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Abstract

Dynamic Data-Driven Application Systems —DDDAS— appear as a new
paradigm in the field of applied sciences and engineering, and in particu-
lar in simulation-based engineering sciences. By DDDAS we mean a set of
techniques that allow the linkage of simulation tools with measurement de-
vices for real-time control of systems and processes. One essential feature
of DDDAS is the ability to dynamically incorporate additional data into an
executing application, and in reverse, the ability of an application to dy-
namically control the measurement process. DDDAS need accurate and fast
simulation tools using if possible off-line computations to limit as much as
possible the on-line computations. With this aim, efficient solvers can be
constructed by introducing all the sources of variability as extra-coordinates
in order to solve the model off-line only once. This way, its most general
solution is obtained and therefore it can be then considered in on-line pur-
poses. So to speak, we introduce a physics-based meta-modeling technique
without the need for prior computer experiments. However, such models,
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that must be solved off-line, are defined in highly multidimensional spaces
suffering the so-called curse of dimensionality. We proposed recently a tech-
nique, the Proper Generalized Decomposition —PGD—, able to circumvent
the redoubtable curse of dimensionality. The marriage of DDDAS concepts
and tools and PGD off-line computations could open unimaginable possibili-
ties in the field of dynamic data-driven application systems. In this work we
explore some possibilities in the context of on-line parameter estimation.
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1. Introduction

1.1. Dynamic Data-Driven Application Systems —DDDAS
Traditionally, Simulation-based Engineering Sciences —SBES— relied on

the use of static data inputs to perform the simulations. These data could
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be parameters of the model(s) or boundary conditions, outputs at different
time instants, etc., traditionally obtained through experiments. The word
static is intended to mean here that these data could not be modified during
the simulation.

A new paradigm in the field of Applied Sciences and Engineering has
emerged in the last decade. Dynamic Data-Driven Application Systems
(DDDAS) constitute nowadays one of the most challenging applications of
simulation-based Engineering Sciences. By DDDAS we mean a set of tech-
niques that allow the linkage of simulation tools with measurement devices
for real-time control of simulations. As defined by the U.S. National Science
Foundation, “DDDAS entails the ability to dynamically incorporate addi-
tional data into an executing application, and in reverse, the ability of an
application to dynamically steer the measurement process” [6].

The term Dynamic Data-Driven Application System was coined by F.
Darema in a NSF workshop on the topic in 2000. The document that ini-
tially put forth this initiative stated that DDDAS constitute application sim-
ulations that can dynamically accept and respond to online field data and
measurements and/or control such measurements [7]. DDDAS include dif-
ferent constituent blocks [20]:

1. A set of (possibly) heterogeneous simulation models.

2. A system to handle data obtained from both static and dynamic sources.

3. Algorithms to efficiently predict system behavior by solving the models
under the restrictions set by the data.

4. Software infrastructure to integrate the data, model predictions, control
algorithms, etc.

Almost a decade after the establishment of the concept, the importance
of the challenge is now better appreciated. As can be noticed, it deals with
very different and transversal disciplines: from simulation techniques, nu-
merical issues, control, modeling, software engineering, data management
and telecommunications, among others. In a nutshell, the characteristics of
DDDAS could be depicted as in Fig. 1. It identifies three different blocks of
interactions: (i) the one between human systems and the simulation, (ii) the
simulation interaction with the physical system and (iii) the simulation and
the hardware/ data infrastructure. Physical systems operate at very different
time scales. In the picture (adapted from the NSF workshop on DDDAS 2000
final report [6]) we have included some representative values: from 10−20 Hz
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for cosmological systems to 1020 Hz for problems at the atomic scale. Hu-
mans, however, can be considered as systems operating at rates from 3 Hz
to 500 Hz in haptic2 devices for instance to transmit realistic touch sen-
sations. A crucial aspect of DDDAS is that of real-time simulation. This
means that the simulations must run at the same time (or faster) than the
data are collected. While this is not always true (as in weather forecasting,
for instance, where collected data are not usually incorporated to the sim-
ulations), most applications require different forms of real-time simulations.
In haptic surgery simulators, for instance, the simulation result, i.e., forces
acting on the surgical tool, must be translated to the peripheral device at a
rate of 500 Hz, which is the frequency of the free hand oscillation. In other
applications, such as some manufacturing processes, the time scales are much
bigger, and therefore real-time simulations can last for seconds or minutes.

Figure 1: Structure of DDDAS and typical feedback rate among different constituents
(Adapted from [6]).

As can be noticed from the introduction above, DDDAS can revolutionize

2Haptic devices are those able to translate to the user force reactions, such as, for
instance, those used in surgical training.
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the way in which simulation will be done in the next decades. No longer a
single run of a simulation will be considered as a means of validating a design
on the basis of a static data set.

The importance of DDDAS in the forthcoming decades can be noticed
from the NSF Blue Ribbon Panel on Simulation Based Engineering Sciences
report, that in 2006 included DDDAS as one of the five core issues or chal-
lenges in the field for the next decade (together with multiscale simulation,
model validation and verification, handling large data and visualization).

While research on DDDAS should involve applications, mathematical and
statistical algorithms, measurement systems, and computer systems software
methods, our work focuses on the development of mathematical and statis-
tical algorithms for the simulation within the framework of such a system.
In brief, we intend to incorporate a new generation of simulation techniques
into the field, allowing to perform faster simulations, able to cope with uncer-
tainty, multiscale phenomena, inverse problems and many other features that
will be discussed. This new generation of simulation techniques has received
the name of Proper Generalized Decompositions —PGD— and has received
an increasing level of attention by the SBES community. PGD was initially
introduced for addressing multidimensional models encountered in science
and engineering and was then extended to address general computational
mechanics models.

1.2. Routes for circumventing the curse of dimensionality

Different techniques have been proposed for circumventing the curse of
dimensionality3 associated with high-dimensional models in science and engi-
neering. Monte Carlo simulation is probably the most widely used. Its main
drawback is the statistical noise, when magnitudes distinct to the moments
of the distribution functions are computed. Another possibility lies in the
use of sparse grids [8], within the deterministic framework, but they suffer
also when the dimension of the space increases beyond a certain value (of
about 20 dimensions).

To our knowledge there are few precedents of deterministic techniques
able to circumvent efficiently the curse of dimensionality in highly multidi-
mensional spaces. Hartree-Fock-based approaches are widely employed in

3The term curse of dimensionality refers to the exponential increase in number of
degrees of freedom suffered by models defined in high-dimensional spaces being solved by
mesh-based techniques like finite elements or volumes.
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quantum chemistry [9].We proposed recently a technique based on a sepa-
rated representation of the solution [11-12] that proceeds by expressing a
generic multidimensional function u(x1, x2, . . . , xN) as u(x1, x2, . . . , xN) ≈∑Q

i=1 F
1
i (x1) · . . . · FN

i (xN).

Remark 1. In this expression the coordinates xi denote any coordinate,
scalar or vector, involving the physical space, the time or any other conforma-
tion coordinate (e.g. the conductivity in the example previously discussed).

Thus, if M nodes are used to discretize each coordinate, the total number
of unknowns involved in the solution is Q×N×M instead of the MN degrees
of freedom involved in mesh based discretizations. We must recall that these
functions are not “a priori” known, they are computed by introducing the
separated representation approximation into the model’s weak form and then
solving the resulting non-linear problem. The interested reader can refer to
[11] and the references therein for a detailed description of the numerical
and algorithmic aspects. The construction of such approximation is called
Proper Generalized Decomposition because this decomposition is not orthog-
onal but in many cases the number of terms in the finite sum is very close
to the optimal decomposition obtained by applying the Proper Orthogonal
Decomposition —POD- (or the Singular Value Decomposition —SVD-) on
the model solution.

As can be noticed in the expression of the approximation separated rep-
resentation the complexity scales linearly with the dimension of the space in
which the model is defined, instead of the exponential growing characteristic
of mesh based discretization strategies. In general, for many models, the
number of terms Q in the finite sum is quite reduced (few tens). Thus, we
can conclude about the generality of the separated representation, but its
optimality depends on the solution features.

This kind of representation is not new. Similar approximations were con-
sidered many years ago in the context of Quantum Chemistry [9], the main
difference lying in the constructor of the separated approximation. In the
context of Computational Mechanics there is —to our knowledge— a unique
precedent, the so-called radial approximation introduced by Pierre Ladeveze
in the early eighties within the LATIN framework. At that time, Ladeveze
looked for an efficient solver of non linear models, after noticing that in gen-
eral these models involve a non-linear part that is local in the physical space,
and a linear one (the one related to the structure equilibrium) that is obvi-
ously global, but linear. Thus, Pierre Ladeveze proposed a solution technique
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for the decoupling of linear-global and non-linear-local problems. The time-
dependent non-linearity related to complex thermomechanical behaviors is
integrated locally at the integration points in the whole time interval. Then,
with the behavior already computed at each position and time step, the equi-
librium applies resulting in a global but linear problem defined in the whole
time interval. To alleviate the calculation a separated space-time representa-
tion of the unknown fields is performed. Then the behavior is locally updated,
and then the equilibrium. The process continues until reaching convergence,
that allows verifying equilibrium and the constitutive equations.

This was the first ingredient of a wonderful and powerful numerical re-
ceipt, the so-called LATIN method. But another ingredient was needed for
speeding up the solution of the space-time linear global model, and for this
purpose, Ladeveze proposed expressing its solution in a space-time separated
form [14], i.e.

u(x, t) ≈
Q∑
i=1

Xi(x) · Ti(t).

If we look at the performance of such separated representations the outcome
is for many models simply impressive as proved in Ladeveze’s works [12] [14]
[16] [15] as well as in [5]. If one considers a standard transient model defined
in a 3D physical space, and if one considers P time steps, usual incremental
strategies must solve P (in general non-linear) three-dimensional problems
(do not forget that P can be millions!). However, if the radial approximation
(space-time PGD) is considered, we should solve around Q ·m 3D problems
for computing the space functions Xi(x) and Q · m 1D problems for com-
puting the time functions Ti(t) (m being the number of iterations needed for
computing each term of the finite sum because of its non-linear nature). As
Q · m ∼ 100 in many models the computing time savings can reach many
orders of magnitude (millions and more!). The space-time separated decom-
position has been extensively explored by Ladeveze’s group in the context of
multiscale analysis. The interested reader can refer to [14] and the references
therein.

If we come back to the multidimensional models involving the physical
space, the time, and a number of “exotic” extra-coordinates, the verdict is
implacable: the multidimensional-PGD allows solving models never until now
solved, suffering the so-called curse of dimensionality, and that were qualified
many times as irresolvable. The PGD allows solving them, in some minutes,
using a simple laptop!
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The solution of physically multidimensional models encountered in quan-
tum chemistry, the kinetic theory description of complex fluids and the chem-
ical master equation were deeply described in some of our former works [4]
[3] [10]. Parametric models where addressed in [22]. The thermal model con-
sidered in [17] contained 25 thermal parameters that were all considered as
extra-coordinates. The coupling between local ODE and global PDE within
a multiscale framework was analyzed in [21]. Finally, in [19], shape opti-
mization was performed by assuming all the design parameters defining the
domain geometry as extra-coordinates. Interested reader can refer to [11]
and the references therein for a detailed description on the PGD. All these
works opened unimaginable perspectives in the context of process and shape
optimization and inverse identification that constitute a work in progress.

1.3. Structure of the paper

In this paper we focus on two different but intimately related problems,
frequently appearing in the control of devices or industrial processes, but also
in the control of epidemic diseases, for instance. These two problems are the
identification of a parameter in a non-linear dynamical model from on-line
measurements, on one hand, and the estimation of a boundary condition at
a place where measurements are not possible from redundant information
known in other parts of the domain boundary (the so-called Cauchy’s prob-
lem). This scenario is found when controlling the temperature in the heat
exchangers of nuclear plants for example, but it can also appear in many other
industrial scenarios. We will consider the one-dimensional Cauchy problem
where redundant boundary conditions—temperature and flux, namely— can
be measured at one end of the interval, but the required boundary condition
for the well-possessedness of the problem —temperature at the other end—
is not available. Section 2 of the paper reviews these two problems and the
associated PGD formulation. Section 3 shows the results for the parameter
estimation problem, whereas section 4 includes the results for the estimation
of boundary conditions of the Cauchy problem.

2. PGD based parametric solutions

In this paper we are only interested in addressing a new off-line dynamical
system integration procedure that could be then used for on-line control pur-
poses. For this reason at the present stage, we do not consider the inevitable
noises related to model, control and measurements. Thus, in what follows,
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the measurements corresponds to the solution of the dynamical systems for
a given choice of model parameters, allowing circumventing controllability,
observability of the inverse techniques issues.

2.1. Dynamic data-driven nonlinear parametric dynamical systems

In what follows we are focusing on a non-linear model usually encountered
in the dynamic of populations and therefore in epidemiology modelling. In
general the size of populations increases in direct relation to its size, but when
this size becomes too large its growing rate decreases and sometimes inverses
its tendency. The equation governing this kind of behaviour is known as the
logistic equation, that writes:

du

dt
= k · u · (u∞ − u) (1)

where u = u(t), t ∈ (0, tmax] and whose initial condition is u(t = 0) = ug
with 0 < ug < u∞.

The exact solution for a constant parameter k writes:

u(t) =
u∞

1 +
(
u∞
ug
− 1
)
e−ku∞t

. (2)

The parameter k is assumed unknown and taking values in the interval
k ∈ [kmin, kmax]. The identification of the parameter is a key point in many
applications as for example in the simulation and control of epidemic scenar-
ios and also in the on-line adaptation of chemical kinetics governed by similar
dynamical models. In order to identify such parameter different experimental
measures are carried out at different times:

t̃1 → ũ1

t̃2 → ũ2

...

t̃D → ũD

(3)

The main challenge in the simulation and real-time control of the evolution of
the field u is how to identify as fast as possible the best value of the parameter
k assumed constant within each interval (t̃i, t̃i+1], i ∈ 1, . . . , D − 1.

In what follows and without loss of generality we are assuming that in-
tervals (t̃i, t̃i+1] have the same length, that is, t̃i+1− t̃i = ∆, i = 1, . . . , D− 1.
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The unknown parameter is assumed taking values in the interval [kmin, kmax]
with kmin > 0 and kmax > kmin. The most general solution allowing a com-
plete knowledge of u(t) under all possible circumstances lies in solving once
and off-line, the problem:

Find u(t, k, u0) such that{
du
dt

= k · u · (u∞ − u), t ∈ (0,∆]

u(t = 0) = u0,
(4)

by assuming the initial condition u0 and the model parameter k as extra-
coordinates. Thus one should compute the three-dimensional solution u(t, k, u0),
with t ∈ (0,∆], k ∈ [kmin, kmax] and u0 ∈ [ug, u∞].

Remark 2. The off-line computation of u(t, k), with t ∈ (0, tmax], k ∈
[kmin, kmax], suffices only when the model parameter k is constant in (0, tmax].
We will prove this fact later on. Thus a 3D modeling involving both the model
parameter and the initial condition as extra-coordinates is compulsory.

The simplest way of solving Eq. (4) consists of defining discrete val-
ues of all the model coordinates: (t1, t2, . . . , tP ), (k1, k2, . . . , kN) and, finally,
(u0

1, u
0
2, . . . , u

0
M). Without loss of generality we assume such discrete values

uniformly distributed, i.e. ti+1−ti = ht, i = 1, . . . , P−1; ki+1−ki = hk, with
i = 1, . . . , N − 1 and, finally, u0

t+1 − u0
i = hu, with i = 1, . . . ,M − 1. Now,

Eq. (4) can be integrated by using a finite difference schema (the limitations
of such discretization schema will be addressed later). We are considering
the simplest strategy, a forward Euler schema, but more accurate schemes
are available. Because Eq. (4) does not involve derivatives with respect to
the extra-coordinates (the model parameter and the initial condition), the
finite differences integration of Eq. (4) reduces to the solution of the N ×M
uncoupled time dependent ordinary differential equations:{

dur,s

dt
= kr · ur,s(t) · (u∞ − ur,s), t ∈ (0,∆]

u(t = 0) = u0
s,

, (5)

∀r, s ∈ [1, . . . , N ] × [1, . . . ,M ], and where ur,s(t) ≡ u(t; kr, u
0
s). The finite

differences integration of Eq. (5) by using a first order explicit schema writes:
∀r, s,∈ [1, . . . , N ]× [1, . . . ,M ],{

ur,s1 = u0
s

ur,si = ur,si−1 + ht · kr · ur,si−1 · (u∞ − u
r,s
i−1),∀i ∈ [2, . . . , P ],

(6)
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that allows to find ur,si = u(ti, kr, u
0
s) = u((i− 1) · ht, kmin + (r − 1) · hk, ug +

(s− 1) · hu).
We illustrate now the parameter identification from the only knowledge

of ur,si . We consider the restriction of u(t, k, u0) to u(t = ∆ = t̃1, k, u
0 = ug)

and we look for the intersection of such a solution with the experimental
value ũ1 that determines the best value of the parameter k in the interval
(0, t̃1], k̃1, as illustrated in Fig. 2.

Figure 2: First step of the parameter k identification procedure.

Now, we consider the restriction of u(t, k, u0) to u(t = ∆, k, u0 = ũ1) and
we look for the intersection of this solution with the experimental value ũ2,
point that determines the best value of the parameter k in the interval [t̃1, t̃2],
k̃2, as shown in Fig. 3.

Figure 3: Second step of the parameter identification procedure.

We can notice that the integration in the whole time domain is performed
from the only knowledge of ur,si , despite the eventual variability of the model
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parameter, that is computed once and off-line. Because we introduced as
extra-coordinate the initial condition u0 the integration can be adapted dy-
namically on-line to the experimental data coming from sensors, by adapting
the value of the model parameter for reaching the recorded value, value that
is considered as initial condition for the integration in the next time interval
∆.

As noticed previously, if instead of computing u(t, k, u0), with t ∈ (0,∆],
one computes u(t, k) with t ∈ (0, tmax], from the given initial condition ug, the
value of k could be identified as soon as an experimental data is available, or
taking the best compromise for fitting at the best all the experimental data
available. However taking into account the change of the model parameter is
not possible, and it implies the on-line integration of the model u(t, k) in each
interval t ∈ (t̃i, t̃i+1) taking the available data ũi as initial condition. The
drawback of such a procedure is the necessity to perform on-line integrations,
fact that limits seriously its applicability in real time control and therefore
in DDDAS.

Remark 3. If the time step between two successive measurements ∆ is con-
stant we can easily ensure that the last integration time step P coincides
with ∆ . However, the data ũi rarely coincides with a value of u0

s. Different
possibilities exist:

1. consider the nearest u0
s to ũi;

2. consider the two neighbor values u0
s+1 and u0

s allowing to define an

interval to which k̃i+1 belongs

3. consider the interpolated solution from u(t = ∆, k, u0
s+1) and u(t =

∆, k, u0
s).

In what follows we are considering the last alternative.

2.1.1. Proper Generalized Decomposition of Dynamical Systems

From now on we describe the application of Proper Generalized Decompo-
sitions to the simulation of dynamical systems governed by dynamical data.
The method introduced above is obviously applicable by using any discretiza-
tion techniques, such as finite differences, for instance. Indeed, it should work
very well for the example shown in the next section. But if the number of
dimensions of the model (parameters, boundary conditions, etc., considered
as new dimensions of the problem, as explained before) increases, the only
way to deal with them seems to be the PGD method here presented. We
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keep, however, the number of dimensions of the problem restricted to three
in order to make the development more clear, without loss of generality:{

du
dt

= k · u · (u∞ − u)

u(t = 0) = u0
(7)

with t ∈ I = (0,∆], k ∈ ℵ = [kmin, kmax] and u0 ∈ = = [ug, u∞].
As mentioned before, we intend to introduce k as well as the initial con-

dition u0 as additional coordinates in the problem. To introduce the initial
condition in the ODE the following change of variables is suggested:

û = u− u0, (8)

which, once introduced in Eq. (7) gives rise to{
dû
dt

= k(û+ u0)(u∞ − û− u0), t ∈ (0,∆]

û(t = 0) = 0.
(9)

As a fundamental characteristic of PGD, it seeks the solution to Eq. (9) in
the form:

û ≈
Q∑
i=1

Ti(t) ·Ki(k) · Ui(u0). (10)

Since the just made proper generalized decomposition constitutes an a
priori method, i.e., it does not assume any particular form of the functions
Ti, Ki or Ui, these must be generated during the execution of the proposed
method. This gives rise to a non-linear problem that is described next.
Within the iterative process inherent to non-linear problems, we assume that
the approximation at iteration n < Q is already achieved

ûn =
n∑
i=1

Ti(t) ·Ki(k) · Ui(u0), (11)

such that in the current iteration the functional product Tn+1(t) ·Kn+1(k) ·
Un+1(u0) is sought. With an eye towards the simplification of the notation,
we will denote this product as Tn+1(t)·Kn+1(k)·Un+1(u0) = R(t)·S(k)·W (u0).
Prior to solving this non-linear problem, a linearisation is mandatory. The
simplest choice consists in a fixed-point iterative scheme along alternated di-
rections. This scheme assumes S(k) and W (u0) known and proceeds through
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the determination of R(t). With this function R(t) just computed and with
the previous W (u0) it proceeds by calculating S(k) and, finally, with the
just obtained R(t) and S(k), it determines W (u0). This procedure continues
until convergence. Functions thus computed constitute the next term in the
approximation, Tn+1(t) = R(t), Kn+1(k) = S(k) and Un+1 = W (u0).

All the mentioned steps are detailed in what follows:

Computation of R(t) from S(k) and W (u0). Consider now the linearized
weak form of the problem (9) that consists of considering all the non-linear
terms at the previous iteration, i.e. ûn:∫

I×ℵ×=
û∗
(
∂û

∂t
− k(ûn + u0)(u∞ − u0 − û)

)
dt dk du0 = 0, (12)

in which the trial and test functions, respectively, are

û(t, k, u0) =
n∑
i=1

Ti(t) ·Ki(k) · Ui(u0) +R(t) · S(k) ·W (u0) (13)

and
û∗(t, k, u0) = R∗(t) · S(k) ·W (u0) (14)

Introducing (13) and (14) in the weak form (12) we obtain

∫
I×ℵ×=

R∗·S·W

(
dR

dt
· S ·W + k ·

(
n∑
i=1

Ti ·Ki · Ui + u0

)
R · S ·W

)
dt dk du0 =

= −
∫
I×ℵ×=

R∗ · S ·W

(
n∑
i=1

dTi
dt
·Ki · Ui+

+k

(
n∑
i=1

Ti ·Ki · Ui + u0

)(
n∑
i=1

Ti ·Ki · Ui − u∞ + u0

))
dt dk du0, (15)

Since all the functions depending on the parametric coordinate k and the
initial condition u0 are known, it is possible to perform the numerical inte-
gration of these functions along their respective domains ℵ × =.

Eq. (15), after integration in ℵ×=, represents the weak form of an ODE
that defines the temporal evolution of the field R(t). It could be solved by
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any available discretization technique (SU, discontinuous Galerkin, . . . ). The
strong form of Eq. (15), after integrating it in ℵ × =, will be of the type

w1 · s1 ·
dR(t)

dt
+ w2 · s2 ·R(t) +

(
n∑
i=1

αiβiTi(t)

)
R(t) = f(t), (16)

with 

w1 =
∫
=W

2du0

w2 =
∫
= u

0W 2du0

s1 =
∫
ℵ S

2dk

s2 =
∫
ℵ k · S

2dk

αi =
∫
=W

2Uidu
0

βi =
∫
ℵ S

2Kikdk

(17)

and f(t) the function that results from integrating of the right hand member
in the = and ℵ intervals.

Computation of S(k) from R(t) and W (u0). In this case, the weighting func-
tion will be

û∗(t, k, u0) = S∗(k) ·R(t) ·W (u0). (18)

This gives rise to a weak form

∫
I×ℵ×=

S∗·R·W ·

(
dR

dt
· S ·W + k ·

(
n∑
i=1

Ti ·Ki · Ui + u0

)
R · S ·W

)
dt dk du0 =

= −
∫
I×ℵ×=

S∗ ·R ·W ·

(
n∑
i=1

dTi
dt
·Ki · Ui+

+k

(
n∑
i=1

Ti ·Ki · Ui + u0

)(
n∑
i=1

Ti ·Ki · Ui − u∞ + u0

))
dt dk du0, (19)

The neat difference between the problem defined by Eq (19) and that in Eq.
(15) is that now no differential operator is involved. Thus the strong form
resulting from the problem reads:

r2 · w1 · S(k) + r1 · w2 · k · S(k) +

(
n∑
i=1

γiαiKi(k)

)
kS(k) = g(k), (20)
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with 
r1 =

∫
I
R2dt

r2 =
∫
I
R · dR

dt

γi =
∫
I
TiR

2dt

(21)

and g(k) the function that results after integration of the right hand member
in the I and = intervals. This represents an algebraic equation. Note that the
introduction of parameters as additional spatial coordinates in the problem
does not have a relevant effect in the computational cost of the resulting
PGD approximation but it could induce the necessity of considering much
more terms in the finite sums decomposition..

Computation of W (u0) from R(t) and S(k). In this last case the weighting
function results:

û(t, k, u0) = W ∗(u0) ·R(t) · S(k). (22)

and therefore we arrive at a problem whose weak form reads

∫
I×ℵ×=

W ∗·R·S·

(
dR

dt
· S ·W + k

(
n∑
i=1

Ti ·Ki · Ui + u0

)
·R · S ·W

)
dt dk du0 =

= −
∫
I×ℵ×=

W ∗ ·R · S ·

(
n∑
i=1

dTi
dt
·Ki · Ui+

+k

(
n∑
i=1

Ti ·Ki · Ui + u0

)(
n∑
i=1

Ti ·Ki · Ui − u∞ + u0

))
dt dk du0 (23)

Eq. (23) does not involve any differential operator again. The resulting
strong form reads

(r2 · s1 + r1 · s2 · u0) ·W (u0) +

(
n∑
i=1

γiβiUi(u
0)

)
W (u0) = h(u0), (24)

with h(u0) the function that results after integration of the right hand mem-
ber in the I and ℵ intervals. This results, again, in an algebraic equation.
Convergence of these PGD approximations has been proved recently [18] [2]
[1] for symmetric elliptic operators. See also [12] [13] for more details on the
state of the art for PGD approximations and their underlying theory.
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2.2. Estimation of unknown boundary conditions
As mentioned before, the second problem that frequently arises in in-

dustrial control settings is that of estimating unknown boundary conditions
(operating conditions of some devices at places where measurements can not
be performed). We exemplify it here by solving the transient heat equation
on a 1D domain where redundant boundary conditions, temperature and
thermal flux are known on one side, both fields in the other boundary being
unknown. This problem is usually encountered in the control of thermal ex-
changers when it is not possible to introduce thermocouples inside a pipe (e.g.
exchangers in nuclear plants) and the temperature of the fluid flowing inside
must be inferred from redundant information known in the external pipe
surface where temperature and heat flux can be experimentally measured.

For control purposes one should estimate accurately and in real time
the unknown temperature, the one existing on the internal pipe surface in
contact with the flowing fluid. One should identify temperature fluctuations
occurring suddenly in order to take the pertinent control decisions. Thus,
one needs accurate temperature estimations and these estimations should be
obtained in real time.

This scenario defines an inverse problem that can be solved by applying
a variety of well established techniques. Thus, at each time step an arbitrary
trial temperature could be enforced at the internal boundary, then solving the
heat equation from both boundary temperatures, one really measured and
the other estimated, and then computing the heat flux in the boundary where
it is known. By comparing the computed and experimentally measured heat
fluxes the unknown boundary temperature could be updated by using an
appropriate technique trying to minimize the difference between both fluxes.
As soon as the unknown temperature is updated the thermal problem can
be solved again and the procedure repeated until reaching the convergence,
i.e. until obtaining a gap lower than a small enough value. After reaching
convergence, one can move to the next time step in which the just described
iteration procedure should be repeated. Other more sophisticated strategies
exist, and even if there are no major conceptual difficulties, the real time
constraint is not easy to address.

In what follows and using a similar strategy to the one that was used
in the previous sections, we are describing a procedure able to address the
identification inverse problem accurately and in real time. For the sake of
clarity we consider a linear thermal model defined in a one-dimensional do-
main, however, the procedure that we propose can be easily extended for
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considering more realistic scenarios, non linear behaviours in two or three
dimensional geometries that constitutes a work in progress.

We consider the linear transient heat equation

∂u

∂t
− k∂

2u

∂x2
= 0 in (0, L)× (0, tmax] (25)

with boundary conditions 
u(x, 0) = u0(x)
u(0, t) = ug(t)
∂u
∂x

(0, t) = qg(t)
(26)

Actually, we want to perform inverse identification. Given a set of tem-

perature values
{
uig
}D
i=1

and heat fluxes
{
qig
}D
i=1

, coming from measurement
devices placed on the left domain boundary x = 0, we must estimate the
time evolution of the temperature at the right boundary x = L, denoted by
θ(t), at least at the same times {θi}Di=1. We assume that the measurements
are performed at each time interval ∆.

As previously explained the Proper Generalized Decomposition allows
computing a multidimensional solution of the thermal model where initial
and boundary conditions could be considered as extra-coordinates. If the
initial condition is parametrized by using a piece-wise linear finite element
approximation defined from p nodes uniformly distributed in the interval
[0, L], xi, i = 1, . . . , p, the separated representation of the unknown temper-
ature field reads:

u
(
x, t, ug, u

0
2, . . . , u

0
p−1, θ

)
≈

Q∑
i=1

Xi(x) · Ti(t) · U1
i (ug) · U2

i (u0
2) · . . . · Up−1

i (u0
p−1) · Up

i (θ) (27)

where x ∈ (0, L), t ∈ (0,∆], u0
i ∈ [umin, umax], i = 2, . . . , p − 1, ug ∈

[umin, umax] and θ ∈ [umin, umax].
This separated representation can be constructed by following the pro-

cedure previously described. As soon as it is available, the space derivative

18



involved in the heat flux can be computed

∂u
(
x, t, ug, u

0
2, · · · , u0

p−1, θ
)

∂x
≈

Q∑
i=1

dXi(x)

dx
· Ti(t) · U1

i (ug) · U2
i (u0

2) . . . Up−1
i (u0

p−1) · Up
i (θ) (28)

If we assume known the temperature field at time t = n · ∆, at the
following time step n+ 1, the temperature θn+1 must be computed from the
information known at x = 0, un+1

g and qn+1
g , and the temperature field at the

previous time step. For this purpose we consider:

∂u
(
x, t, ug, u

0
2, · · · , u0

p−1, θ
)

∂x

∣∣∣∣∣x=0,t=∆,ug=un+1
g ,u02=un(x2),...,

u0p−1=un(xp−1),θ=θn+1

= qn+1
g (29)

that represents a single equation for determining the single unknown θn+1.
In this equation un(xk), k = 2, . . . , p− 1, comes from the final values at the
previous time step according to:

un(xk) =

u(x = xk, t = ∆, ug = ung , u
0
2 = un−1(x2), . . . , u0

p−1 = un−1(xp−1), θ = θn)

(30)

where similar expressions apply for un−1(xk), k = 2, . . . , p− 1, and so on.
In the previous analysis we make an important assumption, the one

that assumes that the boundary conditions uig and qig are constant in the
interval [(i − 1) · ∆, i · ∆], i = 2, . . . , D. Other possibilities exist, be-
ing the simplest one a linear evolution between each two consecutive mea-
surements. In that case the separated representation of the temperature
field reads u

(
x, t, ug, u

0
1, u

0
2, . . . , u

0
p−1, u

0
p, θ
)
, where x ∈ (0, L), t ∈ (0,∆],

u0
i ∈ [umin, umax], i = 1, . . . , p, ug ∈ [umin, umax] and θ ∈ [umin, umax]. After

constructing the multidimensional separated representation the identification
is performed according to:

∂u
(
x, t, ug, u

0
1, u

0
2, . . . , u

0
p−1, u

0
p, θ
)

∂x

∣∣∣∣∣x=0,t=∆,ug=un+1
g ,u01=ung ,u

0
2=un(x2),...,

u0p−1=un(xp−1),u0p=θn,θ=θn+1

= qn+1
g

(31)
that represents again a single equation for determining the single unknown
θn+1.
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3. Numerical example: Dynamic Data Driven non-linear paramet-
ric dynamical system

In order to illustrate the just described procedure we are considering the
dynamical model given by Eq. (1) where u∞ = 1, ug = 0.2, t ∈ (0, 10] and
the unknown model parameter taking values in the interval k ∈ [0, 3].

The field u is measured at times t̃i = i · ∆, i = 1, . . . , 10 and ∆ = 1.
Linear finite element meshes were chosen along each coordinate, with 200,
60 and 160 elements, respectively. We are considering two scenarios.

3.1. A first scenario

The first scenario concerns experimental measurements coming from the
exact solution of Eq. (1) with k = 0.7 (the model parameter is assumed
constant in the whole simulation time interval (0, 10] ). In that case the
measured values at times t̃ = 1, 2, . . . , 10 are given by ũ = 0.335, 0.503,
0.671, 0.804, 0.892, 0.943, 0.971, 0.985, 0.993, 0.996.

Figure 4 depicts the restriction of u(t, k, u0) at time t = ∆ , i.e. u(t =
∆, k, u0). The numerical solution (right) shows the good accuracy obtained
by PGD method by employing only one product of functions. This error
(L2-norm) is 1.45 ·10−4 for the mentioned single product of functions, shown
in Fig. 5.

Remark 4. It is well known that the forward Euler, finite difference dis-
cretization of the Verhulst logistic Eq. (1) gives rise to a recurrence relation
very much like the logistic map. As it is well known, the logistic map presents
chaotic behavior for values of the product k ·∆ bigger than 3.57, showing os-
cillations dependent of the initial condition for k > 2. In the simulations
that follow chaotic or oscillatory behavior is avoided by a judicious choice of
the time discretization.

Figure 6 depicts the restriction of solution u(t = ∆, k, u0) shown in Fig.
4 to the given initial condition u0 = ug = 0.2, that is: u(t = ∆, k, u0 = 0.2).
Since such value u0 = ug does not coincide with a discrete value of the
initial condition axis we consider the interpolated curve u(t = ∆, k, ug) =∑n

i=1 Ti(∆) ·Ki(k) · Ui(ug).
The resulting interpolated solution is depicted in cyan in Fig. 6 whereas

the reference solution, ũ1 = 0.335 is depicted in red. The intersection point
of both curves defines the optimal model parameter k, k = 0.701, that in
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Figure 4: Solution u(t = ∆, k, u0). Left, exact solution. Right, numerical one obtained by
applying PGD.
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Figure 5: Functions employed for the numerical solution of the problem.
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Figure 6: Solution u(k) = u(t = ∆, k, u0 = 0.2).

this case is very close to the exact one k = 0.7 that served for calculating
the different couples (t̃i, ũi). The procedure continues as described in the
previous section. Table 1 groups the identified parameters.

3.2. A second scenario with random variation of the parameter

In what follows we are considering a second scenario slightly different. In
the present case the parameter k is defined randomly in each time interval ,
according to the expression: (t̃i, t̃i+1), i = 1, . . . , D = 10, with

kexact = ε · U , (32)

where ε = 3 and U denotes a uniform random variable defined in the interval
[0, 1]. Table 2 shows the identified parameters. We can notice the high ac-
curacy obtained by employing the on-line parameter identification procedure
previously described, that only needed a single off-line solution of a model
defined in a higher dimensional space, that was efficiently solved by using
the Proper Generalized Decomposition.

4. Numerical example: Dynamic Data Driven Cauchy problem

In order to evaluate the reliability of the strategy introduced in section
2, two test cases are considered. For the first one, the temperature on the
right boundary evolves linearly in time whereas in the second scenario a
discontinuous step is considered.
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t̃ ũ kexact k̃ident

1 0.335 0.7 0.701
2 0.503 0.7 0.700
3 0.671 0.7 0.699
4 0.804 0.7 0.699
5 0.892 0.7 0.699
6 0.943 0.7 0.699
7 0.871 0.7 0.699
8 0.985 0.7 0.699
9 0.993 0.7 0.699
10 0.996 0.7 0.699

Table 1: Parameter estimation for kexact = 0.7.

t̃ ũ kexact k̃ident

1 0.742 2.444 2.445
2 0.978 2.717 2.703
3 0.984 0.381 0.381
4 0.999 2.740 2.722
5 0.999 1.897 1.893
6 0.999 0.293 0.294
7 0.999 0.835 0.838
8 0.999 1.641 1.639
9 0.999 2.873 2.858
10 0.999 2.895 2.880

Table 2: Parameter estimation for a parameter evolving randomly
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4.1. Identifying a linear evolution on the unknown boundary condition

Let us assume firstly an initial constant value of the temperature, fol-
lowed by a linear evolution in time at x = L, that constitutes the sought
boundary condition, whereas at x = 0 we consider a convection-type bound-
ary condition that allows solving the equation by using a finite difference
technique. After solving it, the temperature derivative is computed at x = 0.
The values of the temperature and its derivatives at x = 0 each ∆ = 1 are
retained while we try to identify the profile at x = L. Firstly, it is assumed
that the boundary conditions un+1

g and qn+1
g are constant within the interval

[n · ∆, (n + 1) · ∆], n = 1, · · · , D − 1. In the numerical experiments that
follow the following values have been considered: k = 0.1 and L = 1.

At each ∆ the temperature on the right boundary, θ, is identified as pre-
viously described. As soon as this temperature is calculated the temperature
for t ∈ (tn, tn+1] = (n ·∆, (n+ 1) ·∆] reads

u
(
x, t, un+1

g , un(x2), . . . , un(xp−1), θn+1
)

(33)

Obviously, if we particularize it on the right boundary we obtain:

u
(
x = L, t, un+1

g , un(x2), . . . , un(xp−1), θn+1
)

= θn+1, ∀t ∈ [tn, tn+1] (34)

Thus one can expect a discontinuity of the identified temperature on
the right boundary at each sampling time tn, as noticed in all the solutions
depicted in what follows.

Figure 7 depicts the identified evolution at x = L that is compared with
the exact one. We can appreciate the impact of the hypothesis of assuming
constant boundary conditions within each time interval ∆ for different values
of the rate of increase of the temperature at x = L. The identified tempera-
ture follows the exact evolution but it underestimates the temperature values.

Obviously, by increasing the sampling frequency the accuracy is notably
increased as Fig. 8 proves. The just referred issues disappear as soon as a
piecewise linear evolution of the boundary conditions is assumed as illustrated
in Fig. 9.

4.2. Identifying discontinuous evolutions in the unknown boundary condition

When considering a discontinuity in the temperature profile at the right
boundary the accuracy of the identified temperature evolution could depend
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(a) slope = 4
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(b) slope = 5

0 2 4 6 8 10 12 14 16 18 20
10

20

30

40

50

60

70

80

Time

T
e

m
p

e
ra

tu
re

 a
t 

th
e

 r
ig

h
t 

b
o

u
n

d
a

ry

 

 

Computed

Exact

(c) slope = 7.5
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(d) slope = 15

Figure 7: Identified solution for different rates of increase of the identified temperature
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(a) f = 1Hz
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(b) f = 2Hz
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(c) f = 5Hz
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(d) f = 10Hz

Figure 8: Influence of the sampling frequency.
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(b) slope = 15

Figure 9: Considering a linear evolution of the boundary conditions between two consec-
utive sampling times

on several factors: (i) the material conductivity that controls the delay be-
tween the sudden increase of the temperature and its effects on the opposite
boundary, (ii) the sampling frequency and (iii) the location of the disconti-
nuity within the interval T = ∆.

When considering a low diffusion coefficient the identification is quite poor
because of the delay effects in the transfer of the information throughout the
domain. The accuracy cannot be significantly improved by modifying the
location of the discontinuity within the interval T = ∆ as illustrated in Fig.
10 for k = 0.1.

When increasing the thermal conductivity the identification is signifi-
cantly improved and as expected the best identification is carried out when
the discontinuity is located exactly in a sampling instant as shown in Fig.
11.

5. Conclusions

We have presented a method for efficient simulation in the context of
DDDAS based upon the use of Proper Generalized Decompositions. The
method is based on the construction of the solution for any value of the
parameters considered in the equations. In this work two different, but fre-
quently related, problems have been considered. These problems were the
parameter estimation in a problem governed by dynamic equations and dy-
namic data, and the one of estimating boundary condition at places where
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(d) 3T
4

Figure 10: Identified solution for different positions of the discontinuity within the interval
T = ∆
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(a) k = 0.5 / 0
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(b) k = 1 / 0
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(c) k = 0.5 / T
2

Figure 11: Influence of the conductivity and the location of the discontinuity
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measurements are not possible. The method post-processes the solution in
order to obtain on-line an accurate and fast solution of the problems, rather
than simulating the evolution of the problem for any change in the parame-
ters.

The results are still preliminary, but show encouraging properties in terms
of accuracy and computational cost. The speed of calculation has not been
deeply addressed yet, due to the very simple nature of the problems here
considered, but previous applications of the authors in the field of DDDAS
make us optimistic in this sense.
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