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SUMMARY

This work is a first attempt to address efficient stabilizagi@f high dimensional advection-diffusion models
encountered in computational physics. When addressingidiménsional models the use of mesh-based
discretization fails because the exponential increasehef number of degrees of freedom related to a
multidimensional mesh or grid, and alternative discreiirastrategies are needed. Separated representations
involved in the so-called PGD —Proper Generalized Decoitipas— method are an efficient alternative as
proved in our former works, however, the issue related taiefit stabilizations of multidimensional advection-
diffusion equations has never been addressed, to our kdgel€Trhus, this work is aimed at extending some
well-experienced stabilization strategies, widely usethée solution of 1D, 2D or 3D advection-diffusion models,
to models defined in high dimensional spaces, sometimetvingaens of coordinates.
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1. Introduction

Despite the continuous growth of computer performance esoradels remain nowadays intractable
for current, state-of-the-art, simulation techniques.dels defined in highly dimensional spaces, for
instance, constitute a clear example of such problems.fitkeeisted reader can consult, for instance,
[16] for an excellent survey of the state of the art on numericabation of micro-macro models for
complex fluids. These micro-macro models are very oftendasethe Fokker-Planck equation, an
advection-diffusion equation that describes the evotutibthe probability distribution function of the
phase-space variables, namely

Dy 9 19 9

Dt = ax AVt tsaxax DY

wherey(x, X, t) represents the probability distribution function of theapb-space variableX .
WhereasA is an N -dimensional deterministic vector responsible for thdtarfi these variables by
the macroscopic flow and represents aiv; x Ny-dimensional stochastic matrix responsible for
brownian effects on the flow. For Rouse models, for instangezan easily take values on the order of
50 or more P1].

Recently, the authors have presented and applied to diffel@sses of problems anpriori model
reduction technique based upon the approximation of thenéis$ field by a finite sum of separable
functions that are generated “on the fly” by the method itss®, for instance?[ 1, 5, 6, 10, 4, 7].
This method, coined as Proper Generalized DecompositiGD(Ras opposed ta posteriorimethods
as the Proper Orthogonal Decomposition, POTX, [L8, 19]) also allows for an easy treatment of
problems defined in spaces of a high number of dimensionshiased techniques lead to the well-
known curse of dimensionalitysince the number of degrees of freedom grows exponentiatty
the number of dimensions. The use of separated represargatiiows to overcome this difficulty
and has been used in many fields of Science and Engineerictgasuin the framework of quantum
chemistry. In particular the Hartree-Fock (that involvesiagle product of functions) and post-
Hartree-Fock approaches (as the MCSCF that involves a finiteber of sums) make use of a
separated representation of the wave funct@nfp the context of Computational Mechanics a similar
decomposition was proposed, that was called radial appation, and that was applied for separating
the space and time coordinates in thermomechanical madgls [

A detailed analysis of the convergence properties of difieapproaches of the PGD technique can
be found at 0]. But this analysis has been restricted, for the momentytonsetric operators. It
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STABILIZATION OF HIGH DIMENSIONAL ADVECTION DIFFUSION EQUATIONS 3

remains unknown, to the best of the authors’ knowledge, t@wWRGD behaves, for instance, when
dealing with convection-diffusion equations.

It is well-known that standard finite element (Galerkin) hwets do not work well for convection-
diffusion or convection-diffusion-reaction equationisce they lead to unstable, oscillating, solutions
[9]. The first stabilization methods in finite elements inchgliupwinding of convective terms that
eventually lead to stable solutions were publishedjri[l].

Among the very numerous methods that have been proposetidastabilization of convection-
diffusion equations, the streamline-upwind/Petrov-@ate(SUPG) method13] is one of the most
extended. When a reaction term is important, sub-grid &&S) techniques have been advocated to
reduce oscillations, seé4]. An inherent difficulty of these methods is the choice of stabilization
parameter. In fact, algebraic or asymptotic analyses he@e eveloped in one-dimensional problems.
Optimal stabilization parameters in higher-dimensiorsrast easily obtained.

This paper has neither the aim of addressing a state of thenastabilization techniques for
advection diffusion equations and the consequent evaluatnd choice of the optimal stabilization
technique, nor the proposal of new stabilization strategigis work is a first attempt to address
efficient stabilizations of high dimensional advectioffftdiion models encountered in computational
physics. When addressing multidimensional models the Liseesh based discretization fails because
the exponential increase of the number of degrees of freegdtated to a multidimensional mesh or
grid, and alternative discretization strategies are néeSeparated representations involved in the so-
called PGD method is an efficient alternative as proved irffaumer works some of them already cited,
however, the issue related to efficient stabilizations olticimmensional advection-diffusion equations
has never been addressed. Thus, this work has as main aimtémsien of some well-experienced
stabilization strategies, widely used in the solution of 2D or 3D advection-diffusion models, to
models defined in high dimensional spaces, sometimes iimgptens of coordinates (the space, the
time but also a number of configurational coordinates deswisome extra model features). Thus,
in what follows we will focus on the extension of standard &J& sub-grid scale stabilizations to
solutions expressed in a separated approximation format.

Here, the use of finite sums of separable functions will bel tseeduce a high dimensional problem
to a sequence of one-dimensional ones where optimal atiin could be employed. The outline of
the paper is as follows. In Secti@we review the technique of separation of variables develbgahe
authors in the framework of convection-diffusion probletmsSection3 we describe the framework
of the class of convection-diffusion-reaction problemsdeal with.We then provide two alternative
formulations and discuss the advantages of each one iro8edtand5. In Section6 we show some
examples illustrating the performance and capabilitiethetechnique so as to verify their stabilizing
properties. These techniques are then applied in Sectimna 5-dimensional convection-diffusion
problem.

2. The Proper Generalized Decomposition
The use of a separated representation for solving complebelads not new. It has been employed in a
variety of settings, including, as mentioned before, quamtnechanics in the Hartree-Fock approach,
or continuum mechanics, see the pioneering work by Ladesedeoworkers]7]. It is based on the
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4 GONZALEZ, CUETO, CHINESTA, DiEZ, HUERTA

establishment of an approximation of the unknown fieldn the form:
u(x) ~u(r1,x2,. .., Tny) = ZFf(xl) CFi(xo) ... Frfsd(mnsd), (1)

with ngg the number of spatial dimensions of the problengg(n> 1 within the scope of this
work, although the results are general for any number of dgioas). The term Proper Generalized
Decomposition has been coined for methods that use thisdirs@parated representations making
use of an appropriate algorithm to determine the functi@}]sThisa priori character of the technique
is opposed to the posterioricharacter of other model reduction techniques as Propéro@onal
Decomposition or Karhunen-Loeve methdd,[18, 27].

For the sake of simplicity in the description of the tech@gund without loss of generality, two-
dimensional problems are considered (they will be germdliater on, see Sectid); thus, the
unknown field can be written as

u(z,y) = u ZFl G'( (2)

In order to construct this separated representatmn, aatiite, greedy, algorithm is proposed.
Assuming that the first functions in the sum have been already computed, 8geti{e method
proceeds by finding the best functioR$x) andS(y) such that the updated representation given by

u" (@ ZF y) + R(z) - S(y)

=u (w, y) + R(z) - S(y),
satisfies the weak formulation for a particular choice oftést functions. These test functions are
w(z,y) = R*(z) - S(y) + R(z) - S*(y). 3)

Once these test functions are introduced in a weak form, asdf) or (8), the resulting non-linear
problem of finding functions? and S is solved using an iterative, fixed-point, method. Firstsit
assumed thak is known and a new approximation f6ris computed. Then assumisigknown, a new
approximation fotR is sought. This process is repeated until convergence.

For more details on the separated representation cormtithetinterested reader can refer40T]
and the references therein.

3. Problem setting

For simplicity, and without loss of generality, we considbe steady-state convection-diffusion-
reaction equation. This equation is given by

a-Vu—V-vVu)+ou=sinQ CR™ 4)

with ngg the number of spatial dimensions—in the applications weraszested in much larger than
one— and with boundary conditions

u=uponlp, (5a)
ou
n-vVu=v— =tonly, (5b)
on
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STABILIZATION OF HIGH DIMENSIONAL ADVECTION DIFFUSION EQUATIONS 5

whereu is the scalar unknown field, is the advective velocity; > 0 the diffusivity, assumed (without
loss of generality) constan, the reaction term ansl(x) a volumetric source term. The functian,
denotes the prescribed valuewbn the Dirichlet portion of the boundary given by, andt denotes
the value of the normal diffusive flux on the Neumann boundiayy

The weak form of the problem defined in Egé) &nd 6) is, findu(z) € S = {u € HY(Q)|u =
up onl'p} such thatforalw € V = {w € H'(Q)|lw =00nT'p}

/w(a . Vu)dQ+/ Vuw - (vVu)dQ —|—/ woud) = / wsdQ+/ wtdl. (6)
Q Q Q Q I'n
This is usually expressed compactly as

a(w,u) + c(a; w,u) + (w, 0 u) = (w,s) + (w,t)ry ()

where the following definitions are employed:

a(w,u) = [ Vw- (vVu)d, cla;w,u) = / w(a - Vu)dS,
Q Q
(w,u) = / wudf, (w,t)ry = / wtdl.
Q I'n
The general form of aonsistent stabilizatiotechnique is ]
a(w,u) + c(a;w,u) + (w,o0u) + Z P(w)TR(u)dQ = (w, s) + (w,t)ry (8)
— Jae

whereP(w) is some operator applied to the test functioR$y) = L(u) — s is the residual of the
equation, and is the stabilization parameter. Note that the differerdfadratorL is the one associated
to the strong form, Eq4j, namely

L(u)=a -Vu—V-wVu)+ou.

In the SUPG method?(w) = a - Vw, whereas in SGSP(w) = —L*(w), whereL* is the adjoint
operator, i.e.,
L(u) =—a-Vu—V . (vVu)+ ou.

Nodally exact results are obtained for linear elements iridihe convection-diffusion if

T = 2—};(cothPe — Pie)’ (9)

where Pe is the mesh Péclet number, definedRs= ah/2v, h represents the mesh size parameter
anda the modulus of the convective velocity. For convectiorftdifon-reaction a fourth-order accurate

formula reads "
h 9 h \2\
= {14+ = — ) 10
T 2(1( +P62+(2a0) ) (10)

As noted previously, generalizations to higher dimensamesot readily availabled].

The purpose of the remainder of this paper is to introducalzilsted technique based upon the use
of the Proper Generalized Decompositioff3GD) introduced inZ, 1] for high-dimensional problems.
This kind of approximation makes use of a representatioh@gssential field in terms of a finite sum
of separable functions.
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6 GONZALEZ, CUETO, CHINESTA, DiEZ, HUERTA

In Sectionst and>5 two alternative approaches based on PGD schemes are dedefodiscussion
with numerical examples follows. The first approach does#paration in infinite dimensional spaces,
then when the finite element discretization is needed thenaptstabilization parameter is chosen.
The second one proceeds conversely, first the high-dimealsemnvection-diffusion equations is
discretized, taking into account that stabilization isdegt and then, separation following the PGD
rationale is imposed.

4. Stabilization of the continuous PGD separation

The PGD method is applied to the infinite dimensional probdsfined by the weak form, Eqr) In
what follows, for the sake of simplicity, the reaction teriintloe equation is neglectee, = 0, since
it does not imply any special difficulty for the proposed nwetblogy. Thus, the weak problend)(
becomes, find?(xz) and.S(x) for all w, or more precisely from3), for all R*(x) and.S*(x), in the
proper infinite dimensional spaces, such that

a(w, RS) + ¢(a;w, RS) = (w, s) + (w, t)ry — a(w,u™) — c¢(a;w,u™).

As noted earlier, the PGD method proceeds by a sort of atiagndirection strategy, assuming
iteratively thatR or .S are known. For instance, in the previous equation assurhaightis given and
thatS must be found, the weak form for &f* reads

a(RS*,RS) + ¢(a; RS*, RS) = (RS™,s) + (RS*,t)ry — a(RS™,u") — ¢(a; RS™,u"),

which is, in fact, a 10convection-diffusion-reactigoroblem (recall that is standard to assume in PGD
that) = Q, ® Q,), namely

(5% vy S)a, + (S*,¢cy o, + (S*, K5y S)a, = (S*,by)a, + S*py!m : (11)

Where the following definitions are used:

'yy:/ vR%dx, cy:/ a, R*dz, Iiy:/ (I/R/2+axRR/)dx,

d

aun n aun
by:/Q (sR—vR'5- - Ra-Vu )d:c-l—d—y[/ﬂvaa—y d:c},and (12)

x

py:/
T

It is important to remark that, given the usual PGD assumptio= Q, ® €, Neumann boundary
conditions are also separable in thandy problems. Here, since the unknowrtigy), if I'y N 0$2, =
I'n, # 0, thenT'y, must be separable &%y, = Tﬁ’vy ® T§, - Thus,p, defined in (2), requires to
integrate for a fixed (corresponding to the Neumann boundary, denoted symlﬂyliisﬂ?vy) along
thez direction, which is described a8y, .

Note that proceeding identically with “knowrf and test functiom?*.S, an equivalent problem to
determineR can be stated. This would induce a problem similar to Etf§.4dnd (L2) but along ther
direction.

thx—/ VR@ dx.
o, Oy

=
Ny

Copyright(©) 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng012;00:1-28
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STABILIZATION OF HIGH DIMENSIONAL ADVECTION DIFFUSION EQUATIONS 7

In any case, Eq.1(l) can be identified as a convection-diffusion-reaction wéakn, which is
stabilized as follows:

(S* vy Sa, + (S, ¢y S)a, + (5™, Ky S)Qy

+Z Qe (cyS ('Vysl)l""iys)dy

= (5%,by)a, + 5 pnyy +Z P, (S*)r,bydy, (13)
(2

where the operator applied to the test function®jgw) = ¢, w’ in SUPG andP,(w) = ¢, w’ +

(vy w’)/ — ry w in SGS. Moreover, optimal values of the stabilization pagtencan be employed
substituting diffusions,,, convectiong¢,, and reactions,,, in Egs. @) or (10). For linear elements the
second derivatives in the stabilization terms are zerordngll that for high-order elements consistent
stabilization is importanti[2].

5. Separation of the discrete stabilized equation
The other natural possibility arising from the PGD methotbiperform a separated approximation
of the already stabilized Eq8). The method proceeds in a very similar way, but now, only one
stabilization parameter must be determined (as in stanfilaitd element techniques). The same
stabilization parameter will be used in each one-dimeraiproblem. Moreover, although in each 1D
direction is a different convection-diffusion-reactioroplem,r will be unique and defined a priori.
Thus, in principle, for a convection-diffusion problem & 0) such as the one studied here, reaction
will not be accounted for in the stabilization.

The stabilized weak problen8), once the PGD method proceeds assuming iterativelyRhat.S
are known, becomes, when, for instanBds given and that must be found

a(RS*,RS) + c¢(a; RS*, RS)
+ Z P(RS")7(a- V(RS) — V - (vV(RS)) )d0

Qe
= (RS*,S) (RS*, t)ry —a(RS*,u") — c(a; RS™,u"™)

- Z/ P(RS*)r(a- Vu" — V - (vVu") — 5)dSQ.

In order to compare with the previous formulation the 1D peabin y for SUPG is presented.
However, such comparison is only possible if further assionp are imposed, namely, that diffusion
and convection are independentoéndy, which is not always the case. Under these assumptions the

Copyright(© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng012;00:1-28
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8 GONZALEZ, CUETO, CHINESTA, DiEZ, HUERTA

previous equation can be rewritten as
(S, 7y S")a, + (S*,cy S)a, + (S*, Ky S)a,
+ Z/ a,S*'r Cys' — 7S + Ry )dy+ Z/ QIS*T(ayS' — 4, 8" 4 fays)dy
= (57, y)Qy + S*py‘rgvy
- Z /(e (azR'S* +a,RS*)1(a-Vu" — V- (vVu") — 5)dQ, (14)
where the definitions ofl(2) are used and the following ones are needed

Ry = / (—vRR" + a,RR')dz,
Q

%:/ VRR'dz, éy:/ ayRR'dx, andf%yz/ (—vR'R" + a,R"”)da.
0 Q a

This clearly evidences that both formulations are not, énghe simplified case, nearly equivalent.
Moreover, it is obvious that the stabilization of this 1D plem is not optimal. Nevertheless, as shown
in the examples, stabilized results are obtained.

6. Verifying the stabilization procedures

Before addressing the solution of a high dimensional adwediffusion equation, we are verifying that
the previous extensions of standard stabilization towtirelseparated representation format work. For
this, we are focusing in some well-illustrated 2D benchnmdblems, to which a reference solution
can be easily computed in order to conclude on the perforasasfthe considered stabilizations within
the PGD framework. After proving the ability of these progess for addressing the stabilization
within the PGD framework, we will address a problem defined mgh dimensional space to which
no reference solution is available.

6.1. Afirst example

In this section we consider an example of convection-diffuskew to the mesh, proposed i@,
among other references, see Hig.

The flow is unidirectional, withja|| = 1, with the convective velocity not aligned to any of the axes,
forming 30°with thez-direction. Thus, the results will be entirely comparablé&iose in referencé].
Following this same reference, the diffusivity coefficiémhtaken to bes - 1076, corresponding to a
mesh Péclet number @0*. The inlet boundary conditions are discontinuous and ofdifferent types
at the outlet:

e Downwind homogeneous natural boundary conditions.
e Downwind homogeneous essential boundary conditions.

We compare the results obtained with formulations 1 (intczdl in sectiort) and 2 (sectiorb)
explained before in the framework of proper generalizeddsgiositions. In Fig2, results for the

Copyright(© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng012;00:1-28
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STABILIZATION OF HIGH DIMENSIONAL ADVECTION DIFFUSION EQUATIONS 9

yA
1.0

—
1

30°
0

2
-

I
S

=0 1.0 X

Figure 1. Statement of the problem used for the validatiah@foroposed technique.

Figure 2. Solution obtained by applying the separated sgmtation approach to standard, non stabilized, Galerkin
procedures.

Dirichlet problem solved with PGD and standard Galerkinrapph are shown. No stable results were
obtained for a mesh of 2000 finite elements along each sputtédtion.

To compare with existing techniques, the problem has bebkreddy SUPG-stabilized standard
finite elements. A refined mesh ®60 x 100 finite elements has been employed in order to obtain a
reference solution to compare with. In addition, and forghgose of comparison,l® x 10 mesh was
employed. These results are depicted in F3gad4, for Dirichlet and Neumann boundary conditions,
respectively.

Results obtained with the PGD formulation 1 and 2 are degiicté-ig. 5 for the Dirichlet problem

Copyright(© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng012;00:1-28
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10 GONZALEZ, CUETO, CHINESTA, DiEZ, HUERTA

(@) (b)

Figure 3. Dirichlet problem: FEM-SUPG result withl& x 10 mesh (a) and00 x 100 mesh (b).

(@) (b)

Figure 4. Neumann problem: FEM-SUPG result withbax 10 mesh (a) and00 x 100 mesh (b).

and6 for the Neumann problem. As it can be noticed, results aretigedly indistinguishable for this
problem.

These results were obtained with the product of 85 functfonwersion 1 and 20 functions for
version 2 along each direction. These functions are depiat&igs.7 for the Dirichlet problem and
formulations 1 and 2. It can be noticed the great number of siemilar functions obtained by the PGD
method and version 1. Note that in the before mentioned Fitjge approximating functions have been
normalized. Although 85 versus 20 functions seems to beat dgitference for both approaches to the
problem, by looking at the convergence plots in Fi§jgt can be noticed that both formulations, for a

Copyright(© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng012;00:1-28
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STABILIZATION OF HIGH DIMENSIONAL ADVECTION DIFFUSION EQUATIONS 11

Figure 5. Dirichlet problem: results of formulations 1 and 2

Figure 6. Neumann problem: results of formulations 1 and 2.

fixed number of summands, give very similar levels of acouriseems, however, that the functions
incorporated by the second approach are closer to be mptuéiogonal, in comparison with those
of version 1. Namely, their cosinus, computed as their sqaiaduct divided by the product of their

norms, is lower for version 2 than for version 1.

To clearly compare the results, a cut alang- 0.5 has been done. These are plotted in Figand
10for the Dirichlet and Neumann problems, respectively.

Taking thel00 x 100 SUPG-stabilized finite element mesh results as a referareean compute
the norm of the “error” with respect to this reference. Theslees are reported in tabl@ndll for the
Dirichlet and Neumann boundary conditions, respectively.

As can be noticed, the proposed formulation (both, in fanbyiges with a somewhat more steep
slope in the jump, while there appears to be slightly highllasions. In order to better understand the
approximation provided by the proposed method, we inclhdenext example.

Copyright(© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng012;00:1-28
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12 GONZALEZ, CUETO, CHINESTA, DiEZ, HUERTA

@) (b)

(© (d)

Figure 7. Functions employed in the approximation of proble with Dirichlet boundary conditions, along
coordinate (a) ang-coordinate (b). Formulations 1 (top row) and 2 (bottom rewe depicted.

Formulation 1 2 FEM-SUPG
llel| . 0.249436] 0.240834] 0.273473
e[ 1.249441] 1.242036| 1.273479

Table I. Comparison of “errors” with respect to the referesolution of al00 x 100 SUPG-stabilized finite
element mesh. Dirichlet problem.

Copyright(©) 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng012;00:1-28
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STABILIZATION OF HIGH DIMENSIONAL ADVECTION DIFFUSION EQUATIONS 13

——PGD version 1
——PGD version 2

L2-error

0.2 I I I I I I I I
0 10 20 70 80 920

30 A 50 60
Number of functional products

Figure 8. Convergence for the Dirichlet problem and forrtiates 1 and 2. Error inCo-norm versus number of
functions incorporated to the approximation.

1.2
1+ |—Reference Solution
—PGD version 2
—FEM-SUPG
0.8- |-~ -PGD version 1
0.61
0.4
0.2
0 — —
-0.2 1 | 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 9. Comparison between standard, finite elementliged{SUPG) approximations and the proposed PGD
formulations for the Dirichlet problem.

6.2. A second example

We consider the problem

T\ Ou LT 8u7 4 0%u 0%
cos(g)%stm(g)a—yflO (W+8—y2)+1

Copyright(© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng012;00:1-28
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14 GONZALEZ, CUETO, CHINESTA, DiEZ, HUERTA

1.2
——Reference Solution
1L —FEM-SUPG
—=—PGD version 2
‘PGD version 1
0.8r
0.61
0.4r
0.2+
0 — =
_02 1 L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 10. Comparison between standard, finite elementigeab(SUPG) approximations and the proposed PGD
formulations for the Neumann problem.

Formulation 1 2 FEM-SUPG
llel| L, 0.251757| 0.241130| 0.259762
el 1.251761| 1.242258| 1.259767

Table Il. Comparison of “errors” with respect to the refarersolution of al00 x 100 SUPG-stabilized finite
element mesh. Neumann problem.

solved on the unit square, with boundary conditions (seelRig

e yu=1o0onx =0,
e yu=1o0nzx =1,
e yu=00ny =0,
e yu=00ny =1.

In the absence of analytical solution, a FEM-SUPG solutioraanesh composed b0 x 100
linear elements is employed as a reference, se€lPBig.

Results are compared to the reference solution and that@fal0 standard linear finite elements
with SUPG stabilisation. As a reference value, for the fdation 2, 20 functions along each spatial
direction were employed. Similar values are obtained famidation 1.

Results are better analyzed by comparing a cut of the olataéseilts at abscissa= 0.8. These are
shown in Fig.14 below.

If we compare the obtained errors with respect to the reteresolution, we obtain the results
summarized in Tablél .

Copyright(© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng012;00:1-28
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STABILIZATION OF HIGH DIMENSIONAL ADVECTION DIFFUSION EQUATIONS 15

Ay u:0

u=1 u=0

u=1 "X

Figure 11. Geometry of the problem analyzed in secfiéh

Figure 12. Reference solution for the problem in sec@dh obtained by FEM-SUPG and @0 x 100 linear
finite element mesh.

Formulation 1 2 FEM-SUPG
lle]l L. 0.016660| 0.0101530, 0.085855
[le] ]2 1.016674| 0.999251 1.09428

Table Ill. Obtained “errors” with respect to theé0 x 100 SUPG-stabilized finite element solution.

6.3. A third example

This time we solved a problem in the unit square Wit} = 5, oriented aB0°with the horizontal, and
we tookr = 1, see Fig15. Homogeneous Dirichlet boundary conditions were assumdti@whole
boundary.

Again, al00 x 100 finite element mesh, with standard SUPG stabilization, vassiclered as a
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@ (b) ©

Figure 13. Comparison between the obtained results by (8)-5BPG (10 x 10 elements), (b) formulation 1, (c)
formulation 2.

0.4- — Reference Solution |
—FEM-SUPG
—=—PGD version 2
02" | pGD version 1
O L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 14. Cut along: = 0.8 for the problem in sectiof.2.

reference solution. In this example the differences betwbke proposed method and the equivalent
in finite elements are more evident. Tallé resumes these differences. The reference solution and
the obtained approximations for formulations 1 and 2 ardatleg in Fig. 16. Note that the PGD
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yA

1.0 u=0

30°

I/l:

>

u=0 1.0 x

Figure 15. Geometry of problem 3.

Formulation 1 2 FEM-SUPG
[lel| L, 0.009163| 0.009871 0.1596
el 1.159664| 1.009154| 1.159664

Table IV. Obtained “errors” with respect to the0 x 100 SUPG-stabilized finite element solution for problem 3.

approaches to the problem given in this example a remarki#ffdeence in accuracy with the standard,
SUPG-stabilized finite element approach. Note also thaffitee version of sectiort gives more
accurate results in thé;-norm than that in sectiof.

Also noticeable is the number of functions needed for atigisuch level of error. The algorithm
coined as “version 2" needed only one pair of functions te diive error shown in Tabl&' . For one pair
of functions, version 1 of the method gave Asrnorm error of 0.01645, still one order of magnitude
less than the stabilized FEM.

7. A high dimensional example

In order to fully justify not only the behavior of the propasgchnique, which has been thoroughly
addressed in previous sections, but also its true advasitagkigh-dimensional problems, we consider
here a problem defined iR°.

The problem is defined in the hypercubey, z, t, s) € [0,1]°, witha = (1,1, 1,1, 1). Allboundary
hyperplanes were subjected to Dirichlet boundary conustiaf the same type: = 0 atz, z,t, s = 0,
u=1atx, z,t,s = 1,whileu = 1 aty = 0 andu = 0 aty = 1. Afinite element mesh of ten elements
per edge of the hypercube was employed. The restricted nuofilesdements along each direction is
kept here for the purpose of highlighting the stabilizatobraracteristics of the proposed techniques,
rather than its ability to cope with the curse of dimensidpalvhich has been addressed in previous
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© (d)

Figure 16. Comparison between the obtained results by (8)-BEBPG (100 x 100 elements, reference solution),
(b) FEM-SUPG (0 x 10 elements) (c) formulation 1, (d) formulation 2.

works, see 1(], for instance.

Obviously, the representation of results in a 5D domain tseagy. We have chosen to represent the
results at the plangr, y) located at, ¢, s = 0.5. Obviously, the solution without stabilization is highly
oscillating, as expected, see Fig.

On the contrary, results for the two different stabilizatiechniques presented in Sectighand5
respectively, are shown in Fi@8. Functions employed to approximate the solution along speltial
direction (for the formulation in Sectiofiin this case) are depicted in Figo.

These same results can be now compared to those obtainedpbyyéarng a mesh ofl 00 elements
along each edge of the hypercube. This would make a totad@f = 10'° elements if traditional
finite element methods would have been employed. Obviottsly,is out of reach for a standard
personal computer (this is a practical consequence of tree@f dimensionality mentioned in the
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(@) (b)

Figure 18. Comparison between the obtained results by (aulation 1, (b) formulation 2.

introduction). However, the result in Fig0 has been obtained by means of PGD approximations in
less than 2 minutes in a laptop running matlab.

8. Conclusions

Proper generalized decomposition (PGD) techniques altovah efficient means dd priori model
reduction. While constructing alternatively a reducedragimation to the problem by means of
products of separable functions, PGD techniques have beeredl as an efficient method to deal
with the so-callecturse of dimensionalityi.e., the exponential growth of the number of degrees of
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freedom for mesh-based discretization techniques apfigdoblems defined in highly-dimensional
spaces.

Fokker-Planck equations, for instance, constitute a gipggample of such difficulty, since they
are usually defined in highly dimensional spaces. FokkanéK equations are a class of conservation
(convection-diffusion) equations for the probability dép function associated with the time evolution
of themicro-state variables in multi-scale models of complex fluids.

In this work we have addressed precisely an analysis of theauer of PGD techniques in
the context of convection-diffusion equations. Two mairsgibilities arose. The first one, more
appealing at a first sight, consists in establishing a ségdrapresentation of the infinite-dimensional
convection-diffusion equation. This gave rise to a seqaaione-dimensional convection-diffusion-
reaction problems that could eventually be stabilized bypSUechniques or whatever state-of-the-art
stabilization technique suitable for this class of prolde®UPG techniques present the advantage of
exact stabilization (at the nodes) for one-dimensionaleotion-reaction problems solved with linear
finite elements. Thus PGD techniques seemed to be speciallysuited for this problem, not only
providing a reduced modeling technique for the problem atgn attaining exact stabilization in any
number of dimensions. This approach gave good resultssasstied in the text.

The second approach consisted in applying the PGD techmiqties already stabilized problem,
and showed a similar degree of accuracy as formulation 1. diiee to pay, however, is the
multidimensional (and therefore not exact) stabilizingrteto be added to the equation before
constructing the approximation. This technique, howeyezatly exploited its dimensional reduction
capabilities, and showed great promise for its extensiohighly-dimensional problems. For the
examples included in this paper, only 20 terms were enoughgproximating the problem with a
resolution that would make necessary to emplol’ degrees of freedom with standard finite elements.
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(e)

Figure 19. Separated functions employed to approximatsdhsion of the problem defined in 5D. In this case,
these functions correspond to the formulation developeteictiond.
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