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SUMMARY

In this paper we develop a novel algorithm for the dimensional reduction of models of hyperelastic solids
undergoing large strains. Unlike standard Proper Orthogonal Decomposition methods, the proposed
algorithm minimizes the use of Newton algorithms in the search of non-linear equilibrium paths of
elastic bodies.

The proposed technique is based upon two main ingredients. On one side, the use of classic Proper
Orthogonal Decomposition techniques, that extract the most valuable information from pre-computed,
complete models. This information is used to build global shape functions in a Ritz-like framework.

On the other hand, to reduce the use of Newton procedures, an asymptotic expansion is made
for some variables of interest. This expansion shows the interesting feature of possessing one unique
tangent operator for all the terms of the expansion, thus minimizing the updating of the tangent
stiffness matrix of the problem.

The paper is completed with some numerical examples in order to show the performance of
the technique in the framework of hyperelastic (Kirchhoff-Saint Venant and neo-hookean) solids.
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1. INTRODUCTION

Model Order Reduction in Computational Mechanics has a strong tradition, starting from the
early years in which the performance of computers implied the need for models with very few
degrees of freedom, see [R][10] and references therein, to name a few. But similar techniques are
employed in many other branches of Engineering and Applied Sciences: real-time simulation
], Chemical Engineering [4], turbulence [T9], weather forecast [T2] and many others, linking
back to the seminal works of Karhunen [9] and Loeéve [L].

Recent applications of model reduction techniques for the analysis of non-linear solids and
structures include the works by Marsden and colleagues [I0)] and the works of Ryckelynck et al.
for “a priori” model reduction (see [I8][I5][I6]). Also, recently, new extensions of the method
have been developed, giving rise to the so-called non-linear dimensionality reduction [20].

In general, all these techniques share some common characteristics. It is necessary to have
some previous results coming from previously computed, detailed models (in this frameworks,
the work by Ryckelyck [16] is an exception). From this information, the most relevant structures
of these results are computed by minimising a functional that measures the distance from the
data to the sought structures. This constitutes the so-called Karhunen-Loeéve (K-L) method,
also known as Proper Orthogonal Decomposition (POD) or Principal Component Analysis
(PCA). Finally, the reduced models are constructed by employing a reduced set of global,
“good quality” (in statistical terms) basis functions, as opposed to the FEM, that employs
compactly supported, general-purpose, piecewise polynomial shape functions.

Models that differ slightly from the original ones can thus be computed with a very
important, sometimes impressive, computational saving, employing only a very limited number
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MODEL ORDER REDUCTION FOR HYPERELASTIC MATERIALS 3

of degrees of freedom. This is, for instance, the approach employed by the authors in previous
works, in which real-time simulation speed was sought [I3].

For highly non-linear applications, however, these methods posses some limitations. The
radius of convergence of the before mentioned techniques is often low, unless some treatment
is performed. For instance, it is often necessary to update the complete stiffness matrix in order
to follow non-linear equilibrium paths, and this is sometimes burdensome or even impossible
(as in real-time applications, for instance, in which results must be obtained at a frequency
of 500 Hz [13]). Otherwise, the resulting simulation will be actually linear, even if it employs
the best (in statistical terms) basis functions available. In the work by Ryckelycnk [16], on the
contrary, Krylov subspaces are added to the reduced set of basis functions once the simulation
provides an unsatisfactory norm of the residual. But this implies to come back to the last
converged time step and to continue with the just enriched basis.

The approach followed in this paper is somewhat different. In order to avoid a frequent
update of the stiffness matrix, an asymptotic expansion is made at the last converged time
step of some variables of interest. When this expansion is introduced into the discrete weak
form of the problem, a series of problems is encountered that share the same stiffness matrix
for all the terms of the expansion. Of course, the expansion has a finite radius of convergence,
but it is frequently enough to perform only a few updates of the stiffness matrix for complex
equilibrium paths.

This technique thus combines two main ingredients: the Proper Orthogonal Decomposition
of the existing data coming from complete models, and an asymptotic expansion of variables
of interest in the neighbourhood of equilibrium points [6][1]. This technique was developed in
[21] for the buckling analysis of foam structures, considered linear elastic (geometrically non-
linear), although is generalized here for more complex, hyperelastic, constitutive equations
including material non-linearities. This extension is not straightforward and, up to the best of
our knowledge, has not been developed so far.

The structure of the paper is as follows. In section 2 we review the basics of the technique
proposed in [ZI] for linear elastic solids undergoing finite strains (Kirchhoff-Saint Venant
models). In section 3 we extend this technique to account for material non-linearities also. the
proposed technique is described in detail and, finally, in section 4 we include some examples
of application for Kirchhoff-Saint Venant and neo-hookean models that show the performance
of the technique and compares the computational cost with a standard FE solution.

2. STATE OF THE ART: MODEL REDUCTION AND ASYMPTOTIC EXPANSIONS

2.1. The Karhunen-Loéve decomposition

We assume that the evolution of a certain field u(x,t), governed by a PDE, is known. In
practical applications, this field is expressed in a discrete form, that is, it is known typically at
the nodes of a spatial mesh and for some time steps of existing simulations u(x;,t") = u}. The
same can be wrote introducing a time discretization v"(x) = u(x,t = nAt); Vn € [l,---, P].
The main idea of the Karhunen-Loeve (K-L) decomposition is how to obtain the most typical or
characteristic structure ¢(x) among these u"(x) ¥n. This is equivalent to obtaining a function
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4 NIROOMANDI, ALFARO, CUETO AND CHINESTA

¢(x) that maximizes o defined by

St (S slwu @)
it (¢l@i))?

which can be rewritten in the form
i=N ( j=N n=P 3 i=N 5
> { > [ > U"(wi)un(mj)ﬂﬁ(wj)} ¢($i)} =a ) o(x)o(w); Vo 3)
i=1 j=1 n=1 i=1

Defining the vector ¢ such that its i-component is ¢(x;), Eq. @) takes the following matrix
form

~T ~T ~
pcop=ap ¢;Vp=cod=ap (4)
where the two-point correlation matrix is given by

= 3w (wy) S c= 3 un(ur)T (5)

which is symmetric and positive definite. If we define the matrix @ containing the discrete
field history:

1 2 P
u% u% DR u%)
’LL2 u2 DR ’LL2
Q=|( . . . . (6)
1 2 P
UN uN ... uN

it is straightforward to verify that the matrix ¢ in Eq. @) results
c=Q Q" (7)

where the diagonal components are given by

j=pP
ci =(Q Q)i = Z(Uf)Q (8)

j=1

Thus, the functions defining the most characteristic structure of u™(x) are the eigenfunctions
¢r(x) = ¢, associated with the highest eigenvalues.

2.2. A posteriori reduced-order modelling

If some direct simulations have been carried out, we can determine u(x;,t") = ul’, Vi €
[1,---,N], Vn € [1,---,P], and from these the r eigenvectors related to the r-highest

eigenvalues ¢, = ép(x;), Vi € [1,---,N], Yk € [1,---,r] (with r < N). Now, we can
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MODEL ORDER REDUCTION FOR HYPERELASTIC MATERIALS 5

try to use these r eigenfunctions for approximating the solution of a problem slightly different
to the one that has served to define u(x;,t™). For this purpose we need to define the matrix A

1(x1)  p2(x1) 0 Br(1)
p1(z2)  ga(x2) - br(x2)

A= 9)

¢1(*’;UN) ¢2(";UN) ¢r(";UN)

Now, we consider the linear system of equations resulting from the discretization of a partial
differential equation (PDE) in the form

KU-=F. (10)

Obviously, in the case of evolution problems F' contains the contribution of the solution at the
previous time step.

Then, assuming that the unknown vector contains the nodal degrees of freedom, it can be
expressed as

U=> G¢,=AC, (11)
=1
it results
KU=F=KA(=F, (12)

and multiplying both terms by AT it results
ATK A¢=ATF, (13)

which proves that the final system of equations is of low order, i.e. the dimensions of AT K A
are r X 7, with 7 < N, and the dimensions of both ¢ and AT F are r x 1.

Remark 1. Eq. [I3) can be also derived introducing the approximation ([I) into the PDE
Galerkin form.

As can be noticed from the paragraphs above, the main idea of model order reduction
techniques is to employ, in a Ritz framework, a set of global basis that are, in a statistical
sense, the best suited to reproduce the just computed, complete models. This is in sharp
contrast with the finite element method, that employs general purpose, piecewise polynomials
to approximate the solution in a Galerkin framework.

2.8. Limitations of standard model reduction techniques

Classical model reduction techniques, when applied to the simulation of non-linear solids
and structures imply the need for frequent updating of the stiffness tangent matrix K (or,
equivalently, the reduced stiffness matrix AT K A, but the matrix A is assumed constant
throughout the simulation). Otherwise, the reduced model will obviously be linear. This implies
that once the residual of the discrete, algebraic form of the problems is estimated unacceptable,
the only way of searching the equilibrium is by updating the stiffness matrix of the complete
problem. Modified Newton-Raphson methods could equally be employed, but in the context
of reduced models their convergence is often judged too slow. Even if this strategy can be
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6 NIROOMANDI, ALFARO, CUETO AND CHINESTA

employed for reducing non-linear models the computing cost is considerable, and of course
this technique is unviable if one is looking for quasi-real-time simulations.

A different question arises in the so-called hyper-reduction methods [I']] in which only a few
rows of the stiffness matrix are integrated, based on the fact of the limited number of degrees
of freedom that POD techniques select for a particular problem. The problem is precisely to
select appropriately in which part of the model the integration is performed.

This stiffness matrix updating is usually an expensive procedure in terms of computational
cost (and noteworthy in the context of reduced models). But sometimes is simply unaffordable.
This is the case in the framework of real-time or near real-time simulations, where a frequency
of 500-1000Hz in the response of the simulation is needed, for instance, for haptic realism (30
Hz would be enough for video feedback, which is too much a limitation indeed).

2.4. Asymptotic Numerical Methods

Non-linear structural problems are generally solved using iterative methods, such as Newton-
Raphson or modified Newton schemes. Such algorithms are successful for solving the non-
linear equilibrium equations of the model. However, the computing time is usually large as
compared to a linear solution, due to both the number of iterations usually needed and
the computation of tangent stiffness matrices. A family of asymptotic numerical methods
(ANM) based on perturbation techniques and finite element methods have been proposed
and intensively used by Potier-Ferry and co-workers for computing perturbed bifurcations,
and applied in computing the post-buckling behaviour of elastic plates and shells. Next they
have extended the method to many non-linear elastic solutions, plastic deformations, etc.
For a complete review the interested reader can refer to [6] or [I]. In contrast to predictor-
corrector algorithms, the non-linear equilibrium paths are determined by means of asymptotic
expansions: the unknown nodal vector U and the load parameter X —that represents a pseudo-
time, the overline is used to avoid confusion with the Lamé coefficient— are represented by
power series expansions with respect to a control parameter a. By introducing the expansions
into the equilibrium equation, the non-linear problem is transformed into a sequence of linear
problems in a recurrent manner and are solved by the finite element method, for instance.
Noteworthy, because all the linear problems have the same stiffness matrix the method requires
only one matrix inversion. Moreover one gets a continuous analytic representation of the load-
displacement (response) curve which differs from the point by point representation of standard
algorithms.

It is precisely this feature (the existence of only one tangent operator per equilibrium point)
that makes the ANM an appealing choice to combine with model reduction techniques in order
to get a very efficient technique.

2.5. Problem formulation for Kirchhoff-Saint Venant models

Here we review the development made in [2I] for the buckling analysis of foam structures
that we will also considered in our numerical examples, where they will be compared with
the constitutive non-linear models. We consider, as usual, a Lagrangian description of the
movement whose material coordinates are given by the vector X. The solid occupies a
volume )y whose boundary is denoted by I'. Essential and natural boundary conditions are
applied to the non-overlapping portions of the boundary denoted by I',, and I';. The deformed

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-28
Prepared using nmeauth.cls



MODEL ORDER REDUCTION FOR HYPERELASTIC MATERIALS 7

configuration of each point is given by the vector x, such that
z=X +u, (14)

where the displacement field is denoted by wu.
Following [7], we consider a linear and a non-linear term for the Green-Lagrange strain
tensor, FE, in the form

1
B= L (F"F 1) = 3(u) + yu(u,u) (15)
where F' = Vu + I is the gradient of deformation tensor and using the notation in [,
1
n(w) = 5(V(u) + V(w), (16a)
1
it ) = 5V ()T (u). (16b)

Hyperelastic materials are base on the assumption of a particular strain-energy function, W.
Then the second Piola-Kirchhoff stress tensor S can thus be obtained by

ov
S =— 17
- (1)
that is a symmetric tensor and is related to the first Piola-Kirchhoff stress tensor, P, by
P =FS.

The equilibrium equation stated in the reference configuration looks like
VP + B =0 in{) (18)
in which B is the body force. The boundary conditions of the body are defined by
u(X)=1u onTy,
PN =)t onT, (19)
where N is the unit vector normal to T, £ is an applied traction and X is a loading parameter,

equivalent to a pseudo-time, and ranging from 0 to 1. The weak form of the problem is then
given by

S:6EdQ = X/ £ sudl Vou € H'(Q) (20)

Qo Ty

where in the above equation JE is expressed by
1
where, in turn, v, (u, du) is defined by

Ynig (W, 6u) = Ypi(w, du) + Yni (0w, u). (22)

The technique is best viewed by considering the Saint-Venant Kirchhoff model, as done in
[7[21], since only geometric non-linearities are present. Later on, in section B, we will generalize
the method for other hyperelastic models. The Kirchhoff-Saint Venant model is characterized
by the energy function given by

U= %(tr(E))Q +uE: E (23)

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-28
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8 NIROOMANDI, ALFARO, CUETO AND CHINESTA

where )\ and p are Lame’s constants. The second Piola-Kirchhoff stress tensor can be obtained

by

0V (E)
19)

in which C is the fourth-order constitutive (elastic) tensor.

The Saint Venant-Kirchhoff model possesses well-known limitations, particularly some
instabilities when subjected to pure compression. Nevertheless, it remains to be interesting for
some applications. Noteworthy, in real-time simulation environments (see [3] and references
therein, for instance) it is among the state-of-the-art models that can be computed under the
severe limitations that real-time frameworks impose (30Hz for video feedback and 500Hz for
haptic feedback).

S =

=C:E (24)

2.6. Asymptotic numerical method for geometrically non-linear problems

In the ANM [6] [1] the displacement of each material point is expanded asymptotically in
terms of a control parameter “a”. This expansion is developed in the neighborhood of a known
equilibrium point (u™; S";Xn) at step n and the series is truncated at order N. To simplify
the resulting expressions, also the second Piola-Kirchhoff stress tensor and the load parameter
A are expanded in series prior to their introduction in the weak form of the problem:

u"t(a) u"(a) N Uy
S0 § = 8'a) 3] S, L (25)
Xn-l—l (a) An(a> = )\p

where (u,, Sp, \p) are unknowns. Above, (u"*!(a), S"H(a),xnﬂ(a)) represents the solution

along a portion of the loading curve. Noteworthy, the behavior of the solid is described
continuously with respect to “a”. The introduction of Eq. (ZH) into Eq. @) and Eq. )
leads to a series of linear problems with the same tangent operator, thus avoiding the burden
associated with stiffness matrix updating in the Newton-Raphson scheme.

A general procedure for constructing quadratic forms of equations consists in developing
auxiliary variables into finite series, as will be detailed in section B for neo-hookean materials.
The series expansion of §E(u) gives

SE" ! (a) = mi(du) + ynts (Su,u™) + Y aPrnrg ($u,uy). (26)

p=1

The series expansions of S gives in turn

§"*(a) =C: E"(a) =

C: [%l(u"vu") +y(ut) + )y a? <71(up) + ynis (w”, up) +27nl(ui7upi)>] , (27)

p=1 i=1
and at order p we obtain
p—1
S,=C: {’71(’“’1)) + Ynls (una u;D) + Z '7nl(uia up—i)} (28)
=1
Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-28
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MODEL ORDER REDUCTION FOR HYPERELASTIC MATERIALS 9

Introducing the asymptotic expansion into Eq. 4]) results in

N
/Q {(Sn+ZaPS> (fyl ou) + ynis (U™, du) +Za 'ynls(up,éu)}dﬂ
<)\ +Za”)\> ext(0w), (29)

with W, (du) fr t - dudl'. Introducing Eq. [28) into Eq. [9) and identifying terms with
the same power of “a” results in a successive series of linear problems which at order p,
(p=1,...,N) takes the form

L(6u,u™) = A\ Wepi(5u) + F' (5u) (30)

with

L(0u,u™ /{S D Ynis (", 0u) + [y (6w) + Ynig (up, 0w)] : C o [yi(up) + ynis (w”, up)] dS2

and where Fgl(éu) is equal to zero at order one and at order p it can be calculated as o
p—1 p—1

Fy' (ou) = /{ZS Tt (Up—i; Ou) + Z Tt (Wi, up—i)] : €2 [71(0u) + s (u”, ou)]}d2
i=1 (32)

Discretization of Eq. [B0) by using finite elements leads to a sequence of linear problems in
the form [7]

Kiui =\
Order 1 Ttul —21f (33)
uju;+ A =1

Ktup = Apf + f’” (u;)) i<p

4

Order p {

where K; denotes the tangent stiffness matrix associated with Eq. @), common to the
problems at different orders p. It is the same as the one applied in a classical iterative algorithm
like Newton-Raphson (in the first iteration). In the above, u, is the discretized form of the
displacement field at order p, f is the loading vector and le represents the discretized form

associated with F;”(éu) in Eq. (B2), which at order p only depends on the values of u;, i < p.
The solution of these problems can be obtained as follows

a= (K} f
at order 1{ M1 = \/ﬁ (35)
U = Xl’&
up! = (K
at order p{ Ap = :Al{uzl}Tul (36)

_ﬁ nl
Uy = Xlul —l—up

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-28
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10 NIROOMANDI, ALFARO, CUETO AND CHINESTA

2.7. Combined POD-ANM method

As explained before the use of the reduced order basis within the standard strategy, without
updating the stiffness matrix, leads to very fast calculation of the system of equations but with
some error. On the other hand by using ANM we can obtain the solution of non-linear problems
accurately in a neighbourhood of an equilibrium point, and without the need for iterative
procedures. In [Z1I] a combination of these two methods to solve material and geometrically
non-linear problems was employed. In the next section we extend this procedure for solving non
linear constitutive models. Here we assume that the POD basis has been calculated as explained
in Section 2.1. The terms of the asymptotic expansions associated with the displacements are
in turn expressed as functions of POD basis as

M
u, =Y ¢"G" = A, (37)
m=1

where ¢, are unknowns. So the new asymptotic expansion of w is expressed by

N
u"tla) = A <<" +y apcp> (38)

where (¢, X") represents the previous converged solution. Introducing Eq. (B) into Eq. (&)
results in

L(AC,, ASC) = Xp0W e (ASC) + F(ASC). (39)

After finite element discretization, and making use of the fact that the POD basis is
orthonormal, we have the following sequence of linear systems of equations

ATK,A¢, = AT
At order 1 T ¢ _gl A4S (40)
Gi¢i+A =1
ATKAC, =N ATf + f
At order g N P 41
p{c§c1+ApA1=0 .

The size of the above equations depend on the number of the POD basis functions, but it is
very low, as explained before (typically less than ten), so they can be computed in a very short
time.

The solution of these equations can be obtained as follows:

¢c={ATK,A} AT}
M = =
At order 1 ' V6 G+l (42)
C1 = )\}C .
U= AC,u; = A1y

¢ ={ATK, A AT FY

A= MGG
At order p s &) (43)
=G +¢
p— N o1 P
u, = A(,
Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-28
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MODEL ORDER REDUCTION FOR HYPERELASTIC MATERIALS 11

Note that, as mentioned before, in Eqs. ([@2)-E3) there exists only one tangent stiffness matrix
per time step, shared by all the terms for any order p. The advantage, of course, comes from
the fact that the radius of convergence of the method, as will be seen, and consequently the
size of time steps, is considerably bigger than in traditional Newton procedures.

3. NON-LINEAR MODEL REDUCTION OF HYPERELASTIC MATERIALS

The extension of the technique explained before to other hyperelastic materials, in which
non-linearities other than geometrical ones are present, is not straightforward and, up to our
knowledge, it has not been done before. In this section we extend the technique to neo-hookean
materials []. Extension to other hyperelastic materials would follow the same guidelines, the
major difference with the Kirchhoff-Saint Venant model being the presence of material non-
linearities, in addition to the geometrical ones.

The compressible Neo-Hookean model is characterized by a strain energy function given by

\Il:g(tr(C)fB)fuannL%(an)Q (44)

where A and p are Lame’s constants and C = I + 2F is the right Cauchy-Green strain tensor.
The second Piola-Kirchhoff stress tensor can be obtained by

0V (E)
OF
In this case, an expansion similar to that in Eq. ([Z3) is done, but in this case the intricate

expansion procedure becomes more clear if we identify, as in [B], the asymptotic expansion

with a Taylor series of the variables of interest, denoted by U (a), in the vicinity of a = 0.
Truncating at order N:

S = =u(I-C Y+ AInJ)C™. (45)

N
Ua) =Up+ » Upd? (46)
p=1
where Ug = U(0) and
1 dPU
=—— . 47
P p' daP Ja:O ( )
In this case we have selected the following variables to perform the expansion:
u(a)
S(a)
J2C™(a)
Ula) InvVJ2(a) (48)
=(a)
Aa)
By performing the substitution of the before mentioned variables into the weak form of the
problem, see Eq. (Z0) we arrive to a problem entirely similar to that in Eqgs. (B3) and @), in
which the tangent stiffness matrix takes the form

K;= / (BTDB + G" S,G)de, (49)
Qo

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-28
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12 NIROOMANDI, ALFARO, CUETO AND CHINESTA

where

D=\ (%ColMOT) +2(pu— An Jp) (%(ColM(?) —C*O) (50)

Jo Jo

now takes into account the material non-linearity and has a somewhat similar appearance to
the Lagrangian elastic tensor at the initial state. Jy and C represent the Jacobian and right
Cauchy-Green strain tensor of the initial solution. M is obtained from the series expansion
of the Jacobian, and contains minors of Cy. Finally, C is obtained from the series expansion
of C™! and contains components of Cj, arranged in a particular way.

The geometrical non-linearities are included in the matrices B, G and S,. B represents
the usual strain-displacement matrix, G relates the nodal displacements u and the gradient
of displacements vector, and, finally, So represents a matrix that contains the initial stresses
(we have chosen the same notation as in [7]).

In the right hand side of Eq. B4), the non linear load vector fgl is a vector containing
information of material and geometrical non-linearities of all order problems ranging from
order one to p — 1. It can be written as:

p

nl T gnlma nlgeom T Q*
f :/Q(B (Spimaet  Sptacomy + G S5 )d (51)

As in the stiffness matrix, Sglgeom and S, represent the standard matrices found in literature

when ANM is used to solve geometrical non-linear problems with linear materials. Sglm“t takes
into account the material behaviour:

nima RJ RCC _
sz P=(\InJy — p) <CCO <RZp — J—4P> + — Py ch1>
0 0
CCy RJ
Y, +—~% 2
+)\(J§ (Rp+2jg)+RSp) (52)

In this equation, C'C|, represents the cofactor matrix of Cy and RC'C), is a vector containing
values of Cj; of all problems from order one to p — 1, obtained when the cofactor matrix of C'
is expanded in Taylor series:

cc, =CyC,+ RCC,, (53)

T p—r T p—r
C’22CV33 - CV23CV23

T p—r T p—r
C’11 33 CV136V13

p—l r OP—T r (YP—T
RCC, = 011022 7012012 (54)
p = T OPTT _ T 0P .

— 13-23 12433

s p—r T p—r
CVISCVIQ - 11023

T p—r T p—r
012023 - 13022

Here, RJ, is a summation of products of different components of C, and is obtained when
the squared Jacobian is expanded in Taylor series:

(J?), = My C,+ RJ,. (55)
RS, collects terms concerning the expansion of ¥ =1InJ and C -1
p—1
RS,=)_Y.C,",. (56)
r=1
Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-28
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RC, ! collects terms concerning Z = J~2 and cofactor matrix of C' expansions:

p—1
RC,' =) 7,CC, . (57)

r=1

Finally, it is necessary to expand Y = In.J and Z = J~2 by using Taylor series and the
chain rule generalized to higher derivatives:

1 -1
Y, = = (J?), + RY,, and Z, = —(J°), + RZ,, (58)
2.3 J?
where
RY; =0,
-1
Y - _ = 2\2
R 2 4J61 (J )1))
RY3 = L(J2)3 + 2_—1(J2)1(J2)2
6J5 " 1 T4gd ’
RZ, =0,
1 2\2
R22 = J_OG(‘] )17
71 2\3 1 2 2
RZ3 = —(J?*)3 +2—(J*)1(J?)2,

5 Jo

Once the expansion of the ANM has been performed, the next step of the method consists
of the use in this framework of a reduced model, as explained in the previous sections for a
general case, regardless of the constitutive model chosen.

4. NUMERICAL EXAMPLES

In order to show the performance of this method we have applied it to some hyperelastic,
academic examples.

4.1. Beam in traction

In this example we have applied four concentrated 100N forces to the left face of a beam in the
axial direction. The nodes on the right face are constrained in the axial direction. The length
of the beam is 400mm and the cross section is a square with sides of length 40mm. The beam
is shown in Figure[[l The material properties of the beam are E = 1M Pa and v = 0.25.

4.1.1. Kirchhoff-Saint Venant material In this example the dimension of the basis of the
reduced model is six, which are the number of modes necessary to capture the 99.9% of the
energy of the system. They are depicted in Fig. The load-displacement curve has been

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-28
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Figure 1. Geometry of the beam in traction.

obtained for a node on the right face and is shown in Figure Bl for p = 1,...,6. The linear
solution obtained with p = 1 is the same as the one that can be obtained using standard
POD only, without updating the tangent stiffness matrix. In this case for higher p the load-
displacement curves are clearly non-linear and in this example they coincide with the analytic
solution and the one calculated using full FE Newton-Raphson equilibrium iterations (the
curves are indistinguishable for p > 2).

Notice how, for p > 2, the radius of convergence of the proposed technique is very high (on
the order of 60mm of tip displacement), for a beam with a total initial length of 400mm. If
we need to follow the equilibrium path beyond this point, the method can be restarted at any
equilibrium point, by a new computation of the stiffness matrix at that point.

4.1.2. Neo-hookean material For the neo-hookean material the behaviour of the proposed
technique is very similar to that of the Kirchhoff-Saint Venant. The load-displacement curve
is depicted in Fig. B, where an excellent agreement between the FEM results and the p = 4
reduced model has been noticed.

In Fig. B the six most important modes of the complete solution, obtained by Newton-
Raphson methods, are depicted.

The excellent agreement of the results for very large beam tip displacements also deserve
some comments. Note that we have plotted the solution of the FE, complete model until a
tip displacement of around 120mm. Until this very large level of strain (the beam is 400 mm
long) the reported solution by the reduced model with an order p = 4 is remarkable, while it
seems to reproduce the “expected” solution far beyond.

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-28
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(d) (e) ()

Figure 2. Six most important eigenmodes for the simulation of the Kirchhoff-Saint Venant beam under
traction. The corresponding eigenvalues are: 38488.48 (a), 0.04 (b), 1.04F — 11 (c), 3.44E — 12 (d),
1.34E — 12 (e) and 1.28E — 12 (f).

4.2. Pinched hemisphere

In this example a concentrated force of 30N is applied to the pole of a hemisphere and directed
towards its centre. The bottom of the hemisphere is fixed. Its radius is 25mm and its Young’s
modulus and poison’s ratio are 2M Pa and 0.48 respectively. The mesh is shown in Figure Gl
and it is composed of 614 nodes and 448 linear hexaedral elements. Kirchhoff-Saint Venant
and neo-hookean behaviours are assumed in this example.

4.2.1. Kirchhoff-Saint Venant material In this example the empirical basis has ten modes,
depicted in Fig. B The load-displacement curves for the node on the pole of the hemisphere
for p=1,...,6 have been obtained and depicted in Figure [

Again it is worth noting that the solution with p = 1 that is linear is the same as the solution
that one obtains using standard model reduction without stiffness matrix updating. For p <5
it can be seen that the ANM-POD solution has a good agreement with the solution computed
using full Newton-Raphson equilibrium iteration up to u ~ —2.5mm, which can be considered
as the radius of convergence (note that this is in the order of 10% of the sphere radius). But

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-28
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analytic||

0O 20 40 60 80 100

u (mm)

Figure 3. Beam in traction. Load-displacement results (in terms of X) for different order of
approximation, p, compared with the analytical solution. Kirchhoff-Saint Venant behaviour.
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Figure 4. Beam in traction. Load-displacement results (in terms of X) for different order of
approximation, p, compared with the analytical solution. Neo-hookean behaviour.

for p = 6 the size of the radius of convergence is remarkable, going beyond 4mm (more than
20% of the radius of the sphere). Again, if the load is to be extended beyond this point, a new
tangent stiffness matrix should be computed at this point, performing again the algorithm

given by Eqgs. (E2)-E3).

The deformed hemisphere for p = 6 and A = 1 is shown in Figure @l and the displacement
field in z direction, u,, obtained by Newton-Raphson procedures is shown in Figure [0

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-28
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(d) (e) ()

Figure 5. Six most important eigenmodes for the simulation of the neo-hookean beam under traction.
The corresponding eigenvalues are: 38488.48 (a), 0.04 (b), 1.04F — 11 (c), 3.44F — 12 (d), 1.34E — 12
(e) and 1.28E — 12 (f).

4.2.2. Neo-hookean behaviour As in the previous example, results were tested also for the neo-
hookean behaviour, showing similar levels of accuracy as the Kirchhoff-Saint Venant examples.
The modes employed as global basis in the example are depicted in Fig. [T

Results for the complete model, solved by means of full Newton-Raphson iterations, and the
reduced model, for different approximation order, are compared in Fig. The great similitude
for both models is noteworthy. Again, the load-displacement (in terms of the load factor, \)
curve shows great similarity for p = 2,...,4 and a wide convergence radius.

4.3. Pinching the human cornea

As mentioned before, real-time simulation in surgical environments is one of the fields in
which very fast simulations are needed. This field arises as a natural potential application of
the technique here proposed, which can solve with moderate accuracy simplified models of non-
linear solids without the need for tangent stiffness matrix updating nor iterative procedures.
In this example we consider a human cornea, whose geometry has been taken from [2].
Forces of 0.014N each have been applied to nine neighbour nodes located at the centre of the

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-28
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Figure 6. Hemisphere mesh.
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Figure 7. Load-displacement curves for the hemisphere problem.
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Figure 8. Ten most important eigenmodes employed for the simulation of the pinched hemisphere. The
corresponding eigenvalues are: 25.42 (a), 0.19 (b), 0.02 (c), 4.80E — 05 (d), 6.04FE — 07 (e), 1.15E — 08
(f),2.85E—10 (g), 4.12E—12 (h), 6.52E —14 (i) and 2.32E —16 (j). Kirchhoff-Saint Venant behaviour.
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Figure 9. Deformed hemisphere obtained using the combined technique POD-ANM.

Figure 10. Deformed hemisphere computed by full FE Newton-Raphson equilibrium iteration.
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(d) (e) )

Figure 11. Six most important eigenmodes for the simulation of the neo-hookean pinched hemisphere.
The corresponding eigenvalues are: 30.0 (a), 0.013 (b), 2.95F — 05 (c), 9.42E — 08 (d), 3.12E — 10 (e)
and 4.14F — 12 (f).

cornea, thus simulating the contact of a rounded tool. The cornea was meshed using trilinear
hexahedral elements. It consisted of 8514 nodes and 7182 elements. The mesh is shown in
Figure in two views. The cornea is clamped at its base, giving a dome-like problem that
showed buckling under some types of loads.

4.8.1. Kirchhoff-Saint Venant model The material properties of the cornea are assumed to be
E = 2M Pa and v = 0.48, although a realistic model of corneal tissue is far more complicated
3.

In this example nine modes were applied that provide decent approximation. The solution
has been obtained using ANM-POD for p = 1,...,6, plotted in Fig. [d Note how the first
mode resembles very closely the final solution. Higher modes concentrate in capturing the
solution near the region where the load is applied.

In order to verify the results we have computed the solution by full FE Newton-Raphson

method. The loading factor () has been plotted versus the minimum displacement in Figure

15
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Figure 13. Geometry of the finite element model for the human cornea.

As it can be noticed the results have good accuracy with Newton-Raphson solution. The
deformed cornea obtained using ANM-POD for A = 1 is shown in Figure [[6 and the one
obtained using full FE Newton-Raphson is depicted in Figure [

Note that, despite the high Poisson’s ratio employed, close to 0.5, the method shows no
tendency to lock in the examples studied (although it is well known that this does not constitute
a valid proof of robustness). The use of truly incompressible (mixed) formulations is currently
under investigation.
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(e)

(d)

(d), 1.26E — 8 (e) and 3.48E
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Figure 14. Six most important eigenmodes for the simulation of the cornea. The corresponding
eigenvalues are: 67.5 (a),
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Figure 15. The loading factor vs. minimum displacement for the Pinched cornea. Kirchhoff-Saint

Venant model.

Int. J. Numer. Meth. Engng 2009; 00:1-28

Copyright © 2009 John Wiley & Sons, Ltd.

Prepared using nmeauth.cls



24 NIROOMANDI, ALFARO, CUETO AND CHINESTA

Uy

-0.05
-0.1
-0.15
-0.2
-0.25
-0.3
-0.35
-0.4
-0.45
-0.5
-0.55
-0.6
-0.65
-0.7
-0.75
-0.8

Figure 16. uy-contour of the pinched cornea obtained by ANM-POD.

4.8.2. Neo-hookean model Again, results for the neo-hookean cornea follow the same
guidelines of accuracy as those for the Kirchhoff-Saint Venant model. With an expansion
of only three or four terms (see Fig. [[H) a great accuracy is obtained along a big radius of
convergence. In this case, only six modes were enough to simulate the cornea, thus making a
stiffness matrix of size 6 x 6. These modes are depicted in Fig. [Q

4.4. Timing

An essential feature of the proposed technique is the reduction of computing time that it
allows. In order to have a final, overall, impression of the savings achieved with this technique,
we reproduce here the total amount of time (in terms of CPU seconds) employed for the three
examples, in the neo-hookean version (timings for the Kirchhoff-Saint Venant problems showed
similar values). All examples were performed on a PC equipped with two processors (only one
was employed, no parallel computing was used) AMD Quad Opteron running at 2.2 GHz and
with 16 Gb RAM, under Scientific Linux and running Matlab v. 2007.

As can be noticed, savings are more impressive the larger the model is. Notice also that in
these examples no tangent stiffness matrix updating was performed, which eventually lead
to some loss of accuracy for very large strains. But even if such an update would have
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Figure 17. uy-contour of the pinched cornea obtained by a full FE model with Newton-Raphson

iterations.
Example FEM+Newton-Raphson | POD+ANM
Beam 1.48 0.11
Hemisphere 225.1 3.92
Cornea 8.64E£04 79.62

Table I. Time (CPU seconds) employed for the solution of the three examples.

been accomplished, the presented technique can be considered as very competitive for some

applications.

5. CONCLUSIONS

In this paper we study a technique for the construction of reduced models of hyperelastic
solids. It is based on the use of model reduction techniques (based upon Proper Orthogonal
Decomposition or Karhunen-Loeéve methods) and an asymptotic expansion of the solution in
the neighbourhood of the last converged equilibrium point. This technique was previously
introduced in [2I] for linear (finite strain) elastic solids and has been generalized here for
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Figure 18. The loading factor vs. minimum displacement for the Pinched cornea. Neo-hookean model.

hyperelastic materials involving material non-linearities.

These two ingredients render a method with some very attractive features, such as the use
of very few degrees of freedom (up to ten in the examples showed in this paper) and the need
of only one tangent stiffness matrix within the region covered by the radius of convergence
of the asymptotic expansion. This radius of convergence is very often relatively high (on the
order of 10% of the total dimensions of the solid for the examples showed herein). Within this
radius of convergence no iterative procedures (typical of modified Newton methods) nor the
update of the stiffness matrix (typical in standard Newton-Raphson methods) are needed.

The examples developed in this work showed that between six to ten eigenmodes are enough
for the vast majority of the examples considered, and usually an expansion of order 4-6 renders
very acceptable results, with excellent accuracy within a vast radius of convergence.

The final simplicity of the resulting method suggest its usage in real-time environments, for
instance, where feedback frequencies of 30 Hz for realistic video streaming are needed. Even
in haptic simulations, where 500-1000 Hz are needed for realistic feedback of forces could be
envisaged as a potential application of this kind of techniques. The evaluation of the true

performance of these algorithms in true prototype codes is currently under investigation by
the authors.
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Figure 19. Six most important eigenmodes for the simulation of the neo-hookean cornea. The
corresponding eigenvalues are: 53.5 (a), 2.44F — 02 (b), 2.09E — 04 (c¢), 7.60E — 08 (d), 3.78E — 10
(e) and 7.19E — 13 (f).

1. H. Abichou, H. Zahrouni, and M. Potier-Ferry. Asymptotic numerical method for problems coupling
several nonlinearities . Computer Methods in Applied Mechanics and Engineering, 191(51-52):5795-5810,
2002.

2. V. Alastrué, B. Calvo, E. Pena, and M. Doblaré. Biomechanical modeling of refractive corneal surgery.
Journal of Biomechanical Engineering-Trasactions of the ASME, 128:150—160, 2006.

3. Jernej Barbi¢ and Doug L. James. Real-time subspace integration for St. Venant-Kirchhoff deformable
models. ACM Transactions on Graphics (SIGGRAPH 2005), 24(3):982-990, August 2005.

4. J. Bonet and R. D. Wood. Nonlinear continuum mechanics for finite element analysis. Cambridge
University Press, 2008.

5. H.-L. Cao and M. Potier-Ferry. An improved iterative method for large strain viscoplastic problems.
International Journal for Numerical Methods in Engineering, 44:155—-176, 1999.

6. B. Cochelin, N. Damil, and M. Potier-Ferry. Asymptotic-numerical methods and Padé approximants for
non-linear elastic structures. International Journal for Numerical Methods in Engineering, 37:1187—1213,
1994.

7. B. Cochelin, N. Damil, and M. Potier-Ferry. The asymptotic numerical method: an efficient perturbation
technique for nonlinear structural mechanics. Revue Europeenne des Elements Finis, 3:281-297, 1994.

8. S. R. Idelsohn and R. Cardona. A reduction method for nonlinear structural dynamics analysis. Computer
Methods in Applied Mechanics and Engineering, 49:253-279, 1985.

9. K. Karhunen. Uber lineare methoden in der wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae, ser.
Al. Math. Phys., 37, 1946.

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-28
Prepared using nmeauth.cls



28

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

NIROOMANDI, ALFARO, CUETO AND CHINESTA

. P. Krysl, S. Lall, and J.E. Marsden. Dimensional model reduction in non-linear finite element dynamics
of solids and structures. Int. J. Numer. Meth. in Engng., 51:479-504, 2001.

M. M. Loeve. Probability theory. The University Series in Higher Mathematics, 3rd ed. Van Nostrand,
Princeton, NJ, 1963.

E. N. Lorenz. Empirical Orthogonal Functions and Statistical Weather Prediction. MIT, Departement
of Meteorology, Scientific Report Number 1, Statistical Forecasting Project, 1956.

S. Niroomandi, I. Alfaro, E. Cueto, and F. Chinesta. Real-time deformable models of non-linear tissues
by model reduction techniques. Computer Methods and Programs in Biomedicine, 91(3):223-231, 2008.
H. M. Park and D. H. Cho. The use of the Karhunen-Loéve decomposition for the modeling of distributed
parameter systems. Chemical Engineering Science, 51(1):81-98, 1996.

D. Ryckelynck. A priori model reduction method for the optimization of complex problems. In Workshop
on Optimal Design of Materials and Structures, Ecole Polytechnique, Palaiseau, Paris (France), 2003.
D. Ryckelynck. A priori hyperreduction method: an adaptive approach. Journal of Computational
Physics, 202(1):346-366, 2005.

D. Ryckelynck. Hyper-reduction of mechanical models involving internal variables. International Journal
for Numerical Methods in Engineering, 77(1):75-89, 2008.

D. Ryckelynck, F. Chinesta, E. Cueto, and A. Ammar. On the a priori Model Reduction: Overview and
recent developments. Archives of Computational Methods in Engineering, 12(1):91-128, 2006.

L. Sirovich. Turbulence and the dynamics of coherent structures part I: coherent structures. Quaterly of
applied mathematics, XLV:561-571, 1987.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global framework for nonlinear dimensionality
reduction. Science, 290:2319-2323, 2000.

J. Yvonnet, H. Zahrouni, and M. Potier-Ferry. A model reduction method for the post-buckling analysis of
cellular microstructures . Computer Methods in Applied Mechanics and Engineering, 197:265—280, 2007.

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-28
Prepared using nmeauth.cls



	INTRODUCTION
	STATE OF THE ART
	The Karhunen-Loève decomposition
	A posteriori reduced-order modelling
	Limitations of standard model reduction techniques
	Asymptotic Numerical Methods
	Problem formulation for Kirchhoff-Saint Venant models
	Asymptotic numerical method for geometrically non-linear problems
	Combined POD-ANM method

	NON-LINEAR MODEL REDUCTION OF HYPERELASTIC MATERIALS
	NUMERICAL EXAMPLES
	Beam in traction
	Kirchhoff-Saint Venant material
	Neo-hookean material

	Pinched hemisphere
	Kirchhoff-Saint Venant material
	Neo-hookean behaviour

	Pinching the human cornea
	Kirchhoff-Saint Venant model
	Neo-hookean model

	Timing

	CONCLUSIONS

