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RESUME.

ABSTRACTIN this paper we review the possibilities associated withubke of Proper Orthogonal
Decompositions for solving models established in highljtidimensional spaces. This tech-
nigues has also been recently extended to problems that eannder some circusmstances,
seen as multidimensional.
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1. Introduction

Models defined in highly multidimensional spaces are ubdys in many
branches of Sciences and Engineering. Beginning from thst ohassical description
of atomic structure, arising from Schrédinger equatioenpl of models present this
unique feature of being defined in spaces with a number of minas notably high
than three. Other examples of this feature include many taddecomplex fluid mo-
delling, or the modelling of chemical reactions at very lawncentrations (i.e., those
governed by the Chemical Master Equation).

The main difficulty related to these models concerns thecdiffy of establishing a
(finite element, finite difference) mesh in such a high nunolbdimensions. Consider,
for instance, a one-dimensional problem whose numericadrg®ion involves, say,
ten finite elements. If the model is extended to two-dimemalicettings, the mesh
will be composed by 0 x 10 elements. If the problem becomes three-dimensional the
mesh increases tH)?* elements, and so on. In the limit, for &4-dimensional space,

a hardly imaginable mesh @6 elements would be necessary to solve the problem.
But 1080 is precissely the presumed number of elementary partioléise universe,

s0 “ No computer existing, or that will ever exist, can bretik barrier because it is a
catastrophe of dimension” (Laughlét al., 2000).

This frustrating characteristic of highly-dimensionaldets has given rise to the
so-calledcurse of dimensionalityOne possible solution lies in the use of sparse grids
(Bungartzet al, 2004). However the use of sparse grid is restricted to nsodih
moderate multidimensionality (up to 20). Another techmigible to circumvent, or at
least alleviate, the curse of dimensionality consists ofgia separated representation
of the unknown field. Basically, the separated represemtaif a generic function

u(x1,- -+ ,xp) (also known as finite sum decomposition) writes :
i=N
u(xi, - xp) & Y Fl(x1) x - x FP(xp) [1]
=1

Note that the coordinates;, « = 1,---, D, are defined in spaces of moderate
dimension, i.ex; € Q; C R%, d; < 3. Thus, the dimension of the model results
S2=" d;. Eventually, one of these coordinates could be the timel C R™.

This kind of representation is not new, it was widely empbbirethe last decades
in the framework of quantum chemistry. In particular the trse-Fock (that involves
a single product of functions) and post-Hartree-Fock apagnes (as the MCSCF that
involves a finite number of sums) made use of a separatedsepedion of the wave-
function (Cancést al, 2003) (Chinestat al.,, 2008).

We proposed recently a technique able to construct, in a wayptetely trans-
parent for the user, the separated representation of theownkfield involved in a
multidimensional partial differential equation. This beique, originally described
and applied to multi-bead-spring FENE models of polymeqaitls in Ammaret
al. (2006), was extended to transient models of such compledsflin Ammaret
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al. (2007). More complex models (involving different couplingnd non-linearities)
based on the reptation theory of polymeric liquids were yaread in Mokdadet al.
(2007).

Coming back to models defined in spaces of moderate dimefgienD, d =
1,2, 3) but whose solutions evolve in large time intervals, if orsesistandard in-
cremental time-discretizations, in the general case (tsadeolving time-dependent
parameters, non-linear models, ...), one must solve at éelisear system at each
time step. When the time step becomes too small as a consamakstability requi-
rements, and the simulation time interval is large enouigindard incremental simu-
lation becomes inefficient. To illustrate this scenariog @ould imagine the simple
reaction-diffusion model that describes the degradatigrestic materials, where the
characteristic time of the chemical reaction involved ia thaterial degradation is in
the order of some microseconds and the one related to thesidiff of chemical sub-
stances (that also represents the material degradatisaateastic time itself) is of
the order of years. In this case standard incremental tgabsimust be replaced by
other more efficient strategies.

One possibility consists again in performing a separatpresentation of the unk-
nown field, that in the present case reduces to :

i=N
u(x,t) ~ Z X;(x) - T(t) [2]

that allows, as we describe later, to non-incremental timegiration strategies, which
can reduce spectacularly the CPU time.

This space-time separated representation is not a new gabpo fact such de-
compositions were proposed many year ago by Pierre Ladasaa ingredient of
the powerful non-linear-non-incremental LATIN solver thee proposed in the 80s.
During the last twenty years many works were successfultpaplished by the La-
deveze’s group. The interested reader can refer to (Lade®899) and the references
therein. In the radial approximation approach (the namergin the pioneer works of
Ladeveze) functions depending on space and the ones dagentdiime were a priori
unknown, and they were computed by an appropriate minimizé&tchnique.

This paper reviews some of the basic features of the methgdther with some
interesting applications in different fields.

2. Basics of the Proper Generalized Decomposition

Basically, the separated representation of a genericitimafz,,--- ,zp) (also
known as finite sums decomposition) reads :

i=N
u(@y, -+ ap) & Y Fi(z1) x - x Fj(zp) 3]
=1



4 Revue européenne des éléments finis. Volume 8 — n°2/2005

This kind of approximation only needs a technique able tostroet, in a way
completely transparent for the user, the separated rapegsm of the unknown field
involved in a partial differential equation.

The technique that we proposed for computing the differantfions involved
in EqQ. (3) consists of an alternating directions lineaimastrategy that we summa-
rize here. For the sake of clarity, and without any loss ofegality, we restrict our
discussion to thé-dimensional Poisson’s equation :

Au=—f(x1,x2,....,xD), [4]

whereu is a scalar function ofz1, z2, ..., zp). Problem (4) is defined in the domain
(z1,22,....,xp) € Q = (—L,+L)P with vanishing essential boundary conditions.
The problem solution can be written in the form :

D

u(w1, T2, s TD) :Za Hij(xk), [5]

J
j=1 k=1

where F,; is the j** basis function, with unit norm, which only depends on &
coordinate.

It is well known that the solution of numerous problems carabeurately ap-
proximated using a finite (sometimes very reduced) numb8rdf approximation
functions, i.e.:

N D
u(ry,T2,...,p) R Za;‘ H Fyj(xr). (6]
k=1

j=1

The previous expression implies the same number of appedgiomfunctions in
each dimension, but each one of these functions could bessgu in a discrete form
using different number of parameters (nodes of the 1D grids)

Now, an appropriate numerical procedure is needed for ctingthe coefficients
o as well as theéV approximations functions in each dimension.

The proposed numerical scheme consists of an iteratioregtwe that solves at
each iteratiom the following three steps :

Step 1 :Projection of the solution in a discrete basis

If we assume the function$};(Vj € [1,..,n];Vk € [1,...,D]) known (veri-
fying the boundary conditions), the coefficients can be computed by introducing
the approximation of; into the Galerkin variational formulation associated wEit.

4):

Vu* - VudQ = / u* f 9 7]

Q Q
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Introducing the approximation ef andu™ :

n D
u(z1, T2, ..., Tp) = Y @ Hij(xk) [8]
j=1 k=1
and
n D
u*(x1, 22, ..., Tp) = aj HFk](xk) [9]
j=1 k=1
we have
n D n D
/ VY o [T Frjtan) | -V [ D oy [ Frjlan) | d2=
£ j=1 k=1 j=1 k=1
n D
- / S [ Fsan) | £ a0 [10]
Q\j=1 k=1
Now, we assume that(z1, - -- ,2p) can be written in the form
m D
fl, - ap) = > [ frnlan) [11]
h=1k=1

Eqg. (10) involves integrals of a product 6f functions each one defined in a dif-
ferent coordinate. Lef[kD:1 gx(x) be one of these functions to be integrated. The
integral over) can be performed by integrating each function in its definitnterval
and then multiplying thé> computed integrals according to :

D D L
k=1""

QL
which makes possible the numerical integration in highipelisional spaces.

Now, due to the arbitrariness of the coefficients Eq. (10) allows to compute
then-approximation coefficients;, solving the resulting linear system of sizex n.
This problem is linear and moreover rarely exceeds the aflegns of degrees of
freedom. Thus, even if the resulting coefficient matrix isskly populated, the time
required for its solution is negligible with respect to theeaequired for performing
the approximation basis enrichment (step 3).

Step 2 :Checking convergence



6 Revue européenne des éléments finis. Volume 8 — n°2/2005

From the solution ofu at iterationn given by Eg. (8) we compute the residual
Rerelated to Eq. (4) :

(13]

If Re < ¢ (epsilon is a small enough parameter) the iteration prostegs, yiel-
ding the solutionu(z1, - - - ,zp) given by Eg. (8). Otherwise, the iteration procedure
continues.

The integral in Eqg. (13) can be written as the product of omeedsional integrals
by performing a separated representation of the squareaégidual.

Step 3 :Enrichement of the approximation basis

From the coefficientsy; just computed the approximation basis can be enri-

ched by adding the new functic]F{kD:1 Fi(n+1)(z1). For this purpose we solve the
non-linear Galerkin variational formulation related to. [4) :

/ Vu* - VudQ = / uw* f dQ [14]
Q Q
using the approximation af given by :
n D D
u(x1, 2, ...,Tp) :ZajHij(ﬂﬁk)JrHRk(iEk) [15]
j=1 k=1 k=1

The weighting function can be expressed as :

u*(x1, 22, ..., Tp) =

= R*{(ml) XRQ(EEQ) Xooee XRD(J}D)+- . -—I—Rl(l'l) XRQ(EEQ) Xoooe XRB(%D)
[16]

This leads to a non-linear variational problem, whose smhuallows to compute
the D functionsRy (). FunctionsFy,,,41)(z) are finally obtained by normalizing,
after convergence of the non-linear solver, the functiBnsRs, ..., Rp.

To solve this problem we introduce a discretization of thhsetions Ry (zy ).
Each one of these functions is approximated using a 1D fiférment description. If
we assume thap, nodes are used to construct the interpolation of funcRefy)
in the interval[— L, L], then the size of the resulting discrete non-linear probkem
Zizf) pk- The price to pay for avoiding a whole mesh in the multidimienal domain
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is the solution of a hon-linear problem. However, even imtdgnensions the size of
the non-linear problems remains moderate and no particlifficulties have been
found in its solution up to hundreds dimensions. Concertivggcomputation time,
even when the non-linear solver converges quickly, this stmsumes the main part
of the global computing time.

Different non-linear solvers have been analyzed : fixedvpdilewton or one
based on an alternating directions scheme. In this work dke dtrategy was re-
tained. Thus, in the enrichment step, functi@™ () is updated by assuming
known all the others functions (given at the previous iierabf the non-linear solver
R§(x32),- -+, RS (xp)). Then, functionsRs* (21), R§(x3),--- , R (xp) are assu-
med known for updating functioR5 ™" (x2), and so on until updating the last func-
tion R5 " (zp). Now the convergence is checked by calcula@@j? | R5T () —

Rg (x;)||?. If this norm is small enough we can define the functidis, 1) (zx) by
normalizing the function$;, R, ..., Rp and come back to step 1. On the contrary,
if this norm is not small enough, a new iteration of the noredir solver should be
performed by updating functiorBf*Q(:z:i), ¢ = 1,---,D and then checking again
the convergence. Despite its simplicity, our experiencw@s that this strategy is in
fact very robust.

3. Application of the PGD to the simulation of cell signalingprocesses

When chemically reacting species are present at very loweardnations (in the
number of tens or hundreds of molecules, for instance) thgltieg state can not be
modeled accurately as deterministic and the inherent randss of the system should
be taken into account. This is the case, for instance, whatetimy gene regulatory
networks. It is well known that small numbers of molecules alier these networks
significantly (J.Hastyet al, 2001) (Sreenatht al.,, 2008).

It is also well known that under some circumstances (a wietest mixture, fixed
volume and fixed temperature), such a system can be congilar&ovian, and that it
is governed by the so-called Chemical Master Equation (CWkinskyet al,, 2006),
which is a set of linear ordinary differential equations.

3.1. The Chemical Master Equation

When dealing with chemical system in which the differentcspe are present at
very low copy numbers, it is necessary to work with the nundfenolecules present
at each time instant, instead of working, as usual, with trecentration of each spe-
cies. Thus, consider a well mixed system, at constant voemdgemperature, descri-
bed by the state vector

Z(t) = (#A,#B,#C,#D,...)", [17]
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with initial state Z(to) = z¢. Here, A, B, etc., represent different chemical species.
When some reaction; occurs, the system moves frogg to z*, where the change in
the number of molecules is equal to its stoichiometry in tagtionr; :

. in in in
Tj181,;T1+ Sy T2+ -+ Sy TN
k.

J
out out out
—>s7571 + 852 + -+ SN TN, [18]

with k; the rate constant of reaction. In turn, s;’,‘f“‘ represent the stoichiometric

coefficients of the-th species and,, represent the concentrations of each biochemical
species.

This state transition depends on the probability that tlengles due to any reaction
occur as described by tipeopensity functionFor any reactior :

a;(z)dt = the probability, giverZ (t) = z, thatr; occurs inft, ¢ + dt]

This state transition results in a change of molecules df epecies :

___in out
Vij = 855+ S5

or, equivalently,

a;(z — v;)
z—v———>2, [19]
and
a;(z)
Z——>2z + ;. [20]

Let us define the probability that each species existsmumber of molecules at
any timet :

P(z,t|z0,t0) = Prot{ Z(t) = z, givenZ(ty) = zo}.
The CME describes the time evolution of the probability takinto account each
propensity; :
(9P(Z,t|2(),t()) o
ot B
Z [a;(z —v;)P(z —vj,t|z0,t0) — a;(z)P(z,t|z0,%0)] -

J

(21]
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In compact notation, we will write the CME hereafter as

OP(z,t)
—at = .AP(Z, t), [22]
where operatod contains the propensities of each reaction :
A=A [23]
J

Note that the choice of the probability instead of chemicalaentrations as es-
sential variable of the problem eliminates the need of daténg the rate constants
of each reaction, and translates the problem to finding thee\a the propensities.

3.2. A method based on Proper Generalized Decompositions

The purposed method is constructed by assuming that thetedsariable of the
problem, the probability of having a particular chemicalst is given by a finite sum
of separable functions (separated representation), i.e.,

P(z,t)=> o Fl(21) ® F(22) ® ... @ F{ (2n5) ® Fi(t), [24]

j=1

where, as mentioned before, the variablgsepresent the number of molecules of
specieg present at a given time instant. This particular choice efithm of the basis
functions allows for an important reduction in the numbedefrees of freedom of
the problempny x N x nr instead of(ny)”, whereN is the number of dimensions
of the state space andy the number of degrees of freedom of each one-dimensional
grid established for each spatial dimension. For this todeful, one has to assume
that the probability is negligible outside some intervald dherefore substitute the
infinite domain by a subdomain, ..., m — 1]V, m being the chosen limit number
of molecules for any species in the simulation. A similaruasgtion is behind other
methods in the literature, such as the Finite State Projectigorithm, for instance
(Munskyet al,, 2006).

The CME is then written in a similar form, as expressed in E8),(by expanding
the operatord in the form

na
A=>"AMeA® -0Ay ol [25]

j=1
where A; represent the matrix form of each operatdy involved in the CME and

I represents the identity matrix, acting on the terms depgndn time only. Their
particular form will be seen readily.
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| PL lacl | | cl Ptrc-2 |

Figure 1. Schematic mechanism of the toggle switch. The constitifivpromoter
drives the expression of tHacI gene, which produces thec repressor tetramer.
The lac repressor tetramer binds thic operator sites adjacent to th€trc — 2
promoter, thereby blocking transcription ef. The constitutivePtrc — 2 promoter
drives the expression of thd gene, which produces therepressor dimer. The-
repressor dimer cooperatively binds to the operator sitave to theP; promoter,
which prevents transcription éficl.

3.3. Simulation of atoggle switch

The behaviour of the\-phage virus is one the most studied and well-known
examples in gene regulatory networks. When a bacteriophagfects a cell, either
stays dormant or it reproduces until the dead of the cell. fékalting behaviour de-
pends crucially on two competing proteins that inhibit nalyieach other, see a sche-
matic representation in Fig. 1. The so-called toggle swgatomposed of a two-gene
co-repressive network.

The operator form of the CME for this example is composed by terms
(Heglandet al, 2007) : A = A; + As, given by :

A1P(21,22> = ﬁfiibp(zl — 1,22) + 5(2’1 + 1) . P(Zl + 1,22)7
<5_’Ojiz2 +5 . Zl) P(Zl,ZQ). [26]

and A, equivalent withz; and z, interchanged. We computed the solution fo&=
0.05,a = 1.0,y =1.0andg = 0.4.

The simulation started from a non-physiological state ifclviboth proteins sho-
wed a very high probability around, = 2z, = 15. Despite this initial state, after
t = 100s (Fig. 2) one has a case where both average values of bothnwated
small levels of the one protein combined with higher levethad other protein are
quite likely, and this remains the case for the stationasyridbution as well (Hegland
et al, 2007), Fig. 3.
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Marginal PDF for time = 100
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Figure 2. Marginal probability distribution function at = 100s. Axes denote the
number of protein 1 and 2.

P(zl,zz) for time = 300s

-0.02, § 10

0
z 20
1 60 0 10

Figure 3. Solution at steady state & 300s) by separation of variables. Axes denote
the number of protein 1 (abscissa) and protein 2 (ordinate).

4. Conclusions

We have reviewed here the essential features of the Proper&ized Decom-
position technique. This technique is particularly usédulthe numerical solution of
models defined in highly-dimensional spaces. As a partilyutdallenging example
we have presented the simulation of gene regulatory nesyamkparticular that be-
haviour of the virus bacteriophade This virus, although very simple, since its be-
haviour is governed by only two competing proteins, is vegll\known, and clearly
shows the potential of the technique in the field of Compateit Biology.
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