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SUMMARY

We introduce here a novel approach for the numerical simulation of non-linear, hyperelastic soft tissues
at kHz feedback rates, necessary for haptic rendering. Thisapproach is based upon the use of proper
generalized decomposition (PGD) techniques, a generalization of proper orthogonal decompositions (POD).
PGD techniques can be considered as a means ofa priori model order reduction and provides with a physics-
based meta-model without the need for prior computer experiments. The suggested strategy is thus composed
by a off-line phase, in which a general meta-model is computed, and an on-line evaluation phase in which
the results are obtained at real time. Results are provided that show the potential of the proposed technique,
together with some benchmark test that show the accuracy of the method. Copyrightc© 2012 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Real-time simulation is one of the most challenging scenarios for simulation-based engineering
sciences (SBES). The termreal time strongly depends on the particular pursued application, but
surgery simulation is among the most restrictive ones. Haptic surgery simulators compute the
response of biological soft tissues and give it back to the peripherals at, at least, 25 Hz of feedback
rate if visual realism is needed, and, notably, 500Hz-1kHz if haptic (force) response is desired [18]
[17]. But biological soft tissues are known to be highly non-linear [19] [2] [23], very frequently
modeled in a hyperelastic framework. It is well-known, in addition, that at least non-linear strain
measures should be incorporated into the simulation, otherwise performing arbitrarily bad in terms
of visual perception, spurious gain in volume, etc [17].

This feedback rate for non-linear problems constitutes indeed a great challenge for nowadays
simulation techniques, based upon finite element methods. This is perhaps the ultimate reason for
the lack, up to our knowledge, of surgery simulators of the second generation [18], i.e., those
that incorporate state-of-the-art constitutive modelling of soft tissues to the simulation. A few
references can be cited that incorporate non-linear tissuebehaviour (mainly Kirchhoff-Saint Venant
hyperelasticity), see [33] [32] [26]. Many of them are indeed based upon explicit finite elements,
possibly implemented in graphics processing units (GPU). This is due to the very astringent
conditions dictated by the haptic feedback rates, that prevent the use, in nowadays computers, of
standard Newton-like methods for the solution of non-linear systems of equations.

Recently, model order reduction has been seen as a powerful means to achieve real-time
performance in the simulation of non-linear solids. For instance, Barbič and James [7] proposed
recently a method for model order reduction of Kirchhoff-Saint Venant solids at haptic feedback
rates. For more sophisticated constitutive laws, recent work on Proper Orthogonal Decomposition
methods showed that visual feedback performance can be easily obtained, but this is not the case
very often if we need haptic feedback [27] [29] [34]. In this case, linearization schemes for the
resulting non-linear systems of equations is mandatory, although not straightforward to accomplish.
Very often, Newton strategies are out of reach, due to the inherent lack of time employed during
stiffness matrix updates. In [30] [28] a different strategy was developed that employed a combination
of POD techniques with Asymptotic Numerical Methods [15] [1] [12] [16]. In that case, no tangent
stiffness matrix updates are necessary, and only a set of linear problems, all with the same stiffness
matrix, must be solved.

Proper Generalized Decomposition (PGD) methods, on the contrary, arose recently as a means to
overcome the so-calledcurse of dimensionality associated to problems defined in high dimensional
spaces [6] [5] [13] [14] [25]. Although the origins of the technique can be traced back tothe LArge
Time INcrement method, LATIN method and its associated radial loading [24], PGD is nowadays
seen as a powerful method of model order reduction that generalizes POD (and hence its name). Its
field of application has gone far beyond the initial objectives, and it is now being applied in a variety
of fields: simulation-based control of processes [20] [21], efficient simulation of plates and shells
[8], simulation of gene regulatory networks [4], to cite a few.

The main idea for the extension of a technique initially developed to deal with high dimensional
problems to a more general setting lies precisely in its ability to treat standard models as if they were
multidimensional. The key idea was initially put forth in [31]. In it, parametric equations were cast
into a multidimensional setting, thus taking advantage of the PGD solution structure. Going one step
forward, PGD can advantageously be employed into real-timesimulation frameworks by simply
considering all parameters, but also all possible boundaryconditions (including initial boundary
conditions, see [22]) as new dimensions of the problem.

The resulting PGD solution to the problem is expressed as a finite sum of separable functions
that provides actually a meta-model for the problem, for which no prior computer experiment (also
known assnapshots in the model order reduction community) is necessary. This meta-model can
then be successfully applied in real time to obtain the response of the system at kHz rates, as will
be demonstrated in subsequent sections of this paper. This approach allows even to solve models on
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REAL-TIME SIMULATION OF SURGERY: A PGD APPROACH 3

handheld devices such as tablets and smartphones, thus opening the range of possible applications
of the technique.

In this paper we present a novel technique for the simulationof biological soft tissues under
hyperelasticity assumptions at haptic feedback rates. It is based on the use of the before mentioned
PGD approach and an explicit linearization of the weak form generated by non-linear strain
measures. The use of PGD therefore allows not only for a complete generalization of previous
works in the field (see [27] [29]) but also allows to a completely new formulation of the problem.
For the problem at hand, POD techniques compute the solution(the so-called snapshots) of different
complete models for different contact positions between surgical tool —scalpel– and organ. By
performing a statistical analysis on top of these results, POD techniques extract the so-called
modes, i.e., those displacement fields that best represent the solution of the complete problems.
Theses modes, took as Ritz-like, global basis, are then usedto approximate problems different to
the original ones, i.e., for contact positions not initially considered. Therefore, the design of an
appropriate simulation, or computer experiment, campaignis the key aspect of the method. Also,
how to efficiently and accurately interpolate among reducedbasis is another crucial aspect, not fully
resolved.

On the contrary, PGD methods consider a parametric problem.In this case, the parameter is the
contact position. By formulating the parametric problem asa high-dimensional one, PGD methods
allows for the efficient solution and ulterior storage of themodel in the form of a sum of separable
functions. Therefore, rather than creating reduced modelsfor particular positions of the tool, PGD
computes a general solution forany position of the tools, so that no subsequent interpolation of
reduced models is necessary, nor the computation of snapshots. Thus, the proposed method is based
upon an off-line phase in which this general solution is computed, and an on-line one in which the
solution is only evaluated at impressive feedback rates, here on the order of kHz.

The paper is organized as follows. In Section2 we introduce the basics of Proper Generalized
Decomposition applied to the problem of a hyperelastic solid under moving punctual loads, which
the most frequent case in surgery simulation. In Section3 a very simple linearization of the
non-linear problem is introduced that allows for a simple yet effective computation of the PGD
approach to the problem. Although this simple linearization is by no means the only possible one,
its performance is analyzed in Section4, through a series of benchmark problems. It is shown how
the PGD approach to the problem of real-time simulation of soft tissue deformation opens new
insights on how the problem can be attacked.

2. A PGD APPROACH TO VIRTUAL SURGERY

As already mentioned in the introduction, the key issue in the usage of PGD approaches for real time
simulation, and the one that makes it completely different in spirit from POD, lies in the formulation
of the original problem as a parametric one. This parametricproblem is then re-formulated as a high
dimensional problem by considering each parameter as a new coordinate in the state space. The
PGD method then looks for an effective solution in the form ofa finite sum of separable functions,
so as to be able to avoid the curse of dimensionality associated to high dimensional problems and
mesh-based discretization techniques.

In this framework, the problem of determining the response of an organ to the load transmitted by
the contact with a surgical tool could be formulated as to determine the displacement at any point
of the model,u(x, y, z), for any load positions and for any force vector orientation and module,
t, thus rendering a problem defined in the physical space (R

3), plus a six-dimensional state space
(R6).

For the sake of simplicity in the following development, andwithout loss of generality, we assume
a load vectortwith unit module and oriented in the vertical direction. This renders a problem defined
in R

6 (u = u(x, s)), with all the characteristics of the before-mentioned one.
Let us consider the weak form of the equilibrium equations (balance of linear momentum).

Again, for the sake of simplicity, we omit inertia terms. Theinterested reader could consult [22]
for the treatment of Ordinary Differential Equations (ODEs) in the framework of PGD. Under these
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assumptions, the weak form of the problem, extended to the whole geometry of the organ,Ω and
the portion of its boundary which is accessible to the surgeon, Γ̄ ⊂ Γt

†, consists in finding the
displacementu ∈ H1 such that for allu∗ ∈ H1

0:
∫

Γ̄

∫

Ω

∇su
∗ : σdΩdΓ̄ =

∫

Γ̄

∫

Γt2

u∗
· tdΓdΓ̄ (1)

whereΓ = Γu ∪ Γt represents the boundary of the organ, divided into essential and natural regions,
and whereΓt = Γt1 ∪ Γt2, i.e., regions of homogeneous and non-homogeneous, respectively,
natural boundary conditions. Here,t = ek · δ(x− s), whereδ represents the Dirac-delta function
andek the unit vector along thez-coordinate axis (we consider here, for the ease of exposition, a
unit load directed towards the negativez axis of reference).

Once regularized, the Dirac-delta term is approximated by atruncated series of separable
functions in the spirit of the PGD method, i.e.,

tj ≈

m∑

i=1

f i
j(x)g

i
j(s) (2)

wherem represents the order of truncation andf i
j , g

i
j represent thej-th component of vectorial

functions in space and boundary position, respectively.
The PGD approach to the problem is characterized by the construction, in an iterative way, of an

approximation to the solution in the form of a finite sum of separable functions. Assume that we
have converged to a solution, at iterationn of this procedure,

un
j (x, s) =

n∑

k=1

Xk
j (x) · Y

k
j (s), (3)

where the termuj refers to thej-th component of the displacement vector,j = 1, 2, 3 and functions
Xk andY k represent the separated functions used to approximate the unknown field, obtained in
previous iterations of the PGD algorithm.

If we look for an improvement of this approximation, the (n+ 1)-th term will look like

un+1
j (x, s) = un

j (x, s) +Rj(x) · Sj(s), (4)

whereR(x) andS(s) are the sought functions that improve the approximation.
In this framework, the admissible variation of the displacement will be given by

u∗
j (x, s) = R∗

j (x) · Sj(s) +Rj(x) · S
∗
j (s). (5)

At this point several options are at hand so as to determine the new pair of functionsR andS.
The most frequently used, due to both its easy of implementation and good convergence properties,
in general, is a fixed-point algorithm in which functionsR andS are sought iteratively. We describe
briefly the implementation of this algorithm.

2.1. Computation of S(s) assuming R(x) is known

In this case, following standard assumptions of variational calculus, we have

u∗
j (x, s) = Rj(x) · S

∗
j (s), (6)

†Typically, of all of the natural region of the boundary,Γt ≈ Γ —which in this case coincides with virtually all the
boundary of organs,Γ = ∂Ω, since they are not fixed or clamped, but in contact to other organs— only a portion are
accessible to the surgeon. In minimally invasive surgery, surgeons operate through a small incision on the skin of the
patient, having access only to a limited portion of the boundary, here termed̄Γ.
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or, equivalently,u∗(x, s) = R ◦ S∗, where the symbol “◦” denotes the so-called entry-wise,
Hadamard or Schur multiplication for vectors. Once substituted into Eq. (1), gives

∫

Γ̄

∫

Ω

∇s(R ◦ S∗) : C : ∇s

(
n∑

k=1

Xk
◦ Y k +R ◦ S

)

dΩdΓ̄ =

∫

Γ̄

∫

Γt2

(R ◦ S∗) ·

(
m∑

k=1

fk
◦ gk

)

dΓdΓ̄, (7)

or, equivalently (we omit obvious functional dependencies)
∫

Γ̄

∫

Ω

∇s(R ◦ S∗) : C : ∇s(R ◦ S)dΩdΓ̄

=

∫

Γ̄

∫

Γt2

(R ◦ S∗) ·

(
m∑

k=1

fk
◦ gk

)

dΓdΓ̄−

∫

Γ̄

∫

Ω

∇s (R ◦ S∗) · RndΩdΓ̄, (8)

whereRn represents:
R

n = C : ∇su
n. (9)

Since the symmetric gradient operates on spatial variablesonly, we have:
∫

Γ̄

∫

Ω

(∇sR ◦ S∗) : C : (∇sR ◦ S)dΩdΓ̄

=

∫

Γ̄

∫

Γt2

(R ◦ S∗) ·

(
m∑

k=1

fk
◦ gk

)

dΓdΓ̄−

∫

Γ̄

∫

Ω

(∇sR ◦ S∗) · RndΩdΓ̄ (10)

where all the terms depending onx are known and hence we can compute all integrals overΩ and
Γt2 (support of the regularization of the initially punctual load) to derive an equation to compute
S(s).

2.2. Computation of R(x) assuming S(s) is known

Equivalently, in this case, we have

u∗
j (x, s) = R∗

j (x) · Sj(s), (11)

which, once substituted into Eq. (1), gives

∫

Γ̄

∫

Ω

∇s(R
∗
◦ S) : C : ∇s

(
n∑

k=1

Xk
◦ Y k +R ◦ S

)

dΩdΓ̄ =

∫

Γ̄

∫

Γt2

(R∗
◦ S) ·

(
m∑

k=1

fk
◦ gk

)

dΓdΓ̄. (12)

In this case all the terms depending ons (load position) can be integrated overΓ̄, leading to a
generalized elastic problem to compute functionR(x).

This simple algorithm renders, in general, excellent convergence properties (see [14] and
references therein).

3. ONE POSSIBLE EXPLICIT LINEARIZATION OF THE FORMULATION

Formulation introduced in Section2 assumes implicitly small strains. But this assumption has been
found to be very insufficient for virtual surgery. Strains are large very often, and when solved in a
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small strain setting, organs appear to suffer an unphysicalgain in volume that renders the simulations
clearly non-realistic [18]. Although real-time simulation of surgery does not look nowadays for
accuracy levels similar to those common in usual engineering practice (quoting Cotin and Bro-
Nielsen, [11], “... the model may be physically correct if it looks right”) the inclusion of non-linear
strain measures seems to be crucial.

Soft tissues are frequently formulated under hyperelasticity assumptions [23]. Again, for the sake
of simplicity, we refer ourselves to a Kirchhoff-Saint Venant constitutive framework. Despite being
very limited (and even unstable under compression due to thelack of polyconvexity of the strain
energy functional), Kirchhoff-Saint Venant constitutiveequations are widely used at this moment
for real-time simulation of soft tissues, see [35] [30] [32], among others.

The Kirchhoff-Saint Venant model is characterized by the energy density functional given by

Ψ =
λ

2
(tr(E))2 + µE : E (13)

whereλ andµ are Lame’s constants. The Green-Lagrange strain tensor,E, has the form

E =
1

2
(F TF − 1) = ∇su+

1

2
(∇u ·∇uT ) (14)

whereF = ∇u+ I is the gradient of deformation tensor. The second Piola-Kirchhoff stress tensor
can be obtained by

S =
∂Ψ(E)

∂E
= C : E (15)

in whichC is the fourth-order constitutive (elastic) tensor.
Very little has been written about PGD approximations for non linear solid mechanics problems,

other that Ladeveze’s works in complex thermomechanical non-linear models [24]. Here we focus
in the non-linear and parametric case within a fully separated representation. In this case, we restrict
ourselves to quasi-static problems, for the sake of simplicity, and therefore introduce a pseudo-time
t ∈ [0, 1] to perform the linearization.

Consistent linearizations of the resulting set of equations in the framework of PGD
approximations are far from being trivial, so here we keep the formulation as simple as possible
by performing a simple explicit linearization of the weak form of the problem.

Thus, load is applied along a series of time increments∆t, provoking increments in the
displacement∆u(x, s). At each time increment, a PGD fixed point alternating directions algorithm
similar to those introduced in Section2 is employed. So, if we introduce the non-linear strain
measure given by Eq. (14), into this incremental framework, we have (we omit obviousfunctional
dependencies for clarity)

Et+∆t = ∇s

(
ut +∆u

)
+

1

2

(
∇(ut +∆u) ·∇T (ut +∆u)

)
. (16)

Similarly, admissible variation of strain reads

E∗ = ∇s(∆u∗) +
1

2
(∇(∆u∗)) ·∇T (ut +∆u) +

1

2
∇(ut +∆u) ·∇T (∆u∗)

= ∇s(∆u∗) +∇(∆u∗) ·∇T (ut +∆u) (17)

Once substituted into the weak form of the equilibrium equation, Eqs. (16) and (17) provide, for
the left hand side term of Eq. (1) —strain energy term—,
∫

Γ̄

∫

Ω(t)

E∗ : C : EdΩdΓ̄ =

∫

Γ̄

∫

Ω(t)

(
∇s(∆u∗) +∇(∆u∗) ·∇T (ut +∆u)

)
: C

:

(

∇s

(
ut +∆u

)
+

1

2

(
∇(ut +∆u) ·∇T (ut +∆u)

)
)

dΩdΓ̄. (18)
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The simplest linearization of Eq. (18) consists of keeping in the formulation only constant terms
and those linear in∆u. We thus arrive at a weak form composed by ten terms:

∫

Γ̄

∫

Ω(t)

E∗ : C : EdΩdΓ̄

=

∫

Γ̄

∫

Ω(t)

∇s(∆u∗) : C : ∇su
tdΩdΓ̄

︸ ︷︷ ︸

T1

+

∫

Γ̄

∫

Ω(t)

∇s(∆u∗) : C : ∇s(∆u)dΩdΓ̄

︸ ︷︷ ︸

T2

+

∫

Γ̄

∫

Ω(t)

∇s(∆u∗) : C :
1

2
∇ut

·∇
TutdΩdΓ̄

︸ ︷︷ ︸

T3

+

∫

Γ̄

∫

Ω(t)

∇s(∆u∗) : C : ∇ut
·∇

T (∆u)dΩdΓ̄

︸ ︷︷ ︸

T4

+

∫

Γ̄

∫

Ω(t)

∇(∆u∗) ·∇Tut : C : ∇su
tdΩdΓ̄

︸ ︷︷ ︸

T5

+

∫

Γ̄

∫

Ω(t)

∇(∆u∗) ·∇Tut : C : ∇s(∆u)dΩdΓ̄

︸ ︷︷ ︸

T6

+

∫

Γ̄

∫

Ω(t)

∇(∆u∗) ·∇Tut : C :
1

2
∇ut

·∇
TutdΩdΓ̄

︸ ︷︷ ︸

T7

+

∫

Γ̄

∫

Ω(t)

∇(∆u∗) ·∇Tut : C : ∇ut
·∇

T (∆u)dΩdΓ̄

︸ ︷︷ ︸

T8

+

∫

Γ̄

∫

Ω(t)

∇(∆u∗) ·∇T (∆u) : C : ∇su
tdΩdΓ̄

︸ ︷︷ ︸

T9

+

∫

Γ̄

∫

Ω(t)

∇(∆u∗) ·∇T (∆u) : C :
1

2
∇ut

·∇
TutdΩdΓ̄

︸ ︷︷ ︸

T10

. (19)

This renders a very simple scheme that has revealed, however, for judicious choice of the time step
∆t, reasonable convergence properties, as will be demonstrated in Section4.

Remark 1
The original work of P. Ladeveze on the LATIN method [24] combined a space-time separated
representation, and thus produces a non-incremental solution of the problem. Generalized to this
case, the displacement would be sought in the formu = u(x, s, t). We have preferred, for simplicity
of exposition, to keep the formulation as simple as possible, but the explicit linearization proposed
in Eq. (19) is by no means the only possible one.

Remark 2
Another possible choice for the before mentioned linearization is the standard forward-Euler
scheme. It has been noted, however, that instabilities in the results appear at zones subjected to
compression, a typical characteristic of Kirchhoff-SaintVenant models [9]. These are analyzed in
Section4 below. However, no spurious deformation modes have been observed by employing the
simple explicit algorithm stated in Eq. (19).
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4. NUMERICAL RESULTS

4.1. Validation: non-linear rod

To validate the explicit PGD approach introduced in Section2 before, we considered the simple case
of a Kirchhoff-Saint Venant beam subjected to a pure traction forceF . In this simple case, the model
can be simplified to a one-dimensional one, and an analyticalsolution for the axial displacementu
at the bar tip can be obtained as

u =

(

β − 1 +
1

3β

)

, (20)

where

β =

(

K +

√

K2 −
1

27

) 1

3

, (21)

and, in turn,K = F
EA

, with E the Young’s modulus of the material andA the area of the cross-
section at the undeformed configuration.

A model was thus constructed by considering a bar of lengthL = 400 mm, A = 40× 40 mm2,
E = 1.0 MPa andF = 320 N. LoadF , however, is considered to be applied at any point along
the bar axis. We therefore compute a two-dimensional solutionu = u(x, s), wherex represents the
position along the bar axis ands the point of application of the load.

This simple example served to know the importance of the chosen time step in the overall
convergence properties of the proposed method. As can be noticed from Fig.1 the error for a time
step of10−3 is O(10−4). Note that one single PGD approach is used, that is enriched at each time
step, not a different PGD approximation within each time step.

∆ t

u
, u

re
f

10-510-410-310-210-1
63.6

63.8

64

64.2

64.4

64.6

64.8

65

65.2

u
uref

Figure 1. Convergence of the tip displacement towards the reference solution as a function of the chosen
time step.

It is important at this point to remark that the real-time strategy here introduced is based upon
the computation of a general, high dimensional solution of the problem once for life. This general
solution is then evaluated at real time feedback rates, but not re-computed. That is why the time
taken in the off-line computation of this general solution is not so important, since it will be done
only once.
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4.2. Kirchhoff-Saint Venant beam bending

Further validation of the proposed strategy is obtained if we consider the problem of a beam
bending under a transverse load (assumed vertical, for simplicity) applied at any point of its
boundary. The problem has no analytical solution, up to our knowledge, and therefore the general,
multidimensional solution has been compared to a referenceone obtained by standard finite element
models (one for each considered load position) with consistent linearization and a Newton-Raphson
iterative scheme.

The mesh is composed by tetrahedral elements, with only9× 9 nodes in the40× 40mm2 cross-
section and 21 nodes in the longitudinal direction,400mm long. Material parameters were Young’s
moduleE = 1.0 MPa and Poisson’s coefficientν = 0.25. With such a poor discretization, and
employing tetrahedral elements, it is expected that a high error with respect to the exact solution
will be obtained. However, it is not the purpose of this paperto obtain an accurate enough solution
of the problem (that of course could be obtained by employinga more refined mesh and a finer time
stepping).

The finite element model is shown in Fig.2 and the load is assumed to be applied at any of the
points of the upper surface of the beam.

X
Y

Z

Figure 2. Model for the beam bending problem.

The obtained displacement for a particular location of the load (beam tip in this case, for
comparison purposes) is depicted in Fig.3. Noteworthy, the simple explicit linearization algorithm
here proposed does not imply a non-physical gain of volume inthe deformed model, which is the
case for purely linear elastic models, frequently employedin real-time simulation of surgery [17].

Standard forward-Euler algorithms for the linearization of the weak form of the problem rendered,
in our experiments, spurious deformation modes. Although they are intrinsic of the Kirchhoff-Saint
Venant constitutive model, it continues to be popular amongthe virtual surgery community since it
constitutes the fastest way to avoid spurious gain in volumetypical of linear elastic models, when
large deformations are being considered [17]. An example of the result given by a forward-Euler
scheme for this same problem is shown in Fig.4 below. Although no unphysical gain in volume
—typical of linear elastic approaches to the problem— is seen, the obtained displacement at beam
tip is much higher than the reference one, obtained by finite element methods. This is due to some
well-known instabilities of the Kirchhoff-Saint Venant model under compression.

In general, the numbern of functions employed in the approximation depends on the desired level
of accuracy. Increasing the number of separated functions in the approximation leads, of course, to

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2012)
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Figure 3. Deformed beam for a particular location of the point load. Note that no unphysical gain in volume
is observed.

higher computational costs in the off-line part of the method. But we highlight that this computation
is done only once for life, and stored in memory. The on-line part of the simulation is virtually not
affected, since only some vector multiplications should beperformed in addition, which do not alter
the overall efficiency f the proposed method.

X
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-100
-120
-140
-160
-180
-200
-220
-240
-260
-280
-300
-320
-340
-360

Figure 4. Spurious deformation obtained by employing standard forward-Euler schemes. Note the
instabilities near the beam clamping due to compressive stresses.

4.3. Palpation of the liver

The liver is the biggest gland in the human body, after the skin. Liver geometry has been obtained
from the SOFA project [3] and post-processed in order to obtain a mesh composed by 8559 nodes

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2012)
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and 10519 tetrahedra, see Fig.5. The liver is connected to the diaphragm by the coronary ligament
so it seems reasonable to assume it to be constrained at the posterior face by the rest of the organs,
while the anterior face is accessible to the surgeon. The inferior vena cava travels along the posterior
surface, and the liver is frequently assumed clamped a that location. Although the assumed boundary
conditions are not strictly correct from a physiological point of view, our main interest is to show
that the model can be solved under real-time constraints with reasonable accuracy.

Although the literature on the mechanical properties of theliver is not very detailed, we
have assumed a Young’s modulus of 160 kPa, and a Poisson coefficient of 0.48, thus nearly
incompressible [17].

The Γ̄ surface, where the load can be located, has been defined as thewhole boundary of the
domain, even if in this case, only the frontal part of the organ is usually accessible to the surgeon.
This region includes 2009 of the 8559 nodes of the model.

X

Y

Z ZX

Y

Figure 5. Finite element model for the human liver.

Model’s solution was composed by a total ofn = 167 functional pairsXk
j (x) · Y

k
j (s) (see Eq.

(3)). The third component (thusj = 3) of the first six modesXk
3 (x) is depicted in Fig.6. The same

is done in Fig.7 for functionsY , although in this case they are defined only on the boundary ofthe
domain, i.e.,̄Γ = ∂Ω.

Noteworthy, bothX andY sets of functions present a structure similar to that generated by
Proper Orthogonal Decompositions methods, despite the fact that they are not, in general, optimal.
Note how the frequency content of each pair of functions increases as we increase the number of
the function,k.

The solution provided by the method agrees well with reference FE solutions obtained employing
full-Newton-Raphson iterative schemes (following the same tendency than that shown for the beam
bending problem). But, notably, the computed solution can be stored in a so compact form that an
implementation of the method is possible on handheld devices such as smartphones and tablets. For
instance, for Android-operated devices, an application has been developed (we call it iPGD and is
freely downloadable from [10]) that runs the model on a Motorola Xoom tablet running Android 3.0
without problems (only the surface of the model is represented for simplicity, given the limitations
of the Android OS). See Fig.8. The 25 Hz feedback rate necessary for continuous visual perception
is achieved without problems.

For more sophisticated requirements, such as those dictated by haptic peripherals, a simple laptop
(in our case a MacBook pro running MAC OSX 10.7.4, equipped with 4 Gb RAM and an Intel core
i7 processor at 2.66 GHz) is enough to achieve this performance. Feedback rates in the order of kHZ
are obtained without problems.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2012)
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Figure 6. Six first functionsXk
3 (x), k = 1, . . . 6, for the simulation of the liver.

5. CONCLUSIONS

Model order reduction seems to play an important role in real-time simulation of soft biological
tissues. In the last times there have been a number of publications on the use of POD techniques
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Figure 7. Six first functionsY k
3 (s), k = 1, . . . 6, for the simulation of the liver. Note that, in this case,

functionsY k(s) are defined on the boundary of the liver only.

to this class of problems. However, POD-based approaches seem to over-simplify models and
approaches other than [28] do not reproduce properly the non-linearity of soft tissues. In this paper
a new approach to the problem has been introduced. It is basedon the use of Proper Generalized
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Figure 8. An example of the implementation of the iPGD application for the liver problem.

Decomposition methods. This implies a complete change of paradigm, since PGD (in contrast to
POD) do not need for prior computer experiments to generate the snapshots needed to construct the
optimal basis functions. The reduced approximation bases,in a separated form, are constructed on
the fly.

PGD, on the contrary, operate in a two-stage approach. Firstly, a general meta-model is computed
a priori once for life. During this intensive computation phase the solution to the high dimensional
model is computed as a finite sum of separable functions. Thiscompact solution, although not
optimal, in general, provides with a very light format to store the solution in the form of a meta-
model that provides the solution to the problem for any parameter value. In this particular problem,
parameters are chosen as the position of the contact force between organ and surgical tool (scalpel)
and orientation of the load (thus rendering a problem definedin R

9).
This meta-model is then evaluated under real-time restrictions very efficiently (reaching more

than 1kHZ in a MacBook pro laptop, for instance). In this paper some benchmark examples have
been given to justify the accuracy of the proposed approach.In particular, two different explicit
algorithms for time integration of the resulting equationshave been proposed. These algorithms
have shown to work well, although the development of more robust strategies of linearization of
the weak form of the problem, based on the use of Asymptotic Numerical Methods, are now being
sought. This is part of our current effort of research.
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Delingette, and Laurent Grisoni. SOFA an Open Source Framework for Medical Simulation. InMedicine Meets
Virtual Reality (MMVR’15), Long Beach, USA, February 2007.

4. A. Ammar, E. Cueto, and F. Chinesta. Reduction of the chemical master equation for gene regulatory
networks using proper generalized decompositions.International Journal for Numerical Methods in Biomedical

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2012)
Prepared using cnmauth.cls DOI: 10.1002/cnm



REAL-TIME SIMULATION OF SURGERY: A PGD APPROACH 15

Engineering, in press, 2012.
5. A. Ammar, B. Mokdad, F. Chinesta, , and R. Keunings. A new family of solvers for some classes of

multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. part ii:
transient simulation using space-time separated representations. J. Non-Newtonian Fluid Mech., 144:98–121, 2007.

6. A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings. A new family of solvers for some classes of multidimensional
partial differential equations encountered in kinetic theory modeling of complex fluids.J. Non-Newtonian Fluid
Mech., 139:153–176, 2006.
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10. F. Bordeu, A. Leygue, I. Alfaro, D. González, D. Modesto, E. Cueto, A. Huerta, and F. Chinesta. iPGD, an
interactive PGD application for Android. Website, 2012.http://centrale-nantes-composites.com.

11. M. Bro-Nielsen and S. Cotin. Real-time volumetric deformable models for surgery simulation using finite elements
and condensation.Computer Graphics Forum, 15(3):57–66, 1996.

12. H.-L. Cao and M. Potier-Ferry. An improved iterative method for large strain viscoplastic problems.International
Journal for Numerical Methods in Engineering, 44:155–176, 1999.

13. F. Chinesta, A. Ammar, and E. Cueto. Recent advances in the use of the Proper Generalized Decomposition for
solving multidimensional models.Archives of Computational Methods in Engineering, 17(4):327–350, 2010.

14. Francisco Chinesta, Pierre Ladeveze, and Elias Cueto. Ashort review on model order reduction based on proper
generalized decomposition.Archives of Computational Methods in Engineering, 18:395–404, 2011.

15. B. Cochelin, N. Damil, and M. Potier-Ferry. Asymptotic-numerical methods and Pad approximants for non-linear
elastic structures.International Journal for Numerical Methods in Engineering, 37:1187–1213, 1994.

16. B. Cochelin, N. Damil, and M. Potier-Ferry. The asymptotic numerical method: an efficient perturbation technique
for nonlinear structural mechanics.Revue Europeenne des Elements Finis, 3:281–297, 1994.

17. H. Delingette and N. Ayache. Soft tissue modeling for surgery simulation. In N. Ayache, editor,Computational
Models for the Human Body, Handbook of Numerical Analysis (Ph. Ciarlet, Ed.), pages 453–550. Elsevier, 2004.

18. Herve Delingette and Nicholas Ayache. Hepatic surgery simulation. Communications of the ACM, 48:31–36,
February 2005.

19. Y. C. Fung.Biomechanics. Mechanical propeties of living tissues. Springer-Verlag, 1993.
20. Ch. Ghnatios, F. Chinesta, E. Cueto, A. Leygue, A. Poitou, P. Breitkopf, and P. Villon. Methodological approach

to efficient modeling and optimization of thermal processestaking place in a die: Application to pultrusion.
Composites Part A: Applied Science and Manufacturing, 42(9):1169 – 1178, 2011.

21. Ch. Ghnatios, F. Masson, A. Huerta, A. Leygue, E. Cueto, and F. Chinesta. Proper generalized decomposition based
dynamic data-driven control of thermal processes.Computer Methods in Applied Mechanics and Engineering, 213-
216(0):29 – 41, 2012.

22. D. Gonzalez, F. Masson, F. Poulhaon, E. Cueto, and F. Chinesta. Proper generalized decomposition based dynamic
data driven inverse identification.Mathematics and Computers in Simulation, in press, 2012.

23. G. A. Holzapfel, T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a
comparative study of material models.Journal of Elasticity, 61:1–48, 2000.

24. P. Ladeveze.Nonlinear Computational Structural Mechanics. Springer, N.Y., 1999.
25. P. Ladeveze, J.-C. Passieux, and D. Neron. The latin multiscale computational method and the proper generalized

decomposition.Computer Methods in Applied Mechanics and Engineering, 199(21-22):1287 – 1296, 2010.
26. Yi-Je Lim and Suvranu De. Real time simulation of nonlinear tissue response in virtual surgery using the point

collocation-based method of finite spheres.Computer Methods in Applied Mechanics and Engineering, 196:3011–
3024, 2007.

27. S. Niroomandi, I. Alfaro, E. Cueto, and F. Chinesta. Real-time deformable models of non-linear tissues by model
reduction techniques.Computer Methods and Programs in Biomedicine, 91(3):223 – 231, 2008.

28. S. Niroomandi, I. Alfaro, E. Cueto, and F. Chinesta. Accounting for large deformations in real-time simulations of
soft tissues based on reduced-order models.Computer Methods and Programs in Biomedicine, 105(1):1–12, 2012.

29. S. Niroomandi, I. Alfaro, D. Gonzalez, E. Cueto, and F. Chinesta. Real-time simulation of surgery by reduced-
order modeling and x-fem techniques.International Journal for Numerical Methods in Biomedical Engineering,
28(5):574–588, 2012.

30. Siamak Niroomandi, Iciar Alfaro, Elias Cueto, and Francisco Chinesta. Model order reduction for hyperelastic
materials.International Journal for Numerical Methods in Engineering, 81(9):1180–1206, 2010.

31. E. Pruliere, F. Chinesta, and A. Ammar. On the deterministic solution of multidimensional parametric models using
the Proper Generalized Decomposition.MATHEMATICS AND COMPUTERS IN SIMULATION, 81(4):791–810,
DEC 2010.

32. Z.A. Taylor, M. Cheng, and S. Ourselin. High-speed nonlinear finite element analysis for surgical simulation using
graphics processing units.Medical Imaging, IEEE Transactions on, 27(5):650 –663, may 2008.

33. Z.A. Taylor, O. Comas, M. Cheng, J. Passenger, D.J. Hawkes, D. Atkinson, and S. Ourselin. On modelling of
anisotropic viscoelasticity for soft tissue simulation: Numerical solution and GPU execution.Medical Image
Analysis, 13(2):234 – 244, 2009. Includes Special Section on Functional Imaging and Modelling of the Heart.

34. Z.A. Taylor, S. Crozier, and S. Ourselin. A reduced orderexplicit dynamic finite element algorithm for surgical
simulation. Medical Imaging, IEEE Transactions on, 30(9):1713 –1721, sept. 2011.

35. Z.A. Taylor, S. Ourselin, and S. Crozier. A reduced orderfinite element algorithm for surgical simulation. In
Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pages

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2012)
Prepared using cnmauth.cls DOI: 10.1002/cnm

http://centrale-nantes-composites.com


16 NIROOMANDI, GONZALEZ, ALFARO, BORDEU, LEYGUE, CUETO, CHINESTA

239 –242, 31 2010-sept. 4 2010.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2012)
Prepared using cnmauth.cls DOI: 10.1002/cnm


	1 Introduction
	2 A PGD approach to virtual surgery
	2.1 Computation of S(bold0mu mumu ssssss) assuming R(bold0mu mumu xxxxxx) is known
	2.2 Computation of R(bold0mu mumu xxxxxx) assuming S(bold0mu mumu ssssss) is known

	3 One possible explicit linearization of the formulation
	4 Numerical Results
	4.1 Validation: non-linear rod
	4.2 Kirchhoff-Saint Venant beam bending
	4.3 Palpation of the liver

	5 Conclusions

