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RÉSUMÉ.

ABSTRACT.In this paper we review the possibilities associated with the use of Proper Orthogonal
Decompositions for solving models established in highly multidimensional spaces. This tech-
niques has also been recently extended to problems that can be, under some circusmstances,
seen as multidimensional.
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1. Introduction

Models defined in highly multidimensional spaces are ubiquitous in many
branches of Sciences and Engineering. Beginning from the most classical description
of atomic structure, arising from Schrödinger equation, plenty of models present this
unique feature of being defined in spaces with a number of dimensions notably high
than three. Other examples of this feature include many models for complex fluid mo-
delling, or the modelling of chemical reactions at very low concentrations (i.e., those
governed by the Chemical Master Equation).

The main difficulty related to these models concerns the difficulty of establishing a
(finite element, finite difference) mesh in such a high numberof dimensions. Consider,
for instance, a one-dimensional problem whose numerical description involves, say,
ten finite elements. If the model is extended to two-dimensional settings, the mesh
will be composed by10× 10 elements. If the problem becomes three-dimensional the
mesh increases to103 elements, and so on. In the limit, for an80-dimensional space,
a hardly imaginable mesh of1080 elements would be necessary to solve the problem.
But 1080 is precissely the presumed number of elementary particles in the universe,
so “ No computer existing, or that will ever exist, can break this barrier because it is a
catastrophe of dimension” (Laughlinet al., 2000).

This frustrating characteristic of highly-dimensional models has given rise to the
so-calledcurse of dimensionality. One possible solution lies in the use of sparse grids
(Bungartzet al., 2004). However the use of sparse grid is restricted to models with
moderate multidimensionality (up to 20). Another technique able to circumvent, or at
least alleviate, the curse of dimensionality consists of using a separated representation
of the unknown field. Basically, the separated representation of a generic function
u(x1, · · · ,xD) (also known as finite sum decomposition) writes :

u(x1, · · · ,xD) ≈

i=N
∑

i=1

F 1
i (x1) × · · · × FD

i (xD) [1]

Note that the coordinatesxi, i = 1, · · · , D, are defined in spaces of moderate
dimension, i.e.xi ∈ Ωi ⊂ R

di , di ≤ 3. Thus, the dimension of the model results
∑i=D

i=1 di. Eventually, one of these coordinates could be the timet ∈ I ⊂ R
+.

This kind of representation is not new, it was widely employed in the last decades
in the framework of quantum chemistry. In particular the Hartree-Fock (that involves
a single product of functions) and post-Hartree-Fock approaches (as the MCSCF that
involves a finite number of sums) made use of a separated representation of the wave-
function (Cancèset al., 2003) (Chinestaet al., 2008).

We proposed recently a technique able to construct, in a way completely trans-
parent for the user, the separated representation of the unknown field involved in a
multidimensional partial differential equation. This technique, originally described
and applied to multi-bead-spring FENE models of polymeric liquids in Ammaret
al. (2006), was extended to transient models of such complex fluids in Ammaret
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al. (2007). More complex models (involving different couplings and non-linearities)
based on the reptation theory of polymeric liquids were analyzed in Mokdadet al.
(2007).

Coming back to models defined in spaces of moderate dimension(d × D, d =
1, 2, 3) but whose solutions evolve in large time intervals, if one uses standard in-
cremental time-discretizations, in the general case (models involving time-dependent
parameters, non-linear models, ...), one must solve at least a linear system at each
time step. When the time step becomes too small as a consequence of stability requi-
rements, and the simulation time interval is large enough, standard incremental simu-
lation becomes inefficient. To illustrate this scenario, one could imagine the simple
reaction-diffusion model that describes the degradation of plastic materials, where the
characteristic time of the chemical reaction involved in the material degradation is in
the order of some microseconds and the one related to the diffusion of chemical sub-
stances (that also represents the material degradation characteristic time itself) is of
the order of years. In this case standard incremental techniques must be replaced by
other more efficient strategies.

One possibility consists again in performing a separated representation of the unk-
nown field, that in the present case reduces to :

u(x, t) ≈

i=N
∑

i=1

Xi(x) · Ti(t) [2]

that allows, as we describe later, to non-incremental time integration strategies, which
can reduce spectacularly the CPU time.

This space-time separated representation is not a new proposal. In fact such de-
compositions were proposed many year ago by Pierre Ladevezeas an ingredient of
the powerful non-linear-non-incremental LATIN solver that he proposed in the 80s.
During the last twenty years many works were successfully accomplished by the La-
deveze’s group. The interested reader can refer to (Ladeveze, 1999) and the references
therein. In the radial approximation approach (the name given in the pioneer works of
Ladeveze) functions depending on space and the ones depending on time were a priori
unknown, and they were computed by an appropriate minimization technique.

This paper reviews some of the basic features of the method, together with some
interesting applications in different fields.

2. Basics of the Proper Generalized Decomposition

Basically, the separated representation of a generic function u(x1, · · · , xD) (also
known as finite sums decomposition) reads :

u(x1, · · · , xD) ≈

i=N
∑

i=1

F i
1(x1) × · · · × F i

D(xD) [3]
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This kind of approximation only needs a technique able to construct, in a way
completely transparent for the user, the separated representation of the unknown field
involved in a partial differential equation.

The technique that we proposed for computing the different functions involved
in Eq. (3) consists of an alternating directions linearization strategy that we summa-
rize here. For the sake of clarity, and without any loss of generality, we restrict our
discussion to theD-dimensional Poisson’s equation :

△u = −f(x1, x2, ..., xD), [4]

whereu is a scalar function of(x1, x2, ..., xD). Problem (4) is defined in the domain
(x1, x2, ..., xD) ∈ Ω = (−L, +L)D with vanishing essential boundary conditions.
The problem solution can be written in the form :

u(x1, x2, ..., xD) =
∞
∑

j=1

αj

D
∏

k=1

Fkj(xk), [5]

whereFkj is thejth basis function, with unit norm, which only depends on thekth

coordinate.

It is well known that the solution of numerous problems can beaccurately ap-
proximated using a finite (sometimes very reduced) number (N ) of approximation
functions, i.e. :

u(x1, x2, ..., xD) ≈
N

∑

j=1

αj

D
∏

k=1

Fkj(xk). [6]

The previous expression implies the same number of approximation functions in
each dimension, but each one of these functions could be expressed in a discrete form
using different number of parameters (nodes of the 1D grids).

Now, an appropriate numerical procedure is needed for computing the coefficients
αj as well as theN approximations functions in each dimension.

The proposed numerical scheme consists of an iteration procedure that solves at
each iterationn the following three steps :

Step 1 :Projection of the solution in a discrete basis

If we assume the functionsFkj(∀j ∈ [1, ..., n]; ∀k ∈ [1, ..., D]) known (veri-
fying the boundary conditions), the coefficientsαj can be computed by introducing
the approximation ofu into the Galerkin variational formulation associated withEq.
(4) :

∫

Ω

∇u∗ · ∇udΩ =

∫

Ω

u∗f dΩ [7]
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Introducing the approximation ofu andu∗ :

u(x1, x2, ..., xD) =

n
∑

j=1

αj

D
∏

k=1

Fkj(xk) [8]

and

u∗(x1, x2, ..., xD) =

n
∑

j=1

α∗

j

D
∏

k=1

Fkj(xk) [9]

we have

∫

Ω

∇





n
∑

j=1

α∗

j

D
∏

k=1

Fkj(xk)



 · ∇





n
∑

j=1

αj

D
∏

k=1

Fkj(xk)



 dΩ =

=

∫

Ω





n
∑

j=1

α∗

j

D
∏

k=1

Fkj(xk)



 f dΩ [10]

Now, we assume thatf(x1, · · · , xD) can be written in the form

f(x1, · · · , xD) ≈

m
∑

h=1

D
∏

k=1

fkh(xk) [11]

Eq. (10) involves integrals of a product ofD functions each one defined in a dif-
ferent coordinate. Let

∏D

k=1 gk(xk) be one of these functions to be integrated. The
integral overΩ can be performed by integrating each function in its definition interval
and then multiplying theD computed integrals according to :

∫

Ω

D
∏

k=1

gk(xk) dΩ =
D
∏

k=1

∫ L

−L

gk(xk)dxk [12]

which makes possible the numerical integration in highly dimensional spaces.

Now, due to the arbitrariness of the coefficientsα∗

j , Eq. (10) allows to compute
then-approximation coefficientsαj , solving the resulting linear system of sizen×n.
This problem is linear and moreover rarely exceeds the orderof tens of degrees of
freedom. Thus, even if the resulting coefficient matrix is densely populated, the time
required for its solution is negligible with respect to the one required for performing
the approximation basis enrichment (step 3).

Step 2 :Checking convergence
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From the solution ofu at iterationn given by Eq. (8) we compute the residual
Re related to Eq. (4) :

Re =

√

∫

Ω
(△u + f(x1, · · · , xD))2

‖u‖
[13]

If Re < ǫ (epsilon is a small enough parameter) the iteration processstops, yiel-
ding the solutionu(x1, · · · , xD) given by Eq. (8). Otherwise, the iteration procedure
continues.

The integral in Eq. (13) can be written as the product of one-dimensional integrals
by performing a separated representation of the square of the residual.

Step 3 :Enrichement of the approximation basis

From the coefficientsαj just computed the approximation basis can be enri-
ched by adding the new function

∏D

k=1 Fk(n+1)(xk). For this purpose we solve the
non-linear Galerkin variational formulation related to Eq. (4) :

∫

Ω

∇u∗ · ∇udΩ =

∫

Ω

u∗f dΩ [14]

using the approximation ofu given by :

u(x1, x2, ..., xD) =

n
∑

j=1

αj

D
∏

k=1

Fkj(xk) +

D
∏

k=1

Rk(xk) [15]

The weighting function can be expressed as :

u∗(x1, x2, ..., xD) =

= R∗

1(x1)×R2(x2)×· · ·×RD(xD)+ · · ·+R1(x1)×R2(x2)×· · ·×R∗

D(xD)

[16]

This leads to a non-linear variational problem, whose solution allows to compute
theD functionsRk(xk). FunctionsFk(n+1)(xk) are finally obtained by normalizing,
after convergence of the non-linear solver, the functionsR1, R2, ..., RD.

To solve this problem we introduce a discretization of thosefunctionsRk(xk).
Each one of these functions is approximated using a 1D finite element description. If
we assume thanpk nodes are used to construct the interpolation of functionRk(xk)
in the interval[−L, L], then the size of the resulting discrete non-linear problemis
∑k=D

k=1 pk. The price to pay for avoiding a whole mesh in the multidimensional domain
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is the solution of a non-linear problem. However, even in high dimensions the size of
the non-linear problems remains moderate and no particulardifficulties have been
found in its solution up to hundreds dimensions. Concerningthe computation time,
even when the non-linear solver converges quickly, this step consumes the main part
of the global computing time.

Different non-linear solvers have been analyzed : fixed-point, Newton or one
based on an alternating directions scheme. In this work the last strategy was re-
tained. Thus, in the enrichment step, functionRs+1

1 (x1) is updated by assuming
known all the others functions (given at the previous iteration of the non-linear solver
Rs

2(x2), · · · , Rs
D(xD)). Then, functionsRs+1

1 (x1), R
s
3(x3), · · · , Rs

D(xD) are assu-
med known for updating functionRs+1

2 (x2), and so on until updating the last func-
tion Rs+1

D (xD). Now the convergence is checked by calculating
∑i=D

i=1 ‖Rs+1
i (xi) −

Rs
i (xi)‖

2. If this norm is small enough we can define the functionsFk(n+1)(xk) by
normalizing the functionsR1, R2, ..., RD and come back to step 1. On the contrary,
if this norm is not small enough, a new iteration of the non-linear solver should be
performed by updating functionsRs+2

i (xi), i = 1, · · · , D and then checking again
the convergence. Despite its simplicity, our experience proves that this strategy is in
fact very robust.

3. Application of the PGD to the simulation of cell signalingprocesses

When chemically reacting species are present at very low concentrations (in the
number of tens or hundreds of molecules, for instance) the resulting state can not be
modeled accurately as deterministic and the inherent randomness of the system should
be taken into account. This is the case, for instance, when modeling gene regulatory
networks. It is well known that small numbers of molecules can alter these networks
significantly (J.Hastyet al., 2001) (Sreenathet al., 2008).

It is also well known that under some circumstances (a well stirred mixture, fixed
volume and fixed temperature), such a system can be considered Markovian, and that it
is governed by the so-called Chemical Master Equation (CME)(Munskyet al., 2006),
which is a set of linear ordinary differential equations.

3.1. The Chemical Master Equation

When dealing with chemical system in which the different species are present at
very low copy numbers, it is necessary to work with the numberof molecules present
at each time instant, instead of working, as usual, with the concentration of each spe-
cies. Thus, consider a well mixed system, at constant volumeand temperature, descri-
bed by the state vector

Z(t) = (#A, #B, #C, #D, . . .)T , [17]
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with initial stateZ(t0) = z0. Here,A, B, etc., represent different chemical species.
When some reactionrj occurs, the system moves fromz0 to z

∗, where the change in
the number of molecules is equal to its stoichiometry in the reactionrj :

rj : sin
1,jx1 + sin

2,jx2 + · · · + sin
N,jxN

kjGGGGGGAsout
1,jx1 + sout

2,jx2 + · · · + sout
N,jxN , [18]

with kj the rate constant of reactionrj . In turn, sin,out
i,j represent the stoichiometric

coefficients of thei-th species andxk represent the concentrations of each biochemical
species.

This state transition depends on the probability that the changes due to any reaction
occur as described by thepropensity function. For any reactionj :

aj(z)dt ≡ the probability, givenZ(t) = z, thatrj occurs in[t, t + dt]

This state transition results in a change of molecules of each species :

vij = s
in
i,j + s

out
i,j ,

or, equivalently,

z − vj

aj(z − vj)GGGGGGGGGGGGGGGAz, [19]

and

z

aj(z)GGGGGGGGGAz + vj . [20]

Let us define the probability that each species exists inz number of molecules at
any timet :

P (z, t|z0, t0) ≡ Prob{Z(t) = z, givenZ(t0) = z0}.

The CME describes the time evolution of the probability taking into account each
propensityaj :

∂P (z, t|z0, t0)

∂t
=

∑

j

[aj(z − vj)P (z − vj , t|z0, t0) − aj(z)P (z, t|z0, t0)] .

[21]
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In compact notation, we will write the CME hereafter as

∂P (z, t)

∂t
= AP (z, t), [22]

where operatorA contains the propensities of each reaction :

A =
∑

j

Aj [23]

Note that the choice of the probability instead of chemical concentrations as es-
sential variable of the problem eliminates the need of determining the rate constants
of each reaction, and translates the problem to finding the value of the propensities.

3.2. A method based on Proper Generalized Decompositions

The purposed method is constructed by assuming that the essential variable of the
problem, the probability of having a particular chemical state, is given by a finite sum
of separable functions (separated representation), i.e.,

P (z, t) =

nF
∑

j=1

αjF
j
1 (z1) ⊗ F

j
2 (z2) ⊗ . . . ⊗ F

j
N (zN ) ⊗ Ft(t), [24]

where, as mentioned before, the variableszi represent the number of molecules of
speciesi present at a given time instant. This particular choice of the form of the basis
functions allows for an important reduction in the number ofdegrees of freedom of
the problem,nN × N × nF instead of(nN )N , whereN is the number of dimensions
of the state space andnN the number of degrees of freedom of each one-dimensional
grid established for each spatial dimension. For this to be useful, one has to assume
that the probability is negligible outside some interval, and therefore substitute the
infinite domain by a subdomain[0, . . . , m − 1]N , m being the chosen limit number
of molecules for any species in the simulation. A similar assumption is behind other
methods in the literature, such as the Finite State Projection algorithm, for instance
(Munskyet al., 2006).

The CME is then written in a similar form, as expressed in Eq. (23), by expanding
the operatorA in the form

A =

nA
∑

j=1

A
j
1 ⊗ A

j
2 ⊗ · · · ⊗ A

j
N ⊗ I, [25]

whereAi represent the matrix form of each operatorAi involved in the CME and
I represents the identity matrix, acting on the terms depending on time only. Their
particular form will be seen readily.
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Figure 1. Schematic mechanism of the toggle switch. The constitutivePL promoter
drives the expression of thelacI gene, which produces thelac repressor tetramer.
The lac repressor tetramer binds thelac operator sites adjacent to thePtrc − 2
promoter, thereby blocking transcription ofcI. The constitutivePtrc − 2 promoter
drives the expression of thecI gene, which produces theλ-repressor dimer. Theλ-
repressor dimer cooperatively binds to the operator sites native to thePL promoter,
which prevents transcription oflacI.

3.3. Simulation of a toggle switch

The behaviour of theλ-phage virus is one the most studied and well-known
examples in gene regulatory networks. When a bacteriophageλ infects a cell, either
stays dormant or it reproduces until the dead of the cell. Theresulting behaviour de-
pends crucially on two competing proteins that inhibit mutually each other, see a sche-
matic representation in Fig. 1. The so-called toggle switchis composed of a two-gene
co-repressive network.

The operator form of the CME for this example is composed by two terms
(Heglandet al., 2007) :A = A1 + A2, given by :

A1P (z1, z2) =
αβ

β + γz2
P (z1 − 1, z2) + δ(z1 + 1) · P (z1 + 1, z2)−

(

αβ

β + γz2
+ δ · z1

)

P (z1, z2). [26]

andA2 equivalent withz1 andz2 interchanged. We computed the solution forδ =
0.05, α = 1.0, γ = 1.0 andβ = 0.4.

The simulation started from a non-physiological state in which both proteins sho-
wed a very high probability aroundz1 = z2 = 15. Despite this initial state, after
t = 100s (Fig. 2) one has a case where both average values of both proteins and
small levels of the one protein combined with higher level ofthe other protein are
quite likely, and this remains the case for the stationary distribution as well (Hegland
et al., 2007), Fig. 3.
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4. Conclusions

We have reviewed here the essential features of the Proper Generalized Decom-
position technique. This technique is particularly usefulfor the numerical solution of
models defined in highly-dimensional spaces. As a particularly challenging example
we have presented the simulation of gene regulatory networks, in particular that be-
haviour of the virus bacteriophageλ. This virus, although very simple, since its be-
haviour is governed by only two competing proteins, is very well known, and clearly
shows the potential of the technique in the field of Computaitonal Biology.
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