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SUMMARY

This work presents a simple technique for real-time monitoring of thermal processes. Real-time simulation-
based control of thermal processes is a big challenge because high-fidelity numerical simulations are costly
and cannot be used, in general, for real-time decision making. Very often, processes are monitored or
controlled with a few measurements at some specific points. Thus, the strategy presented here is centered
on fast evaluation of the response only where it is needed. To accomplish this, classical harmonic analysis is
combined with recent model reduction techniques. This leads to an advanced harmonic methodology, which
solves in real-time the transient heat equation at the monitored point.
In order to apply the reciprocity principle harmonic analysis is used in the space-frequency domain. Then,
Proper Generalized Decomposition, a reduced order approach, pre-computes a transfer function able to
produce the output response for a given excitation. This transfer function is computed offline and only
once. The response at the monitoring point can be recovered performing a computationally inexpensive
post-processing step. This last step can be performed online for real-time monitoring of the thermal process.
Examples show the applicability of this approach for a wide range of problems ranging from fast temperature
evaluation to inverse problems. Copyright c© 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many thermal manufacturing processes require monitoring temperature and, moreover, being able
to determine from these measurements if the process is running as designed. Typically these
measurements are provided by some sensors (e.g. thermocouples) strategically placed. Consider,
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for instance, an industrial thermal process involving an external excitation, a heat source, moving
on the surface of the considered part. This is typical of composite manufacturing processes. Today
it is still a challenge to post-process these temperature measurements to monitor in real-time the
correct evolution of this process, or to control the heat source, or to identify defects, material
properties or power oscillations, etc. This paper proposes a methodology that circumvents some
inherent difficulties and provides a fast strategy to determine temperature at a desired monitoring
point. More precisely, the approach presented here allows to compute in real-time temperature at
a point of interest given an arbitrary transient heat source traveling along a Neumann or Robin
boundary.

The strategy proposed revolves on the reciprocity principle [1] extensively used in mechanics,
dynamics, electromagnetic or wave scattering problems. Note that, in general, this principle is
not applicable for the heat equation because of the lack of symmetry introduced by the first time
derivative. This paper proposes to adopt the reciprocity principle also to the heat equation. For this,
the heat equation is recast in the frequency domain. Details and proofs on this novel approach are
presented here.

Another novelty is to apply the Proper Generalized Decomposition method (PGD) [2, 3] to the
frequency-domain heat equation. Combined with the reciprocity principle, this then allows real-
time evaluation of the temperature at a specific point of a thermal system in the online stage. More
specifically, the PGD computes for all range of frequencies a generalized transfer function solution
of the frequency-domain heat equation.

Thus a strategy based on an offline and online phase is designed. In the offline phase the
previously cited generalized transfer function is computed at the desired monitoring point. Then,
given the external heat source excitation, a convolution is used to determine online and in real-
time the temperature at the desired monitoring point for any instant. As it will be shown, the online
approximation is so fast that it can be used for control purposes in real-time and on deployed devices.
This opens vast possibilities related to real-time simulation-based monitoring and control [4].

Representations in the frequency domain are appealing for analyzing responses of structures
subjected to dynamic excitations. It is a powerful approach to study the response of structural
systems when initial conditions can be neglected; that is, far enough from the initial transient
response. This framework, which was integrated into the finite element framework from the very
beginning, has been, and still is, extensively used. It is well described in most of the textbooks, some
of them linked to many generations of scientists and engineers [5–8]. This approach is still today an
active research area because several challenges are still open. For instance, separated representations
in the frequency domain were considered in [9–17] for the so-called: variational theory of complex
rays. Obviously, there have been many attempts considering such descriptions within the model
reduction framework; the interested reader can refer to [18] and the references therein. This however
is not the aim of the present paper, thus, no exhaustive state-of-the-art on this topic is presented.

Finally, it is important to note that in spite of the large amount of scientific contributions
using a frequency domain description in solid dynamics, this approach is not standard, to the
author’s knowledge, for thermal models subjected to dynamical forced thermal loads. Certainly, time
domain approximations of thermal models are both efficient and robust and, moreover, model order
reduction is successfully applied in this setting [19–26]. Whereas frequency domain approaches for
thermal studies are scarce [27–31].

2. MONITORING TEMPERATURE AT A SURFACE POINT

This section analyzes the representation of temperature at an arbitrary point of the boundary under
an arbitrary transient external excitation, for instance, a traveling external heat source such as a
moving laser. More specifically, the representation of the solution at the point of interest is first
studied by means of a Green’s function in the space-time domain. Then the applicability of the
reciprocity principle for the transient heat equation with a forced excitation is discussed both in
time and frequency domain. The use of reciprocity (only valid in the frequency domain) allows
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REAL TIME MONITORING OF THERMAL PROCESSES BY REDUCED ORDER METHODS 3

determining a representation of temperature at the desired point for any arbitrary external heat
source.

2.1. Model problem in the space-time domain

Formally, the problem under consideration can be described as follows. Given a time interval
I :=]0, T [ (where T can be chosen arbitrarily large) and a body Ω ⊂ Rd, d ≤ 3, whose boundary ∂Ω
is partitioned into Dirichlet, ΓD, and Robin/Neumann, ΓN , frontiers such that ∂Ω = ΓD ∪ ΓN and
ΓD ∩ ΓN = ∅. The temperature evolution u(x, t), for x ∈ Ω and t ∈ I , is described by the transient
heat equation: 

ρcp∂tu−∇ ·K∇u = 0 in Ω× I ,
u = uD on ΓD × I ,

n ·K∇u = −`(u− uext) + q on ΓN × I ,
u = u0 on Ω× {0},

(1)

where ρ is density (kg/m3), cp is specific heat capacity (J/(kg K)), K is the thermal conductivity
matrix (W/(m K)) and ` is the heat transfer coefficient (W/(m2 K)), uext is the external temperature
(K), n is the exterior unit normal to ΓN (dimensionless) and q = q(x, t), for (x, t) ∈ ΓN × I , is
the inflow forcing excitation (W/m2). The international system of units of measurement is also
employed for length (m) and time (s).

As noted in the introduction, q is typically the heat flux imposed by a laser. The objective in
what follows is to determine a (fast) computable representation of the temperature at an arbitrary
boundary point x0 ∈ ΓN and at any instant t0, with 0 < t0 < T .

Since the problem is assumed linear, (1) can be further simplified. For instance, thermal diffusivity
(thermal conductivity divided by density and specific heat capacity) can be considered the only
material constant in the partial differential equation. Moreover, the increment of temperature with
respect to the external one, i.e. (u− uext), can be defined as the unknown of the problem (that is,
in practice, impose uext = 0).

Finally, for the clarity of the presentation, the model problem studied is further simplified.
However, these simplifications (considering unitary values of the coefficients) do not compromise
the validity of the following developments.

More precisely, the following assumptions are used to define the model problem: homogeneous
Dirichlet boundary conditions, canonical dimensionless form with an isotropic homogeneous
material, and no convective heat exchanges. Note however, that these simplifications, are only done
to simplify the presentation and do not hinder the application of the proposed methodology to real
problems described by (1) as it will be shown in Section 5. Under these circumstances, problem (1)
becomes 

∂tu−∇2u = 0 in Ω× I ,
u = 0 on ΓD × I ,

n · ∇u = q on ΓN × I ,
u = u0 on Ω× {0}.

(2)

2.2. Green’s function and reciprocity in the space-time domain

The objective is to obtain the solution at an arbitrary point and time, (x0, t0). Ideally the desired
value u(x0, t0) could be readily evaluated if the adjoint Green’s function were known. The adjoint
Green’s function is the solution of

∂tG+∇2G = 0 in Ω×]0, t0[,
G = 0 on ΓD×]0, t0[,

n · ∇G = δ(x− x0)δ(t− t0) on ΓN×]0, t0[,
G = 0 on Ω× [t0, T [,

(3)

where the notation of G(x, t;x0, t0) clearly identifies the parametric dependence on (x0, t0).

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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The representation of the desired temperature is then

u(x0, t0) =

∫
ΓN

∫ t0

0

G(x, t;x0, t0) q(x, t)dtdΓ +

∫
Ω

u0(x)G(x, 0;x0, t0)dΩ.

See Appendix A for a detailed presentation. However, in general, the computation of the Green’s
function is by no means a trivial task, for instance when confronted to an arbitrary domain or
inhomogeneous material properties. Consequently, this approach is not used in practice.

An alternative, extensively employed in dynamics, is to use the reciprocity property [1, 32, 33].
However, it is also well-known that it is not applicable to the heat equation because the operator
is not self-adjoint. In order to recall this, let’s write the variational problem equivalent to (2): find
u ∈ S such that

B(u, v) = L(q; v) ∀v ∈ V, (4)

with

V :=
{
v : v(·, t) ∈ H1(Ω), v(x, ·) ∈ L2(I), v = 0 on ΓD × I

}
,

S :=
{
v : v ∈ V, v(x, 0) = u0

}
,

and

B(u, v) =

∫
Ω

∫
I

v ∂tu dtdΩ +

∫
Ω

∫
I

∇u · ∇v dtdΩ,

L(q; v) =

∫
ΓN

∫
I

qv dtdΓ.

Given two different exitations q1 and q2, the corresponding solutions of Eq. (4) can be denoted u1

and u2, respectively. Since both u1 and u2 belong to S the following expressions are also verified:

B(u1, u2) = L(q1;u2) and B(u2, u1) = L(q2;u1). (5)

However, the bilinear form is non-symmetric because of the time derivative, that is B(u, v) 6=
B(v, u). Thus, subtracting both expressions in Eq. (5) attests that standard reciprocity is not satisfied
because the left hand side terms do not cancel out. In conlusion,

L(q1;u2) 6= L(q2;u1).

Therefore, in the space-time domain neither a Green’s function approach or a reciprocity property
can be used in practice to determine temperature at a given point and instance of the surface, say
(x0, t0) ∈ ΓN × I .

2.3. Space-frequency problem for an arbitrary excitation

Another alternative for studying this forced excitation problem is to consider harmonic analysis. In
order to work in the frequency domain the Fourier transform and its inverse are used, namely

v̂(x, ω) = F [v] =

∫ +∞

−∞
v(x, t) e−iωtdt (6a)

and

v(x, t) = F−1[v̂] =
1

2π

∫ +∞

−∞
v̂(x, ω) eiωtdω. (6b)

Remark 1 (Fourier transform properties)
Fourier transforms have been largely studied and they hold a large number of properties (viz.
linearity, translation, etc). In what follows it is important to recall that, in general, v̂ ∈ C; but, for an
even function in time ve, i.e. ve(x,−t) = ve(x, t), F [ve] = v̂e ∈ R; whereas, for an odd function in
time vo, i.e. vo(x,−t) = −vo(x, t), F [vo] is imaginary, i.e. F [vo] ∈ iR. For an odd function in time
vo, v̂o is redefined as the imaginary part of F [vo]. Thus, F [vo] = iv̂o with v̂o ∈ R.

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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REAL TIME MONITORING OF THERMAL PROCESSES BY REDUCED ORDER METHODS 5

Applying the Fourier transform to problem (2) it becomes
iωû−∇2û = 0 in Ω,

û = 0 on ΓD,
n · ∇û = q̂ on ΓN .

(7)

Remark 2 (Long-term forced solution)
Note that the harmonic solution is only concerned with the long-term forced solution and
consequently it does not depend on the initial condition. Standard approaches should be used for
evaluating the transient regime, which, in practice, decays rapidly to the obtained long-term solution.

The variational form associated to the strong form problem described in (7) reads: find û ∈
H1

ΓD
:=
{
v ∈ H1(Ω) : v = 0 on ΓD

}
such that(

∇û,∇v̂
)

+ iω
(
û, v̂
)

=
〈
q̂, v̂
〉
∀v̂ ∈ H1

ΓD
, (8)

where (
û, v̂
)

=

∫
Ω

û v̂∗dΩ ,
(
∇û,∇v̂

)
=

∫
Ω

∇û · ∇v̂∗dΩ and
〈
û, v̂
〉

=

∫
ΓN

û v̂∗dΓ

denote, respectively, the L2 scalar product of functions û and v̂ in Ω and its traces over ΓN . Note
also, that v̂∗ indicates the complex conjugate of v̂, since both û and v̂ are, in general, in C.

It is important to observe that Eq. (8) is not Hermitian but it is symmetric, the later property
reveals sufficient and also crucial for reciprocity.

2.4. Arbitrary excitation implies solving two problems with real excitation

Given any arbitrary excitation, q(x, t), it can always be decomposed in the sum of an even and odd
function, namely

q(x, t) = qe(x, t) + qo(x, t) =
1

2

(
q(x, t) + q(x,−t)

)
+

1

2

(
q(x, t)− q(x,−t)

)
.

Recalling the Fourier transform properties: F [q] = q̂ = F [qe] + F [qo] = q̂e + iq̂o with q̂e(x, ω) ∈ R
and q̂o(x, ω) ∈ R. Moreover, it is important to notice that, the decomposition of q(x, t) in the sum of
an even and odd excitation produces two identical problems with a real excitation whose solutions
are the real and the imaginary part of the solution of (7). More precisely, because of the linearity of
(7) and Remark 3, the solution of û of (7) can also be decomposed as û = ûe + iûo, which in turn
are the solutions of

iωûe −∇2ûe = 0 in Ω,
ûe = 0 on ΓD,

n · ∇ûe = q̂e on ΓN ,

and


iωûo −∇2ûo = 0 in Ω,

ûo = 0 on ΓD,
n · ∇ûo = q̂o on ΓN .

(9)

Then, in the time domain the original solution can be recovered by means of the inverse Fourier
transform, namely u = F−1[û] = F−1[ûe] + F−1[iûo] = ue + uo.

In summary, it is possible to find the solution of (7) —or (8)— for any arbitrary excitation q̂
solving twice the same problem but with different real excitations, one corresponding to q̂e(x, ω)
and the other to q̂o(x, ω).

Remark 3 (Imaginary excitation)
Suppose u is solution of the following problem

iωu−∇2u = 0 in Ω,
u = 0 on ΓD,

n · ∇u = q on ΓN .

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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Then, v = iu is solution of 
iωv −∇2v = 0 in Ω,

v = 0 on ΓD,
n · ∇v = iq on ΓN .

Hint: replace u = −iv in the first problem and obtain the second one. Obviously, this follows directly
from linearity but it is explicitly recalled for didactic purposes.

2.5. Reciprocity in space-frequency holds for a real excitation

Given two real harmonic excitations q̂1 and q̂2, the corresponding solutions of (8) are denoted by û1

and û2, respectively. Then, since both solutions belong to H1
ΓD

, the following expressions hold:(
∇û1,∇û2

)
+ iω

(
û1, û2

)
=
〈
q̂1, û2

〉
, (10a)(

∇û2,∇û1

)
+ iω

(
û2, û1

)
=
〈
q̂2, û1

〉
. (10b)

Substracting (10b) from (10a) gives(
∇û1,∇û2

)
−
(
∇û2,∇û1

)
+ iω

[(
û1, û2

)
−
(
û2, û1

)]
=
〈
q̂1, û2

〉
−
〈
q̂2, û1

〉
, (11)

which clearly shows that reciprocity is satisfied in the frequency domain, namely〈
q̂1, û2

〉
=
〈
q̂2, û1

〉
, (12)

if the following conditions hold(
∇û1,∇û2

)
=
(
∇û2,∇û1

)
and

(
û1, û2

)
=
(
û2, û1

)
, (13)

which is precisely the case when both q̂1 and q̂2 are real. See Appendix B for a detailed proof of
Eqs. (12).

Remark 4 (Reciprocity with convective heat flux)
In the general case when convective heat fluxes are considered, see (1), reciprocity also holds.
Linearity is exploited solving for (u− uext) instead of the original temperature u. Accordingly,
equations (10) are modified as follows:(

∇û1,∇û2

)
+ iω

(
û1, û2

)
+
〈
`û1, û2

〉
=
〈
q̂1, û2

〉
,(

∇û2,∇û1

)
+ iω

(
û2, û1

)
+
〈
`û2, û1

〉
=
〈
q̂2, û1

〉
.

Subtracting again these two previous equations the same equation (11) is obtained (recall the
symmetry of the L2 scalar products of functions). Thus reciprocity also holds for convective heat
flux following the proof in Appendix B.

2.6. Using reciprocity to monitor temperature

Recall that the final objective is to monitor temperature at a given point for an arbitrary external
excitation, i.e. evaluate u(x0, t0) for (x0, t0) ∈ ΓN × I . For this purpose, it is necessary to determine
û(x0, ω) for an arbitrary external excitation, q̂, in the space-frequency domain. The conclusion of
Section 2.4 is that two problems, which are shown in strong form by (9), with real excitations q̂e
and q̂o, such that q̂ = q̂e + iq̂o, must be solved to find û(x0, ω) = ûe(x0, ω) + iûo(x0, ω).

Suppose, that for each frequency, ω ∈ R, one could also determine the corresponding solution
ĥ(x, ω;x0) under a Dirac flux imposed at the monitoring point x0, δ(x− x0), namely

iωĥ−∇2ĥ = 0 in Ω,

ĥ = 0 on ΓD,

n · ∇ĥ = δ(x− x0) on ΓN .

(14)

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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Since all the excitations are real, reciprocity, see (12), holds and consequently〈
δ(x− x0), ûe

〉
=
〈
q̂e, ĥ

〉
and

〈
δ(x− x0), ûo

〉
=
〈
q̂o, ĥ

〉
,

that is,
ûe(x0, ω) =

〈
ĥ, q̂e

〉
and ûo(x0, ω) =

〈
ĥ, q̂o

〉
,

which implies that

û(x0, ω) =

∫
ΓN

ĥ(x, ω;x0) q̂(x, ω) dΓ. (15)

See Remark 5 for a detailed deduction of (15).
Once the temperature is monitored at the desired point in the space-frequency domain, the inverse

Fourier transform is employed to obtain the desired final representation of temperature in the space-
time domain. That is, the objective is to determine

u(x0, t) = F−1
[
û(x0, ω)

]
=

∫
ΓN

F−1
[
ĥ(x, ω;x0) q̂(x, ω)

]
dΓ.

This expression can be further simplified using the convolution theorem [34, 35], recall

F−1
[
ĥ(x, ω;x0) q̂(x, ω)

]
=

∫ t

0

h(x, τ ;x0) q(x, t− τ)dτ,

where

h(x, τ ;x0) = F−1[ĥ] =
1

2π

∫ +∞

−∞
ĥ(x, ω;x0) eiωtdω. (16)

Thus, the representation of the temperature at the desired point x0 ∈ ΓN is

u(x0, t) =

∫
ΓN

∫ t

0

(
1

2π

∫ +∞

−∞
ĥ(x, ω;x0) eiωtdω

)
q(x, t− τ) dτdΓ,

which can be written in a more compact form and for any instance t0 ∈ I =]0, T [ as

u(x0, t0) =

∫ t0

0

〈
h(x, τ ;x0), q(x, t0 − τ)

〉
dτ. (17)

Recall that q ∈ R.
This is a compact and useful expression, it only requires knowledge of the external imposed

excitation q up to the desired monitored instant t0 (causality). Moreover, and this is a major point and
advantage, (17) does not reflect the decomposition of the excitation in even and odd contributions.
Thus, if the transfer function, h(x, τ ;x0), is known, (17) can be applied directly for any arbitrary
excitation q(x, t).

However this expression presents a major drawback: the inverse Fourier transform of ĥ, solution
to problem (14), must be known. This implies solving (14) for each frequency ω in the range needed
by the arbitrary excitation. Thus, in general, the representation (17) cannot be used in practical
problems.

The next section circumvents this drawback and proposes a methodology to obtain an expression
for the generalized transfer function ĥ, solution of (14), for the all range of realistic frequencies.
This expression can then be substituted in (17) to determine the desired temperature. Moreover,
(17) can be evaluated in real-time.

Remark 5 (Reconstruction of solution)
To determine (15) it is important to recall that q̂e and q̂o are real. Thus, the scalar products on ΓN ,

û(x0, ω) = ûe(x0, ω) + iûo(x0, ω) =
〈
ĥ, q̂e

〉
+ i
〈
ĥ, q̂o

〉
,

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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can be rewritten as

û(x0, ω) =

∫
ΓN

ĥ q̂e dΓ + i

∫
ΓN

ĥ q̂o dΓ =

∫
ΓN

ĥ(q̂e + iq̂o) dΓ =

∫
ΓN

ĥ q̂ dΓ,

and do not present any complex conjugate. In fact, it is important to note that

û(x0, ω) =

∫
ΓN

ĥ q̂ dΓ =
〈
ĥ, q̂∗

〉
6=
〈
ĥ, q̂
〉
.

Remark 6 (Inverse Fourier Transform of the generalized transfer function)
The inverse fourier transform of the generalized transfer function, ĥ(x, ω;x0), see (16) is computed
using the FFT algorithm. Only periodic signals with a finite number of harmonics can be
exactly represented with the discrete Fourier transform, and thus non-periodic signals involving
a continuous spectrum of frequencies can only be approximated. The range of frequencies included
in the generalized transfer function must be chosen accordingly.

Remark 7 (Convective heat flux)
In the general case described in (1), when convective fluxes are present, the computation of
the generalized transfer function is modified. As noted in Remark 4, reciprocity also holds
when convective fluxes are considered. Thus, the generalized transfer function problem originally
described by (14) must have on the Neumann boundary the convective heat flux, namely

iωĥ−∇2ĥ = 0 in Ω,

ĥ = 0 on ΓD,

n · ∇ĥ = −`ĥ+ δ(x− x0) on ΓN .

The same development as before can be applied and, consequently, equations (15) and (17) also
hold.

3. COMPUTING THE GENERALIZED TRANSFER FUNCTION

This section is aimed at computing a generalized transfer function, ĥ(x, ω;x0), for a desired and
predefined range of frequencies, Iω. This transfer function needs to be computed only once, and
preferably offline. Since it is determined in the frequency domain, its inverse Fourier transform is
later evaluated in order to use equation (17) as a simple and inexpensive post-process of any given
excitation q(x, t).

A major contribution of the PGD approach is to view the frequency, ω, as a new coordinate [4].
Thus, instead of solving problem (14) for each frequency, the objective is to solve, only once, a
more general problem with ω as an extra coordinate, namely find ĥ(x, ω;x0) satisfying

iωĥ−∇2ĥ = 0 in Ω× Iω,

ĥ = 0 on ΓD × Iω,

n · ∇ĥ = δ(x− x0) on ΓN × Iω,

(18)

where Iω is the predefined range of variation of ω. There is a price to pay, the increased
dimensionality. However, as shown numerically in [4] and references therein, the complexity
of the PGD does not grow exponentially with the space dimension. On the contrary, numerical
evidence shows that it scales linearly for a moderate number of dimensions. This is obvious for
each resolution of the greedy algorithm. But for large number of dimensions (> 100) or in non-
symmetric problems the number of terms required for a given precision is sensible to the number of
dimensions. In any case, in this problem, consideration of ω as an extra coordinate does not imply
losing efficiency when obtaining an accurate solution.

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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The weak problem equivalent to (18) is obtained using a weighted residual argument, namely,
find ĥ for all v̂ in the selected appropriate functional space such that

A(ĥ, v̂) = L(v̂) (19a)

with

A(ĥ, v̂) :=

∫
Iω

(
∇ĥ,∇v̂

)
dω +

∫
Iω

iω
(
ĥ, v̂
)
dω (19b)

L(v̂) :=

∫
Iω

v̂∗(x0, ω)dω. (19c)

The PGD approach assumes that the solution of (19), ĥ(x, ω;x0), can be approximated by a rank-n
separable function, ĥn(x, ω;x0), namely,

ĥ(x, ω;x0) ≈ ĥn(x, ω;x0) =

n∑
s=1

Xs(x)W s(ω) = ĥn−1(x, ω;x0) +Xn(x)Wn(ω), (20)

where, for s = 1, . . . , n, Xs ∈ H1
ΓD

and W s ∈ L2(Iω). Note that all these functions give values in
C.

A greedy algorithm [36] is used to construct this approximation, that is, to determine the unknown
functions Xs and W s in Eq. (20). In other words, a progressive scheme is designed to compute
each new term with all the information at hand. The sequence is stopped with an appropriate error
estimator [37–39]. Note that each new term implies the computation of a product of unknown
functions, Xn and Wn. Thus a nonlinear scheme must be designed. It is standard to use a fixed
point alternating direction algorithm because it has proven robust in former works [3,4]. To simplify
notation each iterate approximating Xn and Wn is denoted by R and S. Hence, the nonlinear
problem to solve for each new term of ĥn(x, ω;x0) is obtained substituting in (20) in (19a), in
order to compute R and S (iterates of Xn and Wn) such that

A(RS, v̂) = L(v̂)−A(ĥn, v̂) (21)

with trial functions on the tangent manifold

v̂ = v̂R(x)S(ω) +R(x) v̂S(ω) ∀v̂R ∈ H1
ΓD

and ∀v̂S ∈ L2(Iω).

The alternating direction scheme, detailed below, consists in, for instance, updating the space
function R from a given S assumed known, and then compute S from the just updated function
R. This iteration continues until reaching convergence of both R and S. That is, the two stages for
each iteration are:

1. Find R ∈ H1
ΓD

(S assumed known) such that

A(RS, v̂R S) = L(v̂R S)−A(ĥn−1, v̂R S) ∀v̂R ∈ H1
ΓD
. (22a)

2. Find S ∈ L2(Iω) (R assumed known) such that

A(RS,R v̂S) = L(R v̂S)−A(ĥn−1, R v̂S) ∀v̂S ∈ L2(Iω). (22b)

Then at convergence, Xn and Wn are updated by R and S.

3.1. Updating the space function

For each new term in the series defined by (20) and each iteration described by (22), equation (22a)
must be solved. Taking advantage of the separated structure of the solution and also of A(·, ·), see
(19b), equation (22a) can be rewritten as, find R ∈ H1

ΓD
for all v̂R ∈ H1

ΓD
(S assumed known) such

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
Prepared using nmeauth.cls DOI: 10.1002/nme



10 J.V. AGUADO, A. HUERTA, F. CHINESTA AND E. CUETO

that

αS
(
∇R,∇v̂R

)
+ iβS

(
R, v̂R

)
= γS v̂∗R(x0)−

n−1∑
s=1

αS
s

(
∇Xs,∇v̂R

)
+ iβS

s

(
Xs, v̂R

)
, (23)

where the coefficients, which must be computed for each instance of S, are defined as

αS =
(
S, S

)
Iω

, βS =
(
ω S, S

)
Iω

, γS =
(
1, S
)
Iω

,

αS
s =

(
W s, S

)
Iω

, and βS
s =

(
ωW s, S

)
Iω
.

Bear in mind that in previous definitions
(
·, ·
)
Iω

denotes the L2 scalar product of complex functions
in Iω.

After the corresponding discretization of the spatial domain with a standard combination of linear
shape functions, the system of linear equations induced by (23) presents a conductivity and a mass
matrix. These matrices are computed only once because they are constant for each iteration and for
each term. Moreover, it is important to note that they are symmetric but not Hermitian, which will
preclude, for instance, Cholesky or conjugate gradient schemes.

3.2. Updating the frequency function

Similarly, the second stage, described by equation (22b), can also be rewritten using separated
structure of the solution and also of A(·, ·) as, find S ∈ L2(Iω) for all v̂S ∈ L2(Iω) (R assumed
known from the previous stage) such that

αR
(
S, v̂S

)
Iω

+ iβR
(
ω S, v̂S

)
Iω

= γR
(
1, v̂S

)
Iω
−

n−1∑
s=1

αR
s

(
W s, v̂S

)
Iω

+ iβR
s

(
ωW s, v̂S

)
Iω
, (24)

where the coefficients, which must be computed for each instance of R, are defined as L2 products
over the spatial domain,

αR =
(
∇R,∇R

)
, βR =

(
R,R

)
, γR = R∗(x0),

αR
s =

(
∇Xs,∇R

)
, and βR

s =
(
Xs, R

)
.

The lack of derivatives with respect to ω in the problem (18) induces an point-wise algebraic
equation for S. Piecewise discontinuous approximations of S will induce uncoupled scalar
equations. Whereas continuous approximations over the one-dimensional range of frequencies lead
to a symmetric but not Hermitian matrix on the left-hand-side of (24), as in the previous case.

4. EXTENSION TO MULTI-PARAMETRIC AND INVERSE PROBLEMS

The approach presented here has a potentiality that exceeds real-time monitoring of temperature at a
given location and can also be used for other thermal studies such as optimization, inverse analysis,
non-destructive testing, etc. Here, two simple extensions are presented.

4.1. Multi-parametric models

As a simple demonstrator, thermal conductivity is chosen as an extra parameter. The underlying idea,
already exploited in [4, 40], is to solve multi-parametric models capitalizing the advantages of the
PGD framework. A multi-parametric model is an extension of the procedure detailed in the previous
section. Besides frequency as an extra-coordinate the generalized transfer function can encompass
other parameters as extra coordinates. For instance, parameters characterizing the geometry, the
constitutive behavior or the boundary conditions could be incorporated. The PGD methodology
allows to compute efficiently a multi-parametric solution defined in a high-dimensional space

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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REAL TIME MONITORING OF THERMAL PROCESSES BY REDUCED ORDER METHODS 11

(spatial coordinates, frequency and other parameters). Multi-parametric models are of great interest
in science and engineering because they make possible real-time simulation, optimization and
inverse analysis, as illustrated in [4, 41].

For instance, the thermal example that motivates this work can also be posed as an inverse
analysis to find the actual conductivity of a certain material from the temperature provided by a
thermocouple placed at location x0. Then, independently of the inverse identification method used,
it is obvious that fast identification procedures can be envisaged if an approximation of temperature
at the monitoring point x0 for any instance t can be computed in real-time for any conductivity k,
i.e. u(x0, t, k).

This approach can also be used for non-destructive testing. The monitored temperature being
different from the computed one (obtained with the undamaged material parameters) triggers the
inverse analysis to determine the “damaged” material parameter, which can be solved readily
because a generalized solution for any material parameter is available.

The inverse problem is not solved in detail at this point because it is outside the scope of this work.
Nevertheless, here, the generalized solution for any conductivity is provided. Once this solution
is known, any standard inverse algorithm could be implemented. The key point is to determine
the generalized transfer function, ĥ, for any value of the conductivity k ∈ Ik, where Ik is the
desired range of conductivities. Problem (18) is now rewritten with the new parameter, conductivity,
considered as an extra-coordinate. Thus the new problem consist in finding ĥ(x, ω, k;x0) that
satisfies 

iωĥ−∇ · (k∇ĥ) = 0 in Ω× Iω × Ik,

ĥ = 0 on ΓD × Iω × Ik,

n · k∇ĥ = δ(x− x0) on ΓN × Iω × Ik.

The PGD approach must now determine an approximation ĥn(x, ω, k;x0) to the solution of the
previous problem, namely

ĥ(x, ω, k;x0) ≈ ĥn(x, ω, k;x0) =

n∑
s=1

Xs(x)W s(ω)Ks(k),

where extra separated functions must be determined; more precisely, those directly linked to
conductivity, namely Ks(k) for s = 1, . . . , n. The same greedy approach described earlier can be
applied with now an extra stage in the nonlinear solve to determine each Ks(k). Once the multi-
parametric solution has been computed, it can be postprocessed in the same way explained in
Section 2.6 in order to recover the solution at x0 and any time t. The objective is that temperature
at the monitoring point x0 for any instance t can be computed in real-time for any conductivity k;
that is, equation (17) is extended to approximate u(x0, t, k), namely

u(x0, t, k) = F−1[û](x0, t, k) =

∫ t

0

〈
h(x, τ, k;x0), q(x, t0 − τ)

〉
dτ, (25)

where h = F−1[ĥ].
As noted earlier, the crucial point is to determine a reasonable approximation of the generalized

transfer function ĥ(x, ω, k;x0). The example presented in Section 5 is extended to demonstrate that
such an approximation can be evaluated.

4.2. Inverse problem: an amplitude time-modulated calibration of excitation

This inverse problem considers that the amplitude of the power given by a laser varies with time
because of uncontrolled power supply and has to be calibrated. Suppose an excitation defined by
α(t)q(x, t) where, as assumed in previous sections, q(x, t) is given (and, thus, known) while its
amplitude, which varies with time α(t) is not know. Temperature at the monitoring point x0 for any
instance t is obtained following the procedure described in Section 2.4 for this new excitation and
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equation (17) becomes

u(x0, t) =

∫ t

0

α(t0 − τ)

∫
ΓN

h(x, τ ;x0) q(x, t− τ) dΓdτ.

Then, given a discretization of the unknown function α(t), for instance

α(t) =

nfit∑
j=1

αiNi(t), (26)

where Ni(t) are known interpolation functions, the coefficients α ∈ Rnfit can be determined by a
least-squares technique. This implies solving the normal equations Aα = b.

Given the series of instants {t1, t2, . . . , tm} (with m ≥ nfit) at which temperature is going to be
measured, the matrix of the normal equations is determined once and for all, during the offline phase,
as

A = [aij ] =

[ m∑
r=1

ψi(tr)ψj(tr)

]
with

ψi(tr) =

∫ tr

0

Ni(tr − τ)

∫
ΓN

h(x, τ ;x0) q(x, tr − τ) dΓdτ.

Then, the measured values of temperature, umeas(x0, tr), at x0 and for the series of instants
{t1, t2, . . . , tm} allow to compute, in the online phase, the independent term

b = [bi] =

[ m∑
r=1

ψi(tr)umeas(x0, tr)

]
.

Finally the normal equations Aα = b are solved.

5. NUMERICAL EXAMPLES

5.1. Single-ply composite cylinder: verification of the proposed methodology

Aiming to demonstrate the ability of the proposed method to monitor transient models, a 2D
problem, which involves a heat flux moving over the outer boundary of a cylinder, is proposed.
The outer boundary is also subjected to heat convection while the other boundaries are adiabatic.
Figure 1 depicts the problem statement. The initial boundary value problem formerly described as

ρcp∂tu−∇ · k∇u = 0 in Ω× I ,
n · k∇u = −`(u− uext) + q on ΓOut × I ,
n · k∇u = 0 on ∂Ω/ΓOut × I ,

u = u0 on Ω× {0},

(27)

where ρ = 1kg/m3 is density, cp = 1J/(kg K) is specific heat capacity, k = 1 W/(m K) is isotropic
thermal conductivity and ` = 1W/(m2 K) is the heat transfer coefficient, uext = 298K is the external
temperature, ΓOut is the outer boundary where the laser impacts and with a radius of 1.0m,

q(ξ, t) = 500 exp
(
−50(2ξ − πt)2

)
W/m2 (28)

is the inflow forcing excitation, and ξ is the local tangent coordinate along ΓOut. The temperature is
measured (i.e. the point where temperature is monitored) at the middle point of the inner boundary.
Finally, the thickness of the single-ply is 0.05m.

The range of frequencies considered is f ∈ [−250, 250] Hz or, in terms of the angular frequency
used in all previous sections, ω ∈ Iω := [−500π, 500π]. Such a large interval of frequencies has been
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Figure 1. Single-ply composite cylinder: problem statement.

chosen in order to be able to make a fair comparison with the reference solution. The time-step of a
signal and the maximum frequency that can be computed from it are related by the Nyquist-Shannon
theorem [42] as follows:

fmax = 1/2∆t. (29)

The FE reference solution is obtained with a standard time-marching Crank-Nicolson scheme whose
time-step is chosen for accuracy considerations. In practice, a time-step of 2ms is accurate enough,
and thus the maximum frequency to be considered is 250 Hz. With that frequency, the time signal
recovered after performing the inverse Fourier transform has the same time-step as the reference
solution.

The range [−250, 250] Hz is clearly an overkill because the frequency range of the imposed heat
flux q is in [−20, 20] Hz. This later range is determined because a Fourier transform of the heat flux
seen by a point on ΓOut reveals that harmonics of frequency greater than 20 Hz transfer a negligible
amount of energy to the system.

Moreover, note that for a particular negative frequency, the transfer function must be the complex
conjugate of its symmetric (positive) counterpart. This is also a consequence of the Nyquist-
Shannon theorem. Here negative frequencies are also computed to numerically verify that the PGD
method reproduces a symmetric real part and an anti-symmetric imaginary part.

As discussed in Section 3 and depicted in (20), PGD is used to determine an approximation, say
ĥn, of the transfer function, ĥ, solution of problem (18). In fact, Figure 2 shows the relative residual
of (19) as the number of modes n increases. The normalized residue is computed using the L2 norm
of the discrete residue normalized by the norm of the rigth-hand-side of (19a).

For demonstration purposes tolerances are taken small, beyond engineering accuracy. However,
19 terms induce negligible (below 10−8!) normalized relative residuals. The average number of
fixed-point iterations is 25 (same tolerance of 10−8). Since 19 terms are necessary to reduce the
residual norm below 10−8, the total amount of FE solves in the offline stage is around 475.

Note that spatial modes and frequency modes are localized. Figures 3 and 4 show respectively the
first three spatial and frequency modes. These modes are X1, W 1, X2, W 2, X3 and W 3. Since all
of them are complex, the real part and the imaginary part are depicted. As expected, the real part of
the frequency modes is symmetric, while the imaginary part is anti-symmetric.

Notice that a uniform spatial discretization is used with 770 linear quadrilateral elements of
size 0.01m, this implies 930 nodes with scalar complex unknowns. A non-uniform discretization
is used for frequency because it varies more rapidly near the origin. The mesh consists of 500
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Figure 2. Single-ply composite cylinder: convergence of the generalized frequency transfer function.

linear elements refined around the zero-frequency using a cubic polynomial ω3 for the element
length. Since frequency modes do not involve any derivative their corresponding algebraic equation
can be solved point-wise. However, a FE discretization is introduced to approximate the frequency
separated functions in a least-squares sense.

To further verify that the PGD approximation of the generalized transfer function ĥn is
reasonable, it is evaluated at the extreme frequencies 0 and 250 Hz and then compared with a direct
finite element (FE) resolution of (14) for those precise frequencies. Figure 5 depicts the difference
between both approximations. The generalized solution gives approximations very close to those
obtained with an FE computation, errors are always below 10−5.

Finally, once ĥn is determined and its inverse Fourier transform computed, hn = F−1[ĥn],
equation (17) is used to determine the temperature at the desired monitoring point x0 for a given
excitation. The evaluation of the PGD approximation and its inverse Fourier transform is performed
only once for any excitation, it is the offline phase. The actual application of the convolution, see
equation (17), for any excitation in order to determine the temperature at the monitored point is the
online or post-process stage. Here this is done for the imposed external flux q(ξ, t), see equation (28),
in the time interval t ∈ [0, 1] seconds, which is the window of interest. The convolution integral is
discretized in time using the time-step that comes naturally from the greatest frequency considered
in the generalized transfer function. This follows the previous discussion on the use of the Nyquist-
Shannon theorem [42].

The evolution with time of the temperature at x0 is shown in Figure 6. The reference solution
(solid red line) is computed with FE and a Crank-Nicolson time-marching scheme. This scheme
uses a ratio ∆t/∆x2 = 20 which has errors below 0.4 10−4 compared with a reference solution
using ∆t/∆x2 = 1/2 to ensure an accurate transient response. Note that each time-step requires the
resolution of a system of equations whose dimension is determined by the FE mesh used.

It is clear from this figure that the proposed method produces an accurate response. However, it is
more important to note that the online phase for PGD-based approximation of temperature, which is
determined at 500 instants (equispaced by 2ms), requires with MATLABr on a laptop 0.34s, which
is almost a third of the physical time 1s. This confirms that given the generalized transfer function
hn and an imposed heat flux q(ξ, t) along the outer boundary, the temperature at a point x0 can be
evaluated in real-time (actually faster than real-time!). Note that this 35 times faster than the full FE
solution, which needs of around 12 seconds to be computed with a standard commercial code.
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Figure 3. Single-ply composite cylinder: first 3 PGD spatial modes real (left) and imaginary (right).

5.2. Multi-ply composite cylinder: response verification and imperfection influence

An imperfection is introduced in the previously studied problem. That is, the same geometry, see
Figure 1, and the same equations, see (27), with the same parameters are considered. However, now a
zero thickness imperfection of a prescribed length is introduced in the middle of the ply just between
the inner boundary and the outer boundary and centered at the measuring point. This imperfection
models a possible delamination of the composite and it is modeled as a perfect adiabatic boundary.
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Figure 4. Single-ply composite cylinder: first 3 PGD frequency modes.

Obviously this imperfection affects convergence but not drastically, see Figure 7 for a delamination
length of 0.2m. Its influence is more clear when plotting modes or the generalized transfer function.
In fact, the same comparison shown earlier (that is, the difference between a PGD approximation
of the generalized transfer function ĥn and the direct FE) is shown in Figure 8 for the extreme
frequencies 0 and 250 Hz. Recall that computations are still done for the whole range [−250, 250]
Hz to further verify the symmetric nature of the solution. Again errors are always below 10−5.

As discussed at the end of Section 2.3, the generalized transfer function problem (8) is not
Hermitian but it is symmetric. The later property reveals sufficient for reciprocity, but it is well
known that there is no proof of monotonic convergence for the PGD method when confronted to
non Hermitian operators. Thus, the convergence shown in Figure 7 shows a slight increase of the
residual norm for the last computed terms.

The influence of the imperfection is even more clear when plotting temperature evolution at the
measuring point. Figure 9 shows three cases with their corresponding (expensive) comparison with
FE, the no defect case, same curves shown in Figure 6, and two defects, one of length 0.1m, the
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Figure 5. Single-ply composite cylinder: difference between PGD and FE solutions, real (left) and imaginary
(right) parts, for frequencies 0 Hz (top) and 250 Hz (bottom).
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other with length 0.2m. Since the computer cost of the reference FE solution is similar to the one of
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Figure 7. Multi-ply composite cylinder: convergence of the generalized frequency transfer function.

Absolute error Re: (0.00)

 

 

−3

−2

−1

0

1

2

3

x 10
−12 Absolute error Im: (0.00)

 

 

−10

−8

−6

−4

−2

0

x 10
−23

Absolute error Re: (250.00)

 

 

−5

−4

−3

−2

−1

0

1

x 10
−6 Absolute error Im: (250.00)

 

 

0

1

2

3

4

5

6

7

x 10
−6
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(right) parts, for frequencies 0 Hz (top) and 250 Hz (bottom).
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Figure 9. Multi-ply composite cylinder: comparison of the temperature evolution at point x0 for the proposed
PGD-based solution (discontinuous) and the standard FE (solid) for different defect lengths.

the previous section, its overhead with respect to the prosed method is also of the same magnitude.
The number of terms used in the PGD expansion is 21 and 25 for the short and long imperfection,
respectively, recall that 19 were used with no imperfection. Thus, the imperfection does not increase
the number of terms dramatically.

This methodology clearly shows that in real-time defects can be detected as de difference between
the measured and computed temperature values but further opens the possibility to determine the
defect nature from its thermal signature.

5.3. Multi-parametric extension

As presented in Section 4.1 this PGD-based approach presented here has a potentiality that exceeds
real-time monitoring of temperature at a given location. More precisely, thermal conductivity, k,
can be chosen as an extra parameter. The generalized transfer function is now parametric in k and
consequently, temperature at the monitoring point x0 for any instance t can be computed in real-time
for any conductivity k, i.e. u(x0, t, k), see equation (25).

The single-ply example presented and discussed in Section 5.1 is further generalized for any
conductivity k ∈ [1, 20]W/(m K). In this section, the range of frequencies is up to 60 Hz instead of
250 Hz because there is no need to assess the computational performance of the method compared
to the reference solution. In any case, that the range of frequencies is taken such that the proper
symmetries must be recovered in the computed solution. This is clearly seen in the modes shown in
Figures 10 and 11.

This problem however is much more challenging because there is an extra parameter. But more
important, these difficulties are relevant because variations in thermal conductivity introduce major
changes in the real behavior of the thermal field. This is clearly observed in the modes associated
to conductivity in Figure 11. Note the large variations introduced close to the lower bound of the
thermal range, recall k ∈ [1, 20]W/(m K). That is, for low conductivities solutions must localize
close to the heat source. This has a clear influence in the convergence process of PGD, see Figure
12. Although convergence to engineering precision (0.5 10−2) is obtained with 14 modes, the
rate of convergence is slower compared to space-frequency separated representations computed
in the previous cases. Moreover, if further precision is required (beyond engineering accuracy), the
algorithm fails to converge due to the non Hermitian character of the operator. See [43] for further
details and strategies to overcome this issue. Moreover, regarding the fixed-point convergence of
the multi-parametric problem (i.e. convergence of each greedy algorithm), the average number of
iterations per mode is now increased to 59. Consequently, a total of 826 FE solves are done during
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Figure 10. Single-ply composite cylinder: first 3 PGD spatial modes real (left) and imaginary (right).

the offline phase to compute the necessary 14 terms of the PGD expansion. Note, that a brute force
approach sampling (no functional approximation) of the generalized transfer function at the 121
frequency and 77 conductivity nodes would imply 9317 FE solves.

Nevertheless, the PGD-based scheme converges globally although its local behavior, precisely
near the lower bound for conductivity, shows less precision compared to larger values of k. This
is better appreciated in the temperature evolution at the measuring point. Figure 13 shows this
evolution for several values of the conductivity with their corresponding (expensive) comparison
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Figure 11. Single-ply composite cylinder: first 3 PGD frequency (left) and thermal conductivity (right)
modes.

with FE. Results are in very good agreement with the reference FE solution and precision increases
as k increases.

Now, since the largest frequency considered for the evaluation of the generalized transfer
function is 60Hz, the response at the measuring point x0 is recovered with a time-step of 8ms,
recall (29). Consequently, the computational time needed for the online phase is faster than in
previous examples, only 0.09 seconds. Whereas, the FE reference solution is computed with the
same time-marching scheme described in previous sections (∆t = 2ms) because this implies that
20 ≤ k∆t/∆x2 ≤ 400. Therefore, both solutions are not strictly comparable. The computational
time associated to the FE solution remains unchanged (around 12 seconds) and the online stage of
the proposed approach is now 133 times faster than de FE one.

In any case, this approach clearly demonstrates its applicability to inverse problems where the
measured temperature is used to determine thermal conductivity. Remember, that the temperature
evolution at the measuring point is obtained extremely fast.
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Figure 12. Multi-parametric convergence of the generalized frequency transfer function.
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Figure 13. Multi-parametric comparison of the temperature evolution at point x0 for the proposed PGD-
based solution (discontinuous) and the standard FE (solid) for thermal conductivities.

5.4. Amplitude identification

This example shows the applicability of the proposed approach for the model case of identification
discussed in Section 4.2. First, some measured temperature is needed, that is, umeas(x0, tr) for
r = 1, . . . ,m. In this case, the “measured” temperature is synthetically generated at m = 501
instances (∆t = 2ms) with an inflow forcing excitation equal to the one defined in (28) whose
amplitude is modulated by [1 + cos(2πt)]/2. That is, a FE code with a Crank-Nicolson time-
marching scheme is used to generate the temperature data at the monitoring point under an external
heat source

q(ξ, t) = 250[1 + cos(2πt)] exp
(
−50(2ξ − πt)2

)
W/m2.
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Figure 14. Amplitude identification: synthetically generated temperature measurements (left) used to
calibrate the amplitude of the heat source (right), calibrated values (blue markers) and reference solution

(solid red line).

Second, this data is used to determine the laser input amplitude following the procedure described
in Section 4.2. The amplitude of the excitation is assumed not known and it is approximated
following a piecewise linear approximation with nfit = 50 (i.e. a uniform mesh of 51 nodes each
20ms), see (26). Figure 14 shows the synthetically generated temperature at the monitoring point
(left) and a comparison (right) between the approximated nodal values (blue markers) and the
reference amplitude (solid red line). The coincidence is remarkable.

6. CONCLUSIONS

This paper proposes a novel approach to monitor in real-time thermal processes. This technique
provides temperature evolution at a particular point in the domain, usually, where thermocouples
will be placed. The online computation is drastically speed-up. This can be used in a large number
of problems ranging from a simple surveillance of the process to a simulation-based control, as well
as identification problems for defects, material properties or power oscillations.

This approach recourses to the reciprocity principle, which can be employed in thermal problems
when working in the frequency domain where the equation is symmetric (but not hermitic). Then a
convolution of the heat source and a generalized transfer function is the only computational effort
that the online stage requires. Note that the generalized transfer function is determined by means of
the Proper Generalized Decomposition for all the range of frequencies excited by the heat source.

Numerical results show the potentiality and the accuracy of this approach. Examples of real-time
monitoring, defect detection, multi-parametric evaluation and inverse calibration are shown.

A. GREEN’S FUNCTION PROBLEM FOR A PARABOLIC OPERATOR

Although what follows is well known it is not standard to write the Green’s function problem
associated to the homogenous heat equation with homogeneous Dirichlet and non-homogeneous
Neumann boundary conditions. The adjoint Green’s function problem associated to (2) is detailed
in (3) where its last equation, namely G = 0 on Ω× [t0, T [, corresponds to the causality condition.
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Green’s identity can be written as∫
Ω

∫ t0

0

[
G(∇2u− ∂tu)− u(∇2G+ ∂tG)

]
dtdΩ

=

∫
∂Ω

∫ t0

0

[
G(n · ∇)u− u(n · ∇)G

]
dtdΓ +

∫
Ω

[
uG|t=0 − uG|t=t0

]
dΩ. (30)

Consequently, using (2) and (3) in the previous identity (30), a representation for u(x0, t0) with
(x0, t0) ∈ ΓN×]0, T [ is obtained, namely

u(x0, t0) =

∫
ΓN

∫ t0

0

G(x, t;x0, t0) q(x, t)dtdΓ +

∫
Ω

u0(x)G(x, 0;x0, t0)dΩ, (31)

where now it can be clearly identified that the causality condition implies that the solution at time
t0 cannot depend on any of its values at later times. Recall T can be arbitrarily large.

B. RECIPROCITY PROOF IN THE FREQUENCY DOMAIN FOR EVEN AND ODD REAL
EXCITATIONS

This appendix is aimed to prove the reciprocity principle, recall (12)〈
q̂1, û2

〉
=
〈
q̂2, û1

〉
, (32)

when both q̂1 and q̂2 are real. As discussed in Section 2.5, reciprocity, holds if the two conditions
stated in equation (13) are verified, namely(

∇û1,∇û2

)
=
(
∇û2,∇û1

)
and

(
û1, û2

)
=
(
û2, û1

)
.

Recalling that
(
·, ·
)

is the L2 scalar product of complex functions in Ω, these conditions are
equivalent to

Im
[(
∇û1,∇û2

)]
= 0 and Im

[(
û1, û2

)]
= 0.

Since û1 and û2 give values in C, one can define the real functions a1, b1, a2 and b2 such that
û1 = a1 + ib1 and û2 = a2 + ib2, and the previous expressions are equivalent to(

∇a1,∇b2
)

=
(
∇b1,∇a2

)
(33a)(

a1, b2
)

=
(
b1, a2

)
. (33b)

Recall also that û1 and û2 are the corresponding solutions of the weak problem (8) for the two
excitations q̂1 and q̂2 and for any imposed frequency ω. By definition, ai and bi for i = 1, 2 also
belong to space of trial and test functions, namelyH1

ΓD
. Thus, equation (8) for the pair {û1, q̂1} can

be particularized as follows: (
∇û1,∇a2

)
+ iω

(
û1, a2

)
=
〈
q̂1, a2

〉
,(

∇û1,∇b2
)

+ iω
(
û1, b2

)
=
〈
q̂1, b2

〉
,

(34)

and likewise for {û2, q̂2} (
∇û2,∇a1

)
+ iω

(
û2, a1

)
=
〈
q̂2, a1

〉
,(

∇û2,∇b1
)

+ iω
(
û2, b1

)
=
〈
q̂2, b1

〉
.

(35)

Recall the splitting of û1 into real and imaginary parts, û1 = a1 + ib1, to also split equations (34)
into real and imaginary parts as(

∇a1,∇a2

)
− ω

(
b1, a2

)
=
〈
q̂1, a2

〉
, (36a)(

∇b1,∇a2

)
+ ω

(
a1, a2

)
= 0, (36b)(

∇a1,∇b2
)
− ω

(
b1, b2

)
=
〈
q̂1, b2

〉
, (36c)(

∇b1,∇b2
)

+ ω
(
a1, b2

)
= 0, (36d)
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where the hypothesis that both q̂1(x, ω) and q̂2(x, ω) belong to R is used.
Likewise, for û2 = a2 + ib2 each equation in (35) is split into real and imaginary parts as(

∇a2,∇a1

)
− ω

(
b2, a1

)
=
〈
q̂2, a1

〉
(37a)(

∇b2,∇a1

)
+ ω

(
a2, a1

)
= 0 (37b)(

∇a2,∇b1
)
− ω

(
b2, b1

)
=
〈
q̂2, b1

〉
(37c)(

∇b2,∇b1
)

+ ω
(
a2, b1

)
= 0 (37d)

Recall now that the L2 scalar product is symmetric for any pair of real functions, more specifically(
u, v
)

=
(
v, u
)

for all u and v ∈ R. Then subtract (37b) from (36b), and (37d) from (36d) to
obtain the desired conditions (33). Thus if (33) are verified, then (13) also holds and reciprocity
is demonstrated. Note that these results hold for any ω.

To further close these appendix, note that the other equations not used up to now also produce the
same results. After subtracting (37a) from (36a) and (37c) from (36c), the following equations are
obtained:

ω
[(
b2, a1

)
−
(
b1, a2

)]
=
〈
q̂1, a2

〉
−
〈
q̂2, a1

〉
,(

∇a1,∇b2
)
−
(
∇a2,∇b1

)
=
〈
q̂1, b2

〉
−
〈
q̂2, b1

〉
.

However, both left-hand-sides in the previous equations are zero because they correspond to (33),
which was just proven, and these equations become〈

q̂1, a2

〉
=
〈
q̂2, a1

〉
and

〈
q̂1, b2

〉
=
〈
q̂2, b1

〉
,

which corresponds to split (32) into real and imaginary parts using the definitions splitting of
û1 = a1 + ib1 and û2 = a2 + ib2.
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