment Aw(e).

As is the case when applying the PGD solver, the solution procedure consists of
using an alternated direction fixed point strategy, that proceeds as follows [3]:
1. By considering Eii({_l) ,.. E ﬁ({_l) from the previous fixed point iteration r — 1

of the nonlinear solver (initialized at » = 1 from the functions at the previous
11(r)

n+111. 13(r—1 33(r-1
2. The process is repeated but now with E, +(1r) ,E, +(1r— ),...,E11 +(1r— ) known. This

allows to compute the unknown nodal displacements and functions involved in

enrichment iteration #), we compute E

12 . . .
E, +(1r). The process is repeated for all the other components until computing
Ezi({)- Then, the fixed point convergence is checked and if it is not attained we

move to the next fixed point iteration r + 1.

3. When reaching the fixed point convergence, the enrichment convergence is eval-
uated and if it is not attained we move to the next elastic energy approximate
@"*? from the just competed w"*!. We assume that at iteration p the enrichment
process converges and consequently we have access to the elastic tensor manifold
from which simulations can be carried out as described in [8].
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Remark I. Tt is important to note that at each solution step in the fixed point loop, the
unknowns are the unknown nodal displacements as well as the nodal variables related
to the approximation of functions involved in Elk] .

4 Numerical results

To illustrate the capabilities of the just described procedure, we consider the simple
mechanical problem depicted in Fig. 1. It consists of a two-dimensional unit squared
solid, x = (x,9) € Q = (0,1) x (0,1), equipped with a nonlinear elastic material,
clamped along its basis y = 0, free of traction on its lateral boundaries x = 0 and
x =1 and with a uniformly distributed traction t on its upper boundary y = 1. We
analyze the performance of the just presented strategies.

4.1 Progressive construction of the behavior manifold

In the present case, we consider an applied traction whose orientation, i.e. t = tp,

is arbitrary: p(6) = (cos0,sin0)T, 6 € [0,2m). As just discussed, this traction is
applied incrementally in magnitude and orientation. From

t= ZAtj, (43)

we can define an intermediate traction magnitude at step 7, f,, from

=) At (44)
j=1

that leads to different tractions depending on the orientation

=) Atp(6°), 45)
j=1
S
0 = ZAQ, (46)
m=1

with M defining the angular discretization, that is the number of discrete angles con-
sidered,
MAG6 =27 (47

Thus, for each intermediate traction magnitude, the whole orientation space is
fully swept before incrementing the traction magnitude, to better explore the consti-
tutive manifold.

To discretize the mechanical problem, the domain Q) was equipped with a uniform
mesh consisting of Px P square finite elements, where a bilinear approximation of the
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displacement field was considered. The displacement is therefore assumed to be ex-
perimentally measurable at each finite element node located on the upper-boundary,
that is, it is assumed measurable at the P + 1 nodes located on its upper boundary

y=1.
4.1.1 Synthetic generation of displacement measures

In order to generate pseudo-experimental displacement measurements, we consider a
nonlinear elastic behavior of the type (Voigt notation is employed here)

E 1v 0
C=—=v1 0| 48)
Voo
2

with the elastic coefficients given by

{E = Eo + EyTr(e) 49)

v =vy+vTr(e)

with Eg, Eq, vo and v, positive constants and where Tr(e) refers to the trace operator
acting on tensor e. Coefficients v and v; where selected such that v € (0,0.5) in the
range of deformations considered.

In the numerical example discussed below the material coefficients were selected
as Eg =10, vy = 0.1, E; = 10 and v; = 0.1. The applied tension was ¢ = 0.1 and
it was applied by considering 10 loading steps, i.e. £ = 10 and 10 orientations, i.e.
M =10. The mesh consisted of 10 x 10 Q1 finite elements.

The standard finite element solution of the resulting nonlinear model allowed the
calculation of the displacement at each loading step at each of the 11 nodes located
on the upper-boundary, y = 1.

4.1.2 Unveiling the constitutive manifold

The fact that the constitutive law employed to generate pseudo-experimental dis-
placements was known is now forgotten, and the behavior is assumed unknown from
now on. The main objective is therefore to determine the constitutive manifold of
the material, that is, its sampling stress-strain couples, with the only information pro-
vided by the mechanical test illustrated in Fig. 1 and the recorded displacements at
the 11 locations at each loading step.

For this purpose we proceed as described in section 3. Figures 2, 3 and 4 com-
pare the different identified components of the stress tensor, 0y, 0y, and oy, and
the reference ones obtained from Eq. (48). The stress magnitude in those figures is
represented from the color bar. These figures reveal an almost perfect stress-strain
couple match with the pseudo-experimental ones, with relative errors lower than 1%.

It was proved, that as expected, by decreasing the loading step, that is, by increas-
ing £ and M in the loadings expressed from Egs. (43) and (47), the error with respect
to the reference one (related to the constitutive equation (48)) decreases proving the
expected convergence of the proposed inverse identification strategy as Fig. 5 reveals.
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VPPV

Fig. 1: Schema of the considered mechanical problem

The accuracy was also checked by comparing the identified components of the tan-
gent matrix with the analytical one, and as shown in Fig. 7 the results almost match
as soon as the sampling (loading increments) becomes fine enough. Errors fewer than
few percent using the norm ||Ci@¢ntified _ C||,, are easily reachable.

To further explore the method, we decided to apply a non-linear dimensionality
reduction technique to the stress-strain couples just obtained. By applying on them
Locally Linear Embedding nonlinear dimensionality reduction strategy, see Figure
7, we compare the dimensionality of the resulting linear and nonlinear constitutive
manifolds. In the linear case two parameters seemed to be enough for visualizing and
parametrizing the constitutive data (this number corresponds with the number of low-
est eigenvalues before reaching the typical plateau of LLE techniques [19], see Fig.
7). However, when considering the manifold that results from the identified stress-
strain couples describing the nonlinear case, the dimensionality seems to increase to
three parameters. This is natural since the nonlinear behavior implies the need for
more complex descriptions.

Alternatively, we employed k-PCA nonlinear dimensionality reduction [7], that
allows to visualize low-dimensional manifolds within a higher dimensional space.
When applying k-PCA to the identified data corresponding to the nonlinear behavior,
we obtain the embedding depicted in Fig. 8. Here, in order to prove that the embed-
ded, low-dimensional data is well distributed on the slow manifold, we assigned a
color to each data point corresponding to its elastic energy. In order to prove that the
reduced data defined an almost perfect 2D manifold, we represent in Figs. 9 and 10
two different views of the solution shown in Fig 8.

4.1.3 Data-driven simulation

The nonlinear elastic problem is now solved by employing the constitutive manifold
just identified, when a traction t = tp, p’ = (cos 37/2,sin 37t/2) applies on the top
boundary. The reference displacement field calculated with the constitutive model
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Fig. 5: Evolution of the error with the loading steps ¢

(48)-(49) is depicted in Fig. 11 and compared with the one obtained when solving
the same problem but now with the identified constitutive model whose solution is
depicted in Fig. 12. Both results are in good agreement despite the coarse descriptions
considered.

4.2 Polynomial approximation of the constitutive manifold

The second proposed procedure consisted on the polynomial representation of the
constitutive manifold described in Section 3. In this case, the identified behavior was
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Fig. 7: Dimensionality of the linear (left) and nonlinear (right) manifolds when applying the LLE nonlinear
dimensionality reduction technique on the stress-strain data.

in perfect agreement with the reference one considered above, with relative errors
again lower than 1%.

When considering Yk, I, qx; = q = 5 and only one load applied on the top bound-
aryt =0.1p, withp = (-1/ V2,-1/42), and by assuming that our pseudo-experimental
technique is able to provide us with nodal displacement values in the 25% of the
nodal locations in the model, a perfect agreement was obtained between the identi-
fied and the reference behavior as proved in Fig. 13.

The reduction of the number of measured displacements requires the use of ad-
ditional loading test cases. We also proved that the convergence is significantly en-
hanced with the number of considered loading cases, the number of measured dis-
placements and the considered polynomial degree for approximating the behavior.
Moreover, the use of a separated representation allows to diminish the number of ex-
perimental measurements because it involves optimal polynomial representations of
the constitutive manifold.
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Fig. 9: View of the manifold represented in Fig. 8 as a function of the two first embedding coordinates.

5 Conclusions

We proved in a previous work [8] that numerical simulations can be performed from
the only knowledge of data defining the material behavior. It was claimed that the
main drawback of one such approach is the necessity of unveiling the whole constitu-
tive manifold. However, at present, testing facilities are not able to explore the whole
strain-stress space in a continuous way. In this paper we considered elastic behaviors
(linear and nonlinear), proving that the constitutive manifold can be extracted from a
data-driven inverse procedure in an effective manner.
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Fig. 13: Identified constitutive coefficients cl! (&) (left) versus the reference ones (right).

Two procedures have been proposed: the first one is indeed a progressive con-
struction of the constitutive manifold, while the second involves the polynomial ap-
proximation of the whole constitutive manifold. The first scheme results to be quite
simple. However, the error accumulates all along the identification process. More-
over, the fact of using clustering techniques remains also a tricky issue. The second
route, however, seems to be more robust from all points of view, and its immersion
in a hierarchical or multi-resolution strategy seems an appealing choice for future
developments.

Even if the results only concerned some simplistic behaviors, the methodology
seems to be appropriate to address more complex scenarios, such as behaviors in-
volving large strains, as well as inelastic deformations. Other points that should be
considered are the ones related to existence and propagation of noise. This constitutes
our current effort of research.
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