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SUMMARY

This work is a first attempt to address efficient stabilizations of high dimensional advection-diffusion models
encountered in computational physics. When addressing multidimensional models the use of mesh-based
discretization fails because the exponential increase of the number of degrees of freedom related to a
multidimensional mesh or grid, and alternative discretization strategies are needed. Separated representations
involved in the so-called PGD —Proper Generalized Decomposition— method are an efficient alternative as
proved in our former works, however, the issue related to efficient stabilizations of multidimensional advection-
diffusion equations has never been addressed, to our knowledge. Thus, this work is aimed at extending some
well-experienced stabilization strategies, widely used in the solution of 1D, 2D or 3D advection-diffusion models,
to models defined in high dimensional spaces, sometimes involving tens of coordinates.
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1. Introduction

Despite the continuous growth of computer performance, some models remain nowadays intractable
for current, state-of-the-art, simulation techniques. Models defined in highly dimensional spaces, for
instance, constitute a clear example of such problems. The interested reader can consult, for instance,
[16] for an excellent survey of the state of the art on numerical simulation of micro-macro models for
complex fluids. These micro-macro models are very often based on the Fokker-Planck equation, an
advection-diffusion equation that describes the evolution of the probability distribution function of the
phase-space variables, namely

Dψ

Dt
= −

∂

∂X
·
{

Aψ
}

+
1

2

∂

∂X

∂

∂X
: Dψ

whereψ(x,X, t) represents the probability distribution function of the phase-space variablesX.
WhereasA is anNd-dimensional deterministic vector responsible for the drift of these variables by
the macroscopic flow andD represents anNd × Nd-dimensional stochastic matrix responsible for
brownian effects on the flow. For Rouse models, for instance,Nd can easily take values on the order of
50 or more [21].

Recently, the authors have presented and applied to different classes of problems ana priori model
reduction technique based upon the approximation of the essential field by a finite sum of separable
functions that are generated “on the fly” by the method itself, see, for instance [2, 1, 5, 6, 10, 4, 7].
This method, coined as Proper Generalized Decomposition (PGD, as opposed toa posteriorimethods
as the Proper Orthogonal Decomposition, POD, [15, 18, 19]) also allows for an easy treatment of
problems defined in spaces of a high number of dimensions. Mesh-based techniques lead to the well-
known curse of dimensionality, since the number of degrees of freedom grows exponentiallywith
the number of dimensions. The use of separated representations allows to overcome this difficulty
and has been used in many fields of Science and Engineering, such as in the framework of quantum
chemistry. In particular the Hartree-Fock (that involves asingle product of functions) and post-
Hartree-Fock approaches (as the MCSCF that involves a finitenumber of sums) make use of a
separated representation of the wave function [3]. In the context of Computational Mechanics a similar
decomposition was proposed, that was called radial approximation, and that was applied for separating
the space and time coordinates in thermomechanical models [17].

A detailed analysis of the convergence properties of different approaches of the PGD technique can
be found at [20]. But this analysis has been restricted, for the moment, to symmetric operators. It
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STABILIZATION OF HIGH DIMENSIONAL ADVECTION DIFFUSION EQUATIONS 3

remains unknown, to the best of the authors’ knowledge, how the PGD behaves, for instance, when
dealing with convection-diffusion equations.

It is well-known that standard finite element (Galerkin) methods do not work well for convection-
diffusion or convection-diffusion-reaction equations, since they lead to unstable, oscillating, solutions
[9]. The first stabilization methods in finite elements including upwinding of convective terms that
eventually lead to stable solutions were published in [8, 11].

Among the very numerous methods that have been proposed for the stabilization of convection-
diffusion equations, the streamline-upwind/Petrov-Galerkin (SUPG) method [13] is one of the most
extended. When a reaction term is important, sub-grid scale(SGS) techniques have been advocated to
reduce oscillations, see [14]. An inherent difficulty of these methods is the choice of thestabilization
parameter. In fact, algebraic or asymptotic analyses have been developed in one-dimensional problems.
Optimal stabilization parameters in higher-dimensions are not easily obtained.

This paper has neither the aim of addressing a state of the arton stabilization techniques for
advection diffusion equations and the consequent evaluation and choice of the optimal stabilization
technique, nor the proposal of new stabilization strategies. This work is a first attempt to address
efficient stabilizations of high dimensional advection-diffusion models encountered in computational
physics. When addressing multidimensional models the use of mesh based discretization fails because
the exponential increase of the number of degrees of freedomrelated to a multidimensional mesh or
grid, and alternative discretization strategies are needed. Separated representations involved in the so-
called PGD method is an efficient alternative as proved in ourformer works some of them already cited,
however, the issue related to efficient stabilizations of multidimensional advection-diffusion equations
has never been addressed. Thus, this work has as main aim the extension of some well-experienced
stabilization strategies, widely used in the solution of 1D, 2D or 3D advection-diffusion models, to
models defined in high dimensional spaces, sometimes involving tens of coordinates (the space, the
time but also a number of configurational coordinates describing some extra model features). Thus,
in what follows we will focus on the extension of standard SUPG or sub-grid scale stabilizations to
solutions expressed in a separated approximation format.

Here, the use of finite sums of separable functions will be used to reduce a high dimensional problem
to a sequence of one-dimensional ones where optimal stabilization could be employed. The outline of
the paper is as follows. In Section2 we review the technique of separation of variables developed by the
authors in the framework of convection-diffusion problems. In Section3 we describe the framework
of the class of convection-diffusion-reaction problems wedeal with.We then provide two alternative
formulations and discuss the advantages of each one in Sections4 and5. In Section6 we show some
examples illustrating the performance and capabilities ofthe technique so as to verify their stabilizing
properties. These techniques are then applied in Section7 to a 5-dimensional convection-diffusion
problem.

2. The Proper Generalized Decomposition
The use of a separated representation for solving complex models is not new. It has been employed in a
variety of settings, including, as mentioned before, quantum mechanics in the Hartree-Fock approach,
or continuum mechanics, see the pioneering work by Ladevezeand coworkers [17]. It is based on the
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4 GONZÁLEZ, CUETO, CHINESTA, Dı́EZ, HUERTA

establishment of an approximation of the unknown field,u, in the form:

u(x) ≈ un(x1, x2, . . . , xnsd) =

n
∑

i=1

F i
1(x1) · F

i
2(x2) · . . . · F

i
nsd
(xnsd), (1)

with nsd the number of spatial dimensions of the problem (nsd ≫ 1 within the scope of this
work, although the results are general for any number of dimensions). The term Proper Generalized
Decomposition has been coined for methods that use this kindof separated representations making
use of an appropriate algorithm to determine the functionsF i

j . Thisa priori character of the technique
is opposed to thea posteriori character of other model reduction techniques as Proper Orthogonal
Decomposition or Karhunen-Loeve method [15, 18, 22].

For the sake of simplicity in the description of the technique and without loss of generality, two-
dimensional problems are considered (they will be generalized later on, see Section6); thus, the
unknown field can be written as

u(x, y) ≈ un(x, y) =

n
∑

i=1

F i(x) ·Gi(y). (2)

In order to construct this separated representation, an iterative, greedy, algorithm is proposed.
Assuming that the firstn functions in the sum have been already computed, see (2), the method
proceeds by finding the best functionsR(x) andS(y) such that the updated representation given by

un+1(x, y) =

n
∑

i=1

F i(x) ·Gi(y) +R(x) · S(y)

= un(x, y) +R(x) · S(y),

satisfies the weak formulation for a particular choice of thetest functions. These test functions are

w(x, y) = R∗(x) · S(y) +R(x) · S∗(y). (3)

Once these test functions are introduced in a weak form, suchas (7) or (8), the resulting non-linear
problem of finding functionsR andS is solved using an iterative, fixed-point, method. First, itis
assumed thatR is known and a new approximation forS is computed. Then assumingS known, a new
approximation forR is sought. This process is repeated until convergence.

For more details on the separated representation constructor the interested reader can refer to [4, 7]
and the references therein.

3. Problem setting

For simplicity, and without loss of generality, we considerthe steady-state convection-diffusion-
reaction equation. This equation is given by

a ·∇u−∇ · (ν∇u) + σu = s in Ω ⊂ R
nsd, (4)

with nsd the number of spatial dimensions—in the applications we areinterested in much larger than
one— and with boundary conditions

u = uD onΓD, (5a)

n · ν∇u = ν
∂u

∂n
= t onΓN , (5b)
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STABILIZATION OF HIGH DIMENSIONAL ADVECTION DIFFUSION EQUATIONS 5

whereu is the scalar unknown field,a is the advective velocity,ν > 0 the diffusivity, assumed (without
loss of generality) constant,σ the reaction term ands(x) a volumetric source term. The functionuD
denotes the prescribed value ofu on the Dirichlet portion of the boundary given byΓD andt denotes
the value of the normal diffusive flux on the Neumann boundaryΓN .

The weak form of the problem defined in Eqs. (4) and (5) is, findu(x) ∈ S = {u ∈ H1(Ω)|u =
uD onΓD} such that for allw ∈ V = {w ∈ H1(Ω)|w = 0 onΓD}

∫

Ω

w(a ·∇u)dΩ+

∫

Ω

∇w · (ν∇u)dΩ +

∫

Ω

w σ udΩ =

∫

Ω

wsdΩ +

∫

ΓN

wtdΓ. (6)

This is usually expressed compactly as

a(w, u) + c(a;w, u) + (w, σ u) = (w, s) + (w, t)ΓN
(7)

where the following definitions are employed:

a(w, u) =

∫

Ω

∇w · (ν∇u)dΩ, c(a;w, u) =

∫

Ω

w(a ·∇u)dΩ,

(w, u) =

∫

Ω

wudΩ, (w, t)ΓN
=

∫

ΓN

wtdΓ.

The general form of aconsistent stabilizationtechnique is [9]

a(w, u) + c(a;w, u) + (w, σ u) +
∑

e

∫

Ωe

P(w)τR(u)dΩ = (w, s) + (w, t)ΓN
(8)

whereP(w) is some operator applied to the test functions,R(u) = L(u) − s is the residual of the
equation, andτ is the stabilization parameter. Note that the differentialoperatorL is the one associated
to the strong form, Eq. (4), namely

L(u) = a ·∇u−∇ · (ν∇u) + σu.

In the SUPG method,P(w) = a · ∇w, whereas in SGS,P(w) = −L∗(w), whereL∗ is the adjoint
operator, i.e.,

L∗(u) = −a ·∇u−∇ · (ν∇u) + σu.

Nodally exact results are obtained for linear elements in 1Dfor the convection-diffusion if

τ =
h

2a

(

cothPe−
1

Pe

)

, (9)

wherePe is the mesh Péclet number, defined asPe = ah/2ν, h represents the mesh size parameter
anda the modulus of the convective velocity. For convection-diffusion-reaction a fourth-order accurate
formula reads

τ =
h

2a

(

1 +
9

Pe2
+
( h

2a
σ
)2

)−1/2

. (10)

As noted previously, generalizations to higher dimensionsare not readily available [9].
The purpose of the remainder of this paper is to introduce a stabilized technique based upon the use

of theProper Generalized Decompositions(PGD) introduced in [2, 1] for high-dimensional problems.
This kind of approximation makes use of a representation of the essential field in terms of a finite sum
of separable functions.
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6 GONZÁLEZ, CUETO, CHINESTA, Dı́EZ, HUERTA

In Sections4 and5 two alternative approaches based on PGD schemes are developed. A discussion
with numerical examples follows. The first approach does theseparation in infinite dimensional spaces,
then when the finite element discretization is needed the optimal stabilization parameter is chosen.
The second one proceeds conversely, first the high-dimensional convection-diffusion equations is
discretized, taking into account that stabilization is needed, and then, separation following the PGD
rationale is imposed.

4. Stabilization of the continuous PGD separation

The PGD method is applied to the infinite dimensional problemdefined by the weak form, Eq. (7). In
what follows, for the sake of simplicity, the reaction term of the equation is neglected,σ = 0, since
it does not imply any special difficulty for the proposed methodology. Thus, the weak problem (7)
becomes, findR(x) andS(x) for all w, or more precisely from (3), for all R∗(x) andS∗(x), in the
proper infinite dimensional spaces, such that

a(w,RS) + c(a;w,RS) = (w, s) + (w, t)ΓN
− a(w, un)− c(a;w, un).

As noted earlier, the PGD method proceeds by a sort of alternating direction strategy, assuming
iteratively thatR or S are known. For instance, in the previous equation assuming thatR is given and
thatS must be found, the weak form for allS∗ reads

a(RS∗, RS) + c(a;RS∗, RS) = (RS∗, s) + (RS∗, t)ΓN
− a(RS∗, un)− c(a;RS∗, un),

which is, in fact, a 1Dconvection-diffusion-reactionproblem (recall that is standard to assume in PGD
thatΩ = Ωx ⊗ Ωy), namely

(S∗′, γy S
′)Ωy

+ (S∗, cy S
′)Ωy

+ (S∗, κy S)Ωy
= (S∗, by)Ωy

+ S∗py
∣

∣

Υ
y

Ny

. (11)

Where the following definitions are used:

γy =

∫

Ωx

νR2dx, cy =

∫

Ωx

ayR
2dx, κy =

∫

Ωx

(νR′2 + axRR
′)dx,

by =

∫

Ωx

(

sR− νR′
∂u

∂x

n

−Ra ·∇un
)

dx+
d

dy

[
∫

Ωx

νR
∂u

∂y

n

dx

]

, and

py =

∫

Υx
Ny

t R dx−

∫

Ωx

νR
∂u

∂y

n

dx.

(12)

It is important to remark that, given the usual PGD assumption Ω = Ωx ⊗ Ωy, Neumann boundary
conditions are also separable in thex andy problems. Here, since the unknown isS(y), if ΓN ∩∂Ωy =
ΓNy

6= ∅, thenΓNy
must be separable asΓNy

= Υy
Ny

⊗ Υx
Ny

. Thus,py defined in (12), requires to
integrate for a fixedy (corresponding to the Neumann boundary, denoted symbolically asΥy

Ny
) along

thex direction, which is described asΥx
Ny

.
Note that proceeding identically with “known”S and test functionR∗S, an equivalent problem to

determineR can be stated. This would induce a problem similar to Eqs. (11) and (12) but along thex
direction.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2012;00:1–28
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STABILIZATION OF HIGH DIMENSIONAL ADVECTION DIFFUSION EQUATIONS 7

In any case, Eq. (11) can be identified as a convection-diffusion-reaction weakform, which is
stabilized as follows:

(S∗′, γy S
′)Ωy

+ (S∗, cy S)Ωy
+ (S∗, κy S)Ωy

+
∑

e

∫

Ωe
y

Py(S
∗)τy

(

cy S
′ −

(

γy S
′
)′
+ κy S

)

dy

= (S∗, by)Ωy
+ S∗py

∣

∣

Υ
y

Ny

+
∑

e

∫

Ωe
y

Py(S
∗)τybydy, (13)

where the operator applied to the test functions isPy(w) = cy w
′ in SUPG andPy(w) = cy w

′ +
(

γy w
′
)′

− κy w in SGS. Moreover, optimal values of the stabilization parameter can be employed
substituting diffusion,γy, convection,cy, and reaction,κy, in Eqs. (9) or (10). For linear elements the
second derivatives in the stabilization terms are zero, butrecall that for high-order elements consistent
stabilization is important [12].

5. Separation of the discrete stabilized equation
The other natural possibility arising from the PGD method isto perform a separated approximation
of the already stabilized Eq. (8). The method proceeds in a very similar way, but now, only one
stabilization parameter must be determined (as in standardfinite element techniques). The same
stabilization parameter will be used in each one-dimensional problem. Moreover, although in each 1D
direction is a different convection-diffusion-reaction problem,τ will be unique and defined a priori.
Thus, in principle, for a convection-diffusion problem (σ = 0) such as the one studied here, reaction
will not be accounted for in the stabilization.

The stabilized weak problem (8), once the PGD method proceeds assuming iteratively thatR or S
are known, becomes, when, for instance,R is given and thatS must be found

a(RS∗, RS) + c(a;RS∗, RS)

+
∑

e

∫

Ωe

P(RS∗)τ
(

a ·∇(RS)−∇ ·
(

ν∇(RS)
)

)

dΩ

= (RS∗, s) + (RS∗, t)ΓN
− a(RS∗, un)− c(a;RS∗, un)

−
∑

e

∫

Ωe

P(RS∗)τ
(

a ·∇un −∇ · (ν∇un)− s
)

dΩ.

In order to compare with the previous formulation the 1D problem in y for SUPG is presented.
However, such comparison is only possible if further assumptions are imposed, namely, that diffusion
and convection are independent ofx andy, which is not always the case. Under these assumptions the
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8 GONZÁLEZ, CUETO, CHINESTA, Dı́EZ, HUERTA

previous equation can be rewritten as

(S∗′, γy S
′)Ωy

+ (S∗, cy S)Ωy
+ (S∗, κy S)Ωy

+
∑

e

∫

Ωe
y

ayS
∗′τ

(

cyS
′ − γyS

′′ + κ̃yS
)

dy +
∑

e

∫

Ωe
y

axS
∗τ
(

ĉyS
′ − γ̂yS

′′ + κ̂yS
)

dy

= (S∗, by)Ωy
+ S∗py

∣

∣

Υ
y

Ny

−
∑

e

∫

Ωe

(

axR
′S∗ + ayRS

∗′
)

τ
(

a ·∇un −∇ · (ν∇un)− s
)

dΩ, (14)

where the definitions of (12) are used and the following ones are needed

κ̃y =

∫

Ωx

(−νRR′′ + axRR
′)dx,

γ̂y =

∫

Ωx

νRR′dx, ĉy =

∫

Ωx

ayRR
′dx, andκ̂y =

∫

Ωx

(−νR′R′′ + axR
′2)dx.

This clearly evidences that both formulations are not, evenin the simplified case, nearly equivalent.
Moreover, it is obvious that the stabilization of this 1D problem is not optimal. Nevertheless, as shown
in the examples, stabilized results are obtained.

6. Verifying the stabilization procedures

Before addressing the solution of a high dimensional advection diffusion equation, we are verifying that
the previous extensions of standard stabilization towardsthe separated representation format work. For
this, we are focusing in some well-illustrated 2D benchmarkproblems, to which a reference solution
can be easily computed in order to conclude on the performances of the considered stabilizations within
the PGD framework. After proving the ability of these procedures for addressing the stabilization
within the PGD framework, we will address a problem defined ina high dimensional space to which
no reference solution is available.

6.1. A first example

In this section we consider an example of convection-diffusion skew to the mesh, proposed in [9],
among other references, see Fig.1.

The flow is unidirectional, with||a|| = 1, with the convective velocity not aligned to any of the axes,
forming30◦with thex-direction. Thus, the results will be entirely comparable to those in reference [9].
Following this same reference, the diffusivity coefficientis taken to be5 · 10−6, corresponding to a
mesh Péclet number of104. The inlet boundary conditions are discontinuous and of twodifferent types
at the outlet:

• Downwind homogeneous natural boundary conditions.
• Downwind homogeneous essential boundary conditions.

We compare the results obtained with formulations 1 (introduced in section4) and 2 (section5)
explained before in the framework of proper generalized decompositions. In Fig.2, results for the

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2012;00:1–28
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Figure 1. Statement of the problem used for the validation ofthe proposed technique.
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Figure 2. Solution obtained by applying the separated representation approach to standard, non stabilized, Galerkin
procedures.

Dirichlet problem solved with PGD and standard Galerkin approach are shown. No stable results were
obtained for a mesh of 2000 finite elements along each spatialdirection.

To compare with existing techniques, the problem has been solved by SUPG-stabilized standard
finite elements. A refined mesh of100 × 100 finite elements has been employed in order to obtain a
reference solution to compare with. In addition, and for thepurpose of comparison, a10×10mesh was
employed. These results are depicted in Figs.3 and4, for Dirichlet and Neumann boundary conditions,
respectively.

Results obtained with the PGD formulation 1 and 2 are depicted in Fig.5 for the Dirichlet problem

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2012;00:1–28
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Figure 3. Dirichlet problem: FEM-SUPG result with a10× 10 mesh (a) and100× 100 mesh (b).
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Figure 4. Neumann problem: FEM-SUPG result with a10× 10 mesh (a) and100× 100 mesh (b).

and6 for the Neumann problem. As it can be noticed, results are practically indistinguishable for this
problem.

These results were obtained with the product of 85 functionsfor version 1 and 20 functions for
version 2 along each direction. These functions are depicted in Figs.7 for the Dirichlet problem and
formulations 1 and 2. It can be noticed the great number of very similar functions obtained by the PGD
method and version 1. Note that in the before mentioned Figs.7 the approximating functions have been
normalized. Although 85 versus 20 functions seems to be a great difference for both approaches to the
problem, by looking at the convergence plots in Figs.8, it can be noticed that both formulations, for a
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Figure 5. Dirichlet problem: results of formulations 1 and 2.
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Figure 6. Neumann problem: results of formulations 1 and 2.

fixed number of summands, give very similar levels of accuracy. It seems, however, that the functions
incorporated by the second approach are closer to be mutually orthogonal, in comparison with those
of version 1. Namely, their cosinus, computed as their scalar product divided by the product of their
norms, is lower for version 2 than for version 1.

To clearly compare the results, a cut alongx = 0.5 has been done. These are plotted in Figs.9 and
10 for the Dirichlet and Neumann problems, respectively.

Taking the100 × 100 SUPG-stabilized finite element mesh results as a reference,we can compute
the norm of the “error” with respect to this reference. Thesevalues are reported in tableI andII for the
Dirichlet and Neumann boundary conditions, respectively.

As can be noticed, the proposed formulation (both, in fact) provides with a somewhat more steep
slope in the jump, while there appears to be slightly high oscillations. In order to better understand the
approximation provided by the proposed method, we include the next example.
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Figure 7. Functions employed in the approximation of problem 1 with Dirichlet boundary conditions, alongx-
coordinate (a) andy-coordinate (b). Formulations 1 (top row) and 2 (bottom row)are depicted.

Formulation 1 2 FEM-SUPG
||e||L2

0.249436 0.240834 0.273473
||e||H1 1.249441 1.242036 1.273479

Table I. Comparison of “errors” with respect to the reference solution of a100 × 100 SUPG-stabilized finite
element mesh. Dirichlet problem.
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Figure 8. Convergence for the Dirichlet problem and formulations 1 and 2. Error inL2-norm versus number of
functions incorporated to the approximation.
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Figure 9. Comparison between standard, finite element stabilized (SUPG) approximations and the proposed PGD
formulations for the Dirichlet problem.

6.2. A second example

We consider the problem

cos
(π

3

) ∂u

∂x
+ sin

(π

3

) ∂u

∂y
= 10−4

(

∂2u

∂x2
+
∂2u

∂y2

)

+ 1
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Figure 10. Comparison between standard, finite element stabilized (SUPG) approximations and the proposed PGD
formulations for the Neumann problem.

Formulation 1 2 FEM-SUPG
||e||L2

0.251757 0.241130 0.259762
||e||H1 1.251761 1.242258 1.259767

Table II. Comparison of “errors” with respect to the reference solution of a100 × 100 SUPG-stabilized finite
element mesh. Neumann problem.

solved on the unit square, with boundary conditions (see Fig. 11)

• u = 1 onx = 0,
• u = 1 onx = 1,
• u = 0 ony = 0,
• u = 0 ony = 1.

In the absence of analytical solution, a FEM-SUPG solution on a mesh composed by100 × 100
linear elements is employed as a reference, see Fig.12.

Results are compared to the reference solution and that of a10 × 10 standard linear finite elements
with SUPG stabilisation. As a reference value, for the formulation 2, 20 functions along each spatial
direction were employed. Similar values are obtained for formulation 1.

Results are better analyzed by comparing a cut of the obtained results at abscissax = 0.8. These are
shown in Fig.14below.

If we compare the obtained errors with respect to the reference solution, we obtain the results
summarized in TableIII .
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Figure 11. Geometry of the problem analyzed in section6.2.
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Figure 12. Reference solution for the problem in section6.2, obtained by FEM-SUPG and a100 × 100 linear
finite element mesh.

Formulation 1 2 FEM-SUPG
||e||L2

0.016660 0.0101530 0.085855
||e||H1 1.016674 0.999251 1.09428

Table III. Obtained “errors” with respect to the100× 100 SUPG-stabilized finite element solution.

6.3. A third example

This time we solved a problem in the unit square with‖a‖ = 5, oriented at30◦with the horizontal, and
we tookν = 1, see Fig.15. Homogeneous Dirichlet boundary conditions were assumed on the whole
boundary.

Again, a100 × 100 finite element mesh, with standard SUPG stabilization, was considered as a

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2012;00:1–28
Prepared usingnmeauth.cls
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Figure 13. Comparison between the obtained results by (a) FEM-SUPG (10× 10 elements), (b) formulation 1, (c)
formulation 2.
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Figure 14. Cut alongx = 0.8 for the problem in section6.2.

reference solution. In this example the differences between the proposed method and the equivalent
in finite elements are more evident. TableIV resumes these differences. The reference solution and
the obtained approximations for formulations 1 and 2 are depicted in Fig. 16. Note that the PGD
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Figure 15. Geometry of problem 3.

Formulation 1 2 FEM-SUPG
||e||L2

0.009163 0.009871 0.1596
||e||H1 1.159664 1.009154 1.159664

Table IV. Obtained “errors” with respect to the100× 100 SUPG-stabilized finite element solution for problem 3.

approaches to the problem given in this example a remarkabledifference in accuracy with the standard,
SUPG-stabilized finite element approach. Note also that thefirst version of section4 gives more
accurate results in theL2-norm than that in section5.

Also noticeable is the number of functions needed for attaining such level of error. The algorithm
coined as “version 2” needed only one pair of functions to give the error shown in TableIV. For one pair
of functions, version 1 of the method gave anL2-norm error of 0.01645, still one order of magnitude
less than the stabilized FEM.

7. A high dimensional example

In order to fully justify not only the behavior of the proposed technique, which has been thoroughly
addressed in previous sections, but also its true advantages for high-dimensional problems, we consider
here a problem defined inR5.

The problem is defined in the hypercube(x, y, z, t, s) ∈ [0, 1]5, witha = (1, 1, 1, 1, 1). All boundary
hyperplanes were subjected to Dirichlet boundary conditions of the same type:u = 0 atx, z, t, s = 0,
u = 1 atx, z, t, s = 1, whileu = 1 aty = 0 andu = 0 aty = 1. A finite element mesh of ten elements
per edge of the hypercube was employed. The restricted number of elements along each direction is
kept here for the purpose of highlighting the stabilizationcharacteristics of the proposed techniques,
rather than its ability to cope with the curse of dimensionality, which has been addressed in previous
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Figure 16. Comparison between the obtained results by (a) FEM-SUPG (100× 100 elements, reference solution),
(b) FEM-SUPG (10× 10 elements) (c) formulation 1, (d) formulation 2.

works, see [10], for instance.
Obviously, the representation of results in a 5D domain is not easy. We have chosen to represent the

results at the plane(x, y) located atz, t, s = 0.5. Obviously, the solution without stabilization is highly
oscillating, as expected, see Fig.17.

On the contrary, results for the two different stabilization techniques presented in Sections4 and5
respectively, are shown in Fig.18. Functions employed to approximate the solution along eachspatial
direction (for the formulation in Section4 in this case) are depicted in Fig.19.

These same results can be now compared to those obtained by employing a mesh of100 elements
along each edge of the hypercube. This would make a total of1005 = 1010 elements if traditional
finite element methods would have been employed. Obviously,this is out of reach for a standard
personal computer (this is a practical consequence of the curse of dimensionality mentioned in the
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Figure 17. Non-stabilized results for the 5D problem.
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Figure 18. Comparison between the obtained results by (a) formulation 1, (b) formulation 2.

introduction). However, the result in Fig.20 has been obtained by means of PGD approximations in
less than 2 minutes in a laptop running matlab.

8. Conclusions

Proper generalized decomposition (PGD) techniques allow for an efficient means ofa priori model
reduction. While constructing alternatively a reduced approximation to the problem by means of
products of separable functions, PGD techniques have been devised as an efficient method to deal
with the so-calledcurse of dimensionality, i.e., the exponential growth of the number of degrees of
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freedom for mesh-based discretization techniques appliedto problems defined in highly-dimensional
spaces.

Fokker-Planck equations, for instance, constitute a typical example of such difficulty, since they
are usually defined in highly dimensional spaces. Fokker-Planck equations are a class of conservation
(convection-diffusion) equations for the probability density function associated with the time evolution
of themicro-state variables in multi-scale models of complex fluids.

In this work we have addressed precisely an analysis of the behavior of PGD techniques in
the context of convection-diffusion equations. Two main possibilities arose. The first one, more
appealing at a first sight, consists in establishing a separated representation of the infinite-dimensional
convection-diffusion equation. This gave rise to a sequence of one-dimensional convection-diffusion-
reaction problems that could eventually be stabilized by SUPG techniques or whatever state-of-the-art
stabilization technique suitable for this class of problems. SUPG techniques present the advantage of
exact stabilization (at the nodes) for one-dimensional convection-reaction problems solved with linear
finite elements. Thus PGD techniques seemed to be specially well suited for this problem, not only
providing a reduced modeling technique for the problem, butalso attaining exact stabilization in any
number of dimensions. This approach gave good results, as discussed in the text.

The second approach consisted in applying the PGD techniqueto thealreadystabilized problem,
and showed a similar degree of accuracy as formulation 1. Theprice to pay, however, is the
multidimensional (and therefore not exact) stabilizing term to be added to the equation before
constructing the approximation. This technique, however,greatly exploited its dimensional reduction
capabilities, and showed great promise for its extension tohighly-dimensional problems. For the
examples included in this paper, only 20 terms were enough for approximating the problem with a
resolution that would make necessary to employ1010 degrees of freedom with standard finite elements.
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Figure 19. Separated functions employed to approximate thesolution of the problem defined in 5D. In this case,
these functions correspond to the formulation developed inSection4.
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Figure 20. Results atz = t = s = 0.5 for the problem defined in 5D. Formulation developed in Section5.
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