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dLMSP UMR 8106 CNRS-ENSAM-ESEM. École Nationale Supérieure d’Arts et

Métiers. 75013 Paris, France

Abstract

In this paper the extrusion process of a cross-shaped profile was investigated. In
particular, the study was focused on the distortion of extruding profiles when the
workpiece and die axis are not aligned. The process was simulated using the Fi-
nite Element Method (FEM) and the Natural Element Method (NEM), both im-
plemented in an updated-Lagrangian formulation, in order to avoid the burden
associated with the description of free surfaces in ALE or Eulerian formulations.
Furthermore, an experimental equipment was developed in order to obtain reliable
data in terms of deformed entity, required process load and calculated pressure. At
the end, a comparison between the numerical predictions and the experimentally
measured data was carried out. The main results are presented in the paper.
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E-50018 Zaragoza, Spain.

Email address: ecueto@unizar.es (E. Cueto).

Preprint submitted to Elsevier 28 May 2008



1 Introduction

Extrusion is one of the most utilised bulk metal forming processes. It is par-
ticularly suitable when high reductions in area are required or when hollow
components have to be manufactured. Extrusion analysis has been carried out,
in the past, utilising some analytical techniques based on the slab method al-
though such approach results applicable only if simple geometries are taken
into account. The introduction of Finite Elements and, in particular, the de-
velopment of efficient mesh management procedures, allowed the simulation of
very complex processes characterised by large surfaces generation, high strains
and strain rates.

Up to now, the most relevant limitation is associated with the numerical dis-
sipation introduced with remeshing procedures. When the mesh becomes too
distorted in a particular domain, a new mesh must be generated and the vari-
ables associated with material history must be mapped from the old mesh to
the new. This introduces additional errors that meshless formulation can avoid.
On the other hand, the simulation of hollow components extrusion introduces
another critical aspect since material joining (after the previous separation in
correspondence of the porthole) has to be properly modelled. According to
the above considerations, the development of a new modelling technique able
to introduce a sort of discontinuity with respect to the currently applied ones
can be strategic.

Very few examples exist of the application of meshless methods to the sim-
ulation of forming processes, and none (up to our knowledge) to extrusion.
Nevertheless, we can cite the pioneering work by Chen et al. (1998) as one
of the earliest examples, together with (Bonet and Kulasegaram, 2000). They
use, however, early implementation of meshless methods that still have some
drawbacks. One of the most important is the lack of proper interpolation on
the boundary. This produces some problems in the correct imposition of es-
sential boundary conditions and, of course, in the appropriate simulation of
contact and friction.

In this paper a well established meshless technique known as Natural Ele-
ment Method (NEM, (Sukumar et al., 1998)) is adapted to the simulation of
extrusion processes. The NE technique presents some advantages over Finite
Element simulations: no remeshing is necessary since a satisfactory accuracy of
the approximation is achieved even with highly distorted triangles or tetrahe-
dra. The price to pay is, obviously, a higher computational cost. The method
is here employed in conjunction with the notion of α-shapes of the cloud of
nodes in order to extract the geometry of the extruded part as it evolves.
This state-of-the-art geometrical concept allows to avoid complex geometrical
checks of self-contact on the boundary of the domain, as shown by Alfaro et al.
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(2006a) or Alfaro et al. (2006b).

In the study here addressed a simple 3-D extrusion process was taken into
account, characterised by an asymmetric die which determines a distortion of
the extruded profile. The study of profile distortion is important for practical
purposes of real-life extrusions, but also to test the geometrical algorithms
employed to track the free surfaces in the simulation. As far as the proposed
approach is concerned, home-made FE and NE codes were utilised for the
process modelling. In order to analyse the origins of possible discrepancies
between both techniques, the heat generation due to plastic deformation has
been neglected, although it can be considered without any limitations to the
technique, as in some of our previous works, see for instance (Alfaro et al.,
2006a) or (Alfaro et al., 2006b). Finally, a proper experimental equipment was
developed. The numerical results were compared to the experimental evidences
taking into account some interesting process variables, namely the required
process load, the pressure on the die and the geometry of the extruded profile.

2 The case under study

2.1 Constitutive modelling

The process geometrical data are reported in Fig. 1. The chosen material for
all the tests is UNS L51120 chemical Lead, due to its property to yield at
room temperature with moderate loads. Its behaviour was modelled through
a power-law type constitutive equation, reported in Eq. (1).

σ = 60ε̇0.05 in MPa (1)

More in detail, three sets of upsetting tests were carried out on cylindrical
specimens, reducing as much as possible the friction between the basis and the
press-plates. The tests were carried out utilising an Instron 8501 electronically
controlled hydraulic testing machine and the average strain rate was fixed as
0.05s−1 (hence, quasi-static), 50s−1 and 100s−1 in order to range into a wide
area. Results are depicted in Fig. 2. The flow rule was derived by using an
inverse approach based on the predicted data of a simple numerical simulation.
To this end, a general visco-plastic Norton-Hoff law was adjusted with the
experimental data.

The general Norton-Hoff visco-plastic model can be stated as

σdev =
2

3d
µ0(

√
3)n+1eβTd

n
εhd (2)
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where the superscript dev refers to the deviatoric part of the stress tensor,
d represents the equivalent strain rate, and n, h and β are parameters of
the model. We have neglected the dependence of the model with temperature
and strain, assuming dependence on strain rate only. After particularising this
model for the uniaxial case, we arrive to µ0 = 33.70 and n = 0.05.

We thus obtain a rigid visco-plastic model (similar to the flow formulation by
Zienkiewicz and Godbolet (1974)) in the form

σdev = 2µd, (3)

where µ = 2
3
µ0(

√
3)n+1d

n−1
.

X

Y

Fig. 1. Geometry of the die for the experiments (left) and the numerical simulation
(right).
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Fig. 2. Evolution of punch load during the characterisation essays.

The requested process load and the shape of the obtained extruded profiles
were measured. In particular, a configuration with an asymmetric die with 10
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mm of misalignment (Figs. 1 and 3) was investigated in order to induce the
distortion of the extruded profile. The geometry of the profile was obtained
after Zhou et al. (2003).

Fig. 3. Sketch of the possible die assemblies with zero or 10 mm of misalignment.

2.2 Constitutive modelling of friction

In the simulations hare presented, a viscoplastic model for the friction be-
tween the lead and the walls of the die was considered. Following the notation
established by Chenot et al. (2002), the viscoplastic friction law is described
by a non-linear constitutive equation, relating the shear stress vector τ and
the relative velocity between the lead (in this case) and the walls of the die,
vs:

τ = −αf (σn)K|vs|q−1vs (4)

where σn represents the normal stress at the interface. αf , the viscoplastic
friction coefficient, can be established as a function of the normal stress σn

(Chenot et al., 2002) and the sensitivity parameter q is very often taken equal
to m, and thus equal to 0.05.

3 Governing equations

We consider the balance of momentum equations, without inertia and mass
terms

∇ · σ = 0, (5)

and the assumed incompressibility of a von Mises-like flow:

∇ · v = 0, (6)
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where v represents the velocity field. The stress-strain rate relationship is
given by Eq. (2).

Together with these equations, appropriate boundary conditions are consid-
ered:

σ · n = t in Γt (7)

v = v in Γv (8)

where Γt and Γv represent, respectively, the part of the boundary Γ = ∂Ω
where tractions and velocities are prescribed.

If we write the incremental variational equation at time t+ ∆t we arrive to:

∫

Ω(t+∆t)

(

− (pt + ∆p)I + 2µ(dt + ∆d)(dt + ∆d)
)

: d∗dΩ = 0 (9)

Domain updating is done in an explicit procedure, given the last converged
velocity field, but due to the non-linear character of the constitutive equations,
an iterative approach has been applied to the conservation equations, using
the Newton-Raphson scheme, thus leading to

∫

Ω(t+∆t)

(

− ∆∆pI + 2µ
(

∂µ(dt+∆t
k )

∂d
: ∆∆d

)

dt+∆t
k +

+2µ(dt+∆t
k )∆∆d

)

: d∗dΩ =

= −
∫

Ω(t+∆t)
(−pt+∆t

k I + 2µ(dt+∆t
k )dt+∆t

k ) : d∗dΩ (10)

where the subscript k indicates the iteration within a time increment. The
incremental form of the incompressibility condition results

∫

Ω(t+∆t)
∇ · (∆∆v) p∗dΩ = −

∫

Ω(t+∆t)
∇ · (vt+∆t

k )p∗dΩ (11)

If we approximate the velocities and pressures, as well as their variations, by
employing a finite-dimensional set of basis functions, we arrive to a discrete
form of the previous equations (Bubnov-Galerkin method)

∆∆vh(x) =
n

∑

I=1

φI(x)∆∆vI (12)

∆∆ph(x) =
n

∑

I=1

ψI(x)∆∆pI . (13)
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where n represents the number of nodes considered in the approximation. The
functions ψI(x) and φI(x) in this work represent some form of finite element
(piece-wise polynomials) or natural neighbour interpolation, which will be
studied in the following section. This leads to the linear system:







Kt+∆t
k G

GT 0













∆∆v

∆∆p





 =







f t+∆t
k

0





 (14)

being the updating given by

vt+∆t
k+1 = vt+∆t

k + ∆∆v (15)

pt+∆t
k+1 = pt+∆t

k + ∆∆p (16)

Obviously, Eqs. (10) and (11) will be solved iteratively until convergence. The
convergence is assumed once the relative modulus of the residual gets under
10−6 and the relative increment of the velocity norm is below 0.02.

4 Numerical modelling of the extrusion process

4.1 Finite Element analysis

From the FE point of view, a linear velocity-constant pressure mixed formu-
lation, based on four node tetrahedra, was employed. This simple formulation
possesses obvious limitations (noteworthy some tendency to lock) but presents
the same structure as the implemented NE formulation, and the same degrees
of freedom per node. Thus it is in the opinion of the authors the most ap-
propriate in order to make a comparison with the NEM results. Despite the
lack of compliance with the LBB condition, no locking was observed during
the simulations. It should be highlighted, in addition, that the FE formulation
employed here is by no means standard in the sense that the FE nodes remain
the same throughout the simulation. In this way, no projection of variables
is made. This is not frequent in commercial FE codes. At each time step a
Delaunay triangulation is performed in the FE nodes, even if it is well-know
that the Delaunay triangulation is mainly used in 2D applications.
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Fig. 4. Delaunay triangulation and Voronoi diagram of a cloud of points.

4.2 Natural neighbour approximations

We review here with some more details the basics of the natural element
method, since it is a technique much less known than the finite element
method. The vast majority of meshless methods are based on the employ
of scattered data approximation techniques to construct the approximating
spaces of the Galerkin method. These techniques must have, of course, low
sensitivity to mesh distortion, as opposed to FE methods. Among these tech-
niques, the Natural Element Method employs any instance of Natural Neigh-
bour interpolation (Sibson, 1981; Hiyoshi and Sugihara, 1999) to construct
trial and test functions. Prior to the introduction of these interpolation tech-
niques, it is necessary to define some basic concepts.

The model will be constructed upon a cloud of points with no connectivity on
it. We will call this cloud of points N = {n1, n2, . . . , nM} ⊂ R

d, and there is
an unique decomposition of the space into regions such that each point within
these regions is closer to the node to which the region is associated than to
any other in the cloud. This kind of space decomposition is called a Voronoi
diagram of the cloud of points and each Voronoi cell is formally defined as
(see figure 4):

TI = {x ∈ R
d : d(x,xI) < d(x,xJ) ∀ J 6= I}, (17)

where d(·, ·) is the Euclidean distance function.

The dual structure of the Voronoi diagram is the Delaunay triangulation, ob-
tained by connecting nodes that share a common (d − 1)-dimensional facet.
While the Voronoi structure is unique, the Delaunay triangulation is not, there
being some so-called degenerate cases in which there are two or more possi-
ble Delaunay triangulations (consider, for example, the case of triangulating
a square in 2D, as depicted in Fig. 4 (right)). Another way to define the De-
launay triangulation of a set of nodes is by invoking the empty circumcircle
property, which means that no node of the cloud lies within the circle covering
a Delaunay triangle. Two nodes sharing a facet of their Voronoi cell are called
natural neighbours and hence the name of the technique.

In order to define the natural neighbour co-ordinates it is necessary to in-
troduce some additional concepts. The second-order Voronoi diagram of the
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cloud is defined as

TIJ = {x ∈ R
d : d(x,xI) < d(x,xJ) < d(x,xK) ∀ J 6= I 6= K}. (18)

The simplest of the natural neighbour-based interpolants is the so-called Thiessen’s
interpolant (Thiessen, 1911). Its interpolating functions are defined as

ψI(x) =







1 if x ∈ TI

0 elsewhere.
(19)

The Thiessen interpolant is a piece-wise constant function, defined over each
Voronoi cell. It defines a method of interpolation often referred to as nearest
neighbour interpolation, since a point is given a value defined by its nearest
neighbour. Although it is obviously not valid for the solution of second-order
partial differential equations, it can be used to interpolate the pressure in
formulations arising from Hellinger-Reissner-like mixed variational principles
such as the one here employed.

Sibson (1980) defined the natural neighbour coordinates of a point x with
respect to one of its neighbours I as the ratio of the cell TI that is transferred
to Tx when adding x to the initial cloud of points to the total volume of Tx.
In other words, if κ(x) and κI(x) are the Lebesgue measures of Tx and TxI

respectively, the natural neighbour coordinates of x with respect to the node
I is defined as

φI(x) =
κI(x)

κ(x)
. (20)
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Fig. 5. Definition of the Natural Neighbour coordinates of a point x.

In Fig. 5 the shape function associated to node 1 may be expressed as

φ1(x) =
Aabfe

Aabcd

. (21)

9



X

2

3

4

5

6

Y

2

3

4

5

6

Z

0

0.5

1

X Y

Z

Fig. 6. Typical Sibson function φ(x).

It is straightforward to prove that NE shape functions (see Fig. 6) form a
partition of unity (Babuška and Melenk, 1997), as well as some other properties
like positivity (i.e., 0 ≤ φI(x) ≤ 1 ∀I, ∀x) and strict interpolation:

φI(xJ) = δIJ . (22)

Recently, Hiyoshi and Sugihara (1999) have generalised the form of natural
neighbour interpolants. One different type of interpolation has attracted the
interest of researchers, since it is slightly faster to compute, although gives
less smooth interpolations. It has received the name of Laplace interpolant.

Consider the introduction of the point x in the cloud of nodes. Due to this
introduction, the Voronoi diagram will be altered, affecting the Voronoi cells
of the natural neighbours of x. The Laplace interpolant is defined by using
geometrical entities of one dimension less than the original space under con-
sideration. If we define the cell intersection tIJ = {x ∈ TI

⋂

TJ , J 6= I} (note
that tIJ may be an empty set) we can define the value

αJ(x) =
|tIJ |

d(x,xJ)
. (23)

Thus, the point x shape function value with respect to node 4 in Fig. 7 is
defined as

φns
4 (x) =

α4(x)
∑n

J=1 αJ(x)
=

s4(x)/h4(x)
∑n

J=1

[

sJ(x)/hJ(x)
] , (24)

where sJ represent the length of the Voronoi segment associated to node J
and n represents the number of natural neighbours of the point under consid-
eration, x.
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Fig. 7. Definition of non-Sibsonian coordinates.

Y

Z

X

Y

Z

X

Fig. 8. Comparison of Sibson (a) and Laplace (b) shape functions.

Derivatives of the Laplace shape function are not defined along the edges
of the Delaunay triangles that lie inside its support (see the work by Suku-
mar et al. (2001)). For the purposes of the work here presented, a mixed
Thiessen-Laplace approximation for pressure and velocity, respectively, has
been considered.

Laplace interpolants have some remarkable properties that help to construct
the trial and test functional spaces of the Galerkin method (see Hiyoshi and
Sugihara (1999) for proofs of these properties). Besides properties like conti-
nuity and smoothness (everywhere except at the nodes for Sibson interpolants
and at some other lines of zero measure for the Laplace interpolant), Sibson
and Laplace interpolants posses linear completeness (i.e., exact reproduction
of a linear field). A comparison of Sibson and Laplace shape functions for the
same regular lattice of points is done in Fig. 8.

Sibson and Laplace interpolants can also reproduce linear functions exactly
along convex boundaries. This is in sharp contrast to the vast majority of
meshless methods. In addition, in (Cueto et al., 2000) (Yvonnet et al., 2004)
distinct methods of imposing linear displacement fields along non-convex bound-
aries were developed.
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If higher-order Natural Element approximations are needed, the approach pre-
sented in González et al. (2007) allows for arbitrary orders of consistency and
smoothness.

4.3 Functional approximation and discretisation of the problem

As mentioned before, in the approximation of Eqs. (12) and (13), linear ap-
proximation was chosen for velocities and constant pressure per elements,
when FE technology was employed.

In the case of Natural Element approximation, velocities were approximated by
making use of Laplace interpolation, whereas pressure was assumed constant
per Voronoi cell by employing Thiessen interpolation. The choice of Laplace
instead of Sibson interpolation is dictated by the compromise between accu-
racy and computational cost, as studied in Alfaro et al. (2007).

4.4 Tracking of the domain

Finally, in order to track the evolution of the free-surface of the domain,
shape constructors (in particular, α-shapes, see (Edelsbrunner and Muecke,
1994)) were employed. This allows us to proceed without the need of storing
information about the boundary. At each time step, triangles belonging to the
boundary are found by the method.

α-shapes define a one-parameter family of shapes Sα (being α the parameter),
ranging from the “coarsest” to the “finest” level of detail. α can be seen, pre-
cisely, as a measure of this level of detail. This means that all details of size
less than α will be ignored in the geometry of the domain. This is a common
practice in many conversions from CAD models (very often geometrically “ex-
act”) to FEM models, in which very small features of the geometry are ignored
from a mechanical point of view.

In order to clarify the before presented concepts, consider some examples of
α-shapes computed from a cloud of points corresponding to the simulation of
two-dimensional extrusion process. We restrict ourselves to geometrical con-
cepts only.

Consider the extrusion example shown in Fig. 9, where the contour plot of
equivalent plastic strain rate is depicted. The key idea of the method here
proposed is to extract the shape of the domain at each time step by invoking
the concept of α-shape of the cloud. The α parameter will be obtained by
geometrical considerations. In this case the radius at the inlet of the die, for
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Fig. 9. Two snapshots of a two-dimensional simulation of an extrusion process.
Equivalent plastic strain rate is depicted.

instance, seems to be the smallest level of detail up to which the domain (i.e.,
the billet) must be represented. In order to appropriately represent this value,
the nodal distance h must be accordingly chosen.

In Fig. 10 some members of the family of α-shapes of the cloud of points in
its final configuration (corresponding to Fig. 9(b)) are depicted. In Fig. 10(a)
the member for α = 0, i.e., the cloud of points itself, is shown. Note how, as α
is increased, the number and size of the simplexes (in this case, triangles) that
belong to the shape is increasing. For α = 1.0 we obtain an appropriate shape
for the cloud. Note, however, that this is not an exact value to be determined
at each time step. Since the number of α-shapes is finite, there generally exists
an interval of valid α values for a single shape. Finally, by increasing the α
value, we arrive to the convex hull of the cloud of points (Fig. 10(f)).

5 Comparison between numerical and experimental predictions

5.1 Requested load during the process

The predicted punch load, as well as the experimental one, is reported in
Fig. 11. Some underestimation of the punch load is obtained if friction is not
taken into account, as expected. This is obvious, but still a good qualitative
agreement is obtained. Improved results are obtained, however, if we consider
in the simulation the viscoplastic friction model, detailed in Section 2.2. An
overestimation of the punch load is obtained, however, at the initial time
steps of the simulation. This has been repeatedly observed, since numerical
simulations do not take into account imperfections in the material, voids, etc.,
that make the actual experiments to occur with lower loads at the initial stages
of extrusion.

After 3 mm of stroke displacement, FEM simulation (without considering
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. Some members of the family of α-shapes of the cloud of points used in the
extrusion example. (a) S0 (the cloud of points) (b) S0.3 (c) S0.5 (d) S1.0 (e) S1.5 and
(f) S∞ (the convex hull of the set)

friction) was not able to converge any more, due to the distortion of the
mesh together with the incompressibility and the nonlinear material model.
Note that we are not allowing remeshing, neither in the FEM nor in the NEM
simulations. This means that the usual practice of generating a new mesh, with
improved quality tetrahedra, and projecting old variables to the new mesh,
has not been accomplished. This is quite a fictitious procedure, but we tried
to avoid the introduction of the well-known numerical diffusion associated to
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remeshing.
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Fig. 11. Evolution of the punch load. Results with the FEM and NEM without
friction, NEM with friction, and experiments. The best polynomial fit to the exper-
imental results is also shown.

5.2 Shape of the extrudate

About 25 mm of extrudate were simulated with NEM. In order to verify the
accuracy of the prediction, the deviation of the profile from the straight line is
compared to that of the experiments and the FEM simulation. It is possible to
verify the sufficiently good prediction of the distortion of the profile induced
by the die asymmetry (see Fig. 12).

Again, taking into account the friction, the obtained results fit very well to
experimental data. In addition, comparing the results for 3 mm of stroke
displacement (Fig. 13), FEM (without friction) and NEM results are very
similar. Note however that at this displacement value FEM simulation could
not achieve convergence due to mesh distortion. It is then concluded that
the friction has an important effect on the determination of punch load, as
expected, but not so much in the shape of the extrudate.
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XY

Z

(a)

(b)

Fig. 12. Deviation due to die misalignment. (a) zone measured (b) profile of the
extrudate.

5.3 Pressure at the bottom of the die

Another interesting comparison was carried out with reference to the pre-
dicted pressure on the bottom die, along the symmetry plane, from point A
to point B, according to the following Fig. 14. In this case, no experimental
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(a) (b)

Fig. 13. Exit velocity distribution: FEM (a) and NEM (b).

measurements were available, so only numerical predictions were compared.

Fig. 14. Pressure analysis section on the bottom die.

Figure 15 shows the predicted pressure distribution. No friction was considered
in this particular comparison in order to simplify the analysis. In this case
the predicted pressure smoothness is better in the NE case. The FE results
show some spurious oscillations, which are well-know in the FE community.
The NEM, however, despite the simple formulation employed, does not show
spurious oscillations. A more detailed discussion on the performance of mixed
NEM approximations for incompressible materials can be found in (González
et al., 2004). Another important fact is that the FE shows some spurious
pressure peaks due to the obvious distortion of the mesh. This is shown in
Fig. 16.

The influence of the quality of the mesh on the results is highlighted in Fig.
17. In it, the simulation was ran by using NEM until a given time step. It
was then stopped and one time step more was accomplished by means of
both FEM and NEM. In this way, a direct comparison of the results and the
influence of the technique on them can be achieved. Equivalent strain rate
results are depicted. Note the spurious concentration of strain rate near a
zone with distorted elements, which does not appear in the NEM results. In
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(a) (b)

Fig. 16. Spurious pressure distribution obtained in the FE formulation during the
simulation. FE results (a) and NE results (b) .

addition, overall FEM strain rate values are somewhat higher than those of
the NEM simulation.

6 Conclusions

A first comparison between a FEM and a NEM formulation for the numerical
simulation of extrusion processes was proposed in the paper, focusing the
attention on the extrusion of a cross shaped component. At the end of this
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Fig. 17. Spurious equivalent strain rate distribution obtained in the FE formulation
during the simulation. FE results (a) and NE results (b). The highlighted zone
shows the anomalous values.

work some conclusions can be traced:

• Meshless methods, despite their relative lower state of development, show
promising capabilities in the simulation of forming processes with large de-
formations.

• NEM is today computationally more expensive because it needs more time
in calculating the shape functions and, being a very novel approach, a rele-
vant optimisation work remains to be done.

The computational cost of the NEM has been estimated in about four times
that of the FEM in some of our previous works (Alfaro et al., 2007). Never-
theless, this cost is negligible, if compared to the cost of performing iterations
in the Newton-Raphson loop. Very efficient algorithms have been developed
in order to alleviate this computational cost (the natural neighbour search,
for instance, see the work by Alfaro et al. (2007)). At this moment, we believe
that the NEM is a competitive technique in terms of CPU hours, if we deal
with highly non-linear problems.

We believe that the use of meshless methods in the simulation of extrusion
processes can be especially interesting for the extrusion of hollow profiles.
Such processes involve a complex flow through the die, with melting fronts of
material at the exit. Eulerian (fixed mesh) or ALE approaches can handle this
type of flows with difficulties due to the complex geometry of the extrudate.
This constitutes our current effort of research.

At this moment NEM formulation is not implemented in any commercial pro-
gram even if it can supply a decisive answer to the need of simulating some spe-
cific problems, like the mentioned extrusion of hollow components. We believe
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that the NEM constitutes nowadays an appealing choice for the simulation
of some complex phenomena, like those involving free surfaces, as mentioned
before, or the need of an accurate description of evolving fronts.
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