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Abstract

Model reduction techniques have shown to constitute a valuable tool for
real-time simulation in surgical environments and other fields. However, some
limitations, imposed by real-time constraints, have not yet been overcome.
One of such limitations is the severe limitation in time (established in 500
Hz of frequency for the resolution) that precludes the employ of Newton-
like schemes for solving non-linear models as the ones usually employed for
modeling biological tissues. In this work we present a technique able to
deal with geometrically non-linear models, based on the employ of model
reduction techniques, together with an efficient non-linear solver. Examples
of the performance of the technique over some examples will be given.

Key words: Real-time simulation, model reduction, large deformations,
haptic devices, Kirchhoff-Saint Venant.

1. Introduction

Minimally invasive surgery (MIS) gets more and more common nowadays.
A minimally invasive procedure typically involves use of laparoscopic devices
and remote-control manipulation of instruments with indirect observation of
the surgical field through an endoscope or similar device, and are carried
out through the skin or through a body cavity or anatomical opening. This
may result in less pain, less strain of the organism, small injuries (aesthetic
reasons), economic gain because of shorter hospital stays, etc. On the other

Preprint submitted to Computer Methods and Programs in Biomedicine June 14, 2010



hand, there exist some important difficulties for the surgeon as a result of
his restricted vision of the organs, difficult handling of the instruments, very
restricted mobility, difficult hand-eye coordination and no tactile perception.
Therefore, an important training phase is required before a surgeon acquires
the skills necessary to adequately perform minimally invasive surgery. Cur-
rently, surgeons are trained to perform minimally invasive surgery by using
mechanical simulators —just like plane pilots have been trained for many
years— or living animals. There is some consensus on the limited realism of
the mentioned simulators due to the complexity of the simulations to be car-
ried [1]. The latter training method consists in practicing simple or complex
surgical procedures on living animals (often pigs for abdominal surgery).

Because of the limitations of current training methods, there is a large
interest in developing surgery simulation software, possibly with haptic feed-
back, for providing efficient and quantitative gesture training systems [2]. A
simulator consists of several parts: input devices, the core of the simulator
and output devices [1]. The input devices consist of a force-feedback (haptic)
device with which the user moves the virtual surgery tools, a mouse and a
keyboard to have a good view of the operation zone. The core of the simula-
tor does the geometrical and the physical modeling. Geometrical models are
obtained using medical imagery like CT-scan and MRI after they have been
converted to standard 3D graphics formats. Physical models depend on the
specific soft tissue. Many existing, commercial, surgery simulators employ
linear elastic models or even mass-spring models. The core of the simulator
also detects collision between virtual tools and the soft tissue and then cal-
culates the corresponding reaction forces on the tools. The computed data
is sent to the output devices which consist of a screen and the haptic device.
The haptic device transforms reaction forces and moments to the user and
makes him/her have the perception of virtual contact with the tissue. There
are some requirements for visual and haptic feedback that make simulations
difficult to perform in real time. A surgery simulator must provide a realistic
visual presentation of the surgical procedure. Visual feedback is specially
important in video-surgery because it helps the surgeon to acquire a tridi-
mensional perception of the environment. If the positions, orientations and
deformations of objects on the screen are updated at a rate less than about
30 times per second, users will no longer perceive the simulation as continu-
ous motion. Haptic feedback provides the sensation of the movement to the
user and therefore it significantly enhances his surgical performance. But it
should have a frequency between 300 and 1000 Hz that is very difficult to
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achieve for complex tissue behavior.
In order to comply with these requirements different methods have been

used during last years often with trade-off between time and accuracy. Among
them are mass-spring methods, surface models and finite element or bound-
ary element methods. Spring-mass models consist of points with mass that
are linked by springs and dashpots. They have been used extensively for
simulating soft tissues [3, 4, 5]. The main advantage of spring models is their
ease of implementation and they have been used for statics and dynamics
analysis. Another advantage is their ability to model cutting and suturing
simply by removing or adding connections between vertices. However, there
are some disadvantages with these models. The most important is that, in
general, they do not reproduce even the laws of linear Elasticity [6].

The models of the last category are based on the laws of continuum
mechanics. Among the available numerical methods for solving these models,
finite element and boundary element methods can be cited [7]. A good
overview of different soft tissue models based on continuum mechanical is
given in [8]. Very recently, a system based upon the use of neural networks
has been presented [9]. In it, the system is trained with a large set of possible
load states in order to achieve real-time performance in the execution loop.

Very recently, General Purpose Graphic Processing Units (GPGPUs)
have been incorporated into the field of surgical simulation. This graphic
hardware is able to perform very fast operations, and a complete nonlin-
ear, explicit, finite element code has been implemented in that work with a
gain on speed on the order of 20 times [10]. This approach has allowed to
implement medium-sized models (16000 tetrahedra) including neo-hookean
behavior in an explicit total Lagrangian approach. The main drawback of
this elegant approach to the problem is the conditional stability of explicit
integration procedures and also the explicit evaluation of the constitutive
laws.

Other methods like mesh free methods have been recently used for real-
time simulation of soft tissues. Lim and De applied the point collocation-
based method of finite spheres (PCMFS) technique to simulate tissue defor-
mations that are geometrically nonlinear [11]. The technique is based on a
novel combination of a multi-resolution approach coupled with a fast analysis
scheme in the nonlinear model.

Capel et al. [12] computed the equations of motion for a linearly elas-
tic material using FEM and then by using coarse volumetric meshes to do
simulations at interactive rates. Krysl et al. applied model order reduc-
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tion approach for dimensional reduction of nonlinear finite element models
of solid dynamics [13]. Although they proposed a general approach the com-
putations cannot be performed in real time. Barbic and James, however, ex-
ploited dimensional model reduction techniques to build reduced-coordinate
deformable models for material objects with complex geometry using St.
Venant-Kirchhoff constitutive laws. In this way they have performed sim-
ulations at real-time update rates of geometrically-nonlinear materials [14].
Unfortunately the method seems not to be generalized to more complex ma-
terial behaviors like neo-Hookean constitutive laws, etc.

In a previous paper the authors introduced a new technique for the real-
time simulation of non-linear tissue behavior based on a model reduction
technique known as Proper Orthogonal (POD) or Karhunen-Loève decom-
positions. The technique is based upon the construction of a complete model
(using Finite Element modeling or other numerical techniques, but data could
also be extracted from experimental results, if available) and the extraction
and storage of the most relevant information in order to construct a model
with very few degrees of freedom, but that takes into account the highly
non-linear response of most living tissues. It was applied to the simulation
of palpation a human cornea composed of a nonlinear, hyperelastic matrix
reinforced with collagen fibers [15]. But the reduced model is actually linear
although the best set of basis vectors, in statistical sense, is employed, if
no updating of the tangent stiffness matrix is performed, as in a standard
Newton-Raphson procedure. So the results had some error, more important
the higher the strain is, in comparison with a standard FEM solution.

In this paper we apply an advanced non-linear solver, the asymptotic
numerical method (ANM) to simulate the nonlinear behavior of soft tissues
in a neighborhood of a known equilibrium state. In this method complex
equilibrium paths are sought in the form of asymptotic expansions, and they
are determined by solving several linear problems with a single tangent stiff-
ness matrix [16]. Then we apply model reduction techniques (in this work
we have used again POD) to the obtained system of equations. These re-
duced models are obtained for some “most probable” load states and then
are properly interpolated for any other load state. In this way the system can
be solved in very short times. The organization of the paper is as following:
the fundamentals of model reduction techniques are explained in section 2.
In section 3 first the asymptotic numerical method is introduced and then
the formulation for geometrically-nonlinear problems is obtained. In section
4 it is shown how ANM formulation in reduced coordinates of POD can be
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obtained and in section 5 several examples are given to show the performance
of the method.

2. Model reduction techniques

The essential idea of model reduction techniques in the context of Con-
tinuum Mechanics is to extract the most relevant information of a given sim-
ulation, that is performed off-line and stored for this particular application,
in order to construct a good-quality Ritz-like basis to perform reduced-model
(on-line) simulations with very few degrees of freedom [17][15]. These basis
functions are global and, in statistical terms, of very good quality. This is
in sharp contrast with the finite element method, for instance, that employs
general-purpose, locally supported, piecewise polynomial shape functions.

2.1. Fundamentals: Karhunen-Loève or Proper Orthogonal decomposition

The technique we employed is known by a wide variety of names, since
it has been employed and re-discovered in many branches of science and
engineering. Maybe the most common names are Karhunen-Loève decom-
position [18] [19], proper orthogonal decomposition (POD) [20] or empirical
orthogonal functions [21].

We assume that the evolution of a certain field u(x, t), governed by a
PDE, is known. In practical applications, this field is expressed in a discrete
form, that is, it is known typically at the nodes of a spatial mesh and for
some time steps of existing simulations u(xi, t

n) ≡ un
i . The same can be wrote

introducing a time discretization un(x) ≡ u(x, t = n∆t); ∀n ∈ [1, . . . , P ].
The main idea of the Karhunen-Loève (K-L) decomposition is how to obtain
the most typical or characteristic structure φ(x) among these un(x) ∀n. This
is equivalent to obtaining a function φ(x) that maximizes the functional λ
defined by

λ =

∑n=P

n=1

[

∑i=N

i=1
φ(xi)u

n(xi)
]2

∑i=N

i=1
(φ(xi))2

(1)

The maximization (δλ = 0) leads to:

n=P
∑

n=1

[(

i=N
∑

i=1

φ̃(xi)u
n(xi)

)(

j=N
∑

j=1

φ(xj)u
n(xj)

)]

= λ

i=N
∑

i=1

φ̃(xi)φ(xi); ∀φ̃ (2)
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which can be rewritten in the form

i=N
∑

i=1

{

j=N
∑

j=1

[

n=P
∑

n=1

un(xi)u
n(xj)φ(xj)

]

φ̃(xi)

}

= λ

i=N
∑

i=1

φ̃(xi)φ(xi); ∀φ̃ (3)

Defining the vector φ such that its i-th component is φ(xi), Eq. (3) takes
the following matrix form

φ̃
T
c φ = λφ̃

T
φ; ∀φ̃ ⇒ c φ = λφ (4)

where the two-point correlation matrix is given by

cij =

n=P
∑

n=1

un(xi)u
n(xj) ⇔ c =

n=P
∑

n=1

un(un)T (5)

which is symmetric and positive definite. If we define the matrixQ containing
the discrete field history:

Q =











u1
1 u2

1 . . . uP
1

u1
2 u2

2 . . . uP
2

...
...

. . .
...

u1
N u2

N . . . uP
N











(6)

it is straightforward to verify that the matrix c in Eq. (4) results

c = Q QT (7)

where the diagonal components are given by

cii = (Q QT )ii =

j=P
∑

j=1

(uj
i )

2. (8)

Thus, the functions defining the most characteristic structure of un(x)
are the eigenfunctions φk(x) ≡ φk associated with the highest eigenvalues.

2.2. A posteriori reduced modeling

If some direct, off-line, simulations have been carried out and their re-
sults stored in memory, we can determine u(xi, t

n) ≡ un
i , ∀i ∈ [1, . . . , N ],
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∀n ∈ [1, . . . , P ], and from these the r eigenvectors related to the r-highest
eigenvalues φk = φk(xi), ∀i ∈ [1, . . . , N ], ∀k ∈ [1, . . . , r] (with r ≪ N).
Now, we can try to use these r eigenfunctions for approximating the solution
of a problem slightly different to the one that has served to define u(xi, t

n).
For this purpose we need to define the matrix A

A =











φ1(x1) φ2(x1) . . . φr(x1)
φ1(x2) φ2(x2) . . . φr(x2)

...
...

. . .
...

φ1(xN) φ2(xN) . . . φr(xN)











. (9)

Now, we consider the linear system of equations resulting from the dis-
cretization of a partial differential equation (PDE) in the form

K U = F . (10)

Obviously, in the case of evolution problems F contains the contribution of
the solution at the previous time step.

Then, assuming that the unknown vector contains the nodal degrees of
freedom, it can be expressed as

U =
i=r
∑

i=1

ζiφi = A ζ, (11)

the global system of equations now reads

K U = F ⇒ K A ζ = F , (12)

and multiplying both terms by AT it results

ATK A ζ = ATF , (13)

which proves that the final system of equations is of low order, i.e. the
dimensions of ATK A are r× r, with r ≪ N , and the dimensions of both ζ

and ATF are r × 1.
Note, on the other hand, that non-homogeneous boundary conditions

(like rigid-body motions, for instance) do not impose any special difficulties
to the method. A simple change of variables can deal with this, as proved in
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[22].

3. Asymptotic numerical methods

The evolution of a non-linear solid mechanics problem is usually done with
the help of iterative methods based upon the Newton-Raphson technique.
This iterative structure of the method needs for an update of the tangent
stiffness matrix at each iteration. Modified Newton methods, which employ
a constant tangent matrix in order to save computation time are also very
popular, but fail notably in the neighborhood of buckling points, for instance.

Nowadays different alternatives exist. Potier-Ferry and coworkers have
developed in the last years a family of methods based upon asymptotic ex-
pansions that are able to accurately trace the non-linear solution of the prob-
lem with a minimum number of matrix updates, see for instance [16, 23]. In
this technique, the nodal displacement vector U and the load parameter λ

(here it plays the role of a pseudo-time, ranging from 0 to 1) are represented
by power series expansions with respect to a control parameter a. Intro-
ducing these expansions into the weak form of the problem a sequence of
linear problems, that share a unique tangent stiffness matrix, is obtained.
Thus, it seems natural to combine this asymptotic technique with a Ritz-like
technique to obtain a reduced model that can accurately describe non-linear
constitutive equations without the need for iterations.

3.1. Problem formulation

We consider here a Lagrangian description of a solid, whose points are
described at the initial configuration by the vector X. The solid is denoted
by Ω0 at its initial, undeformed configuration, while its boundary is denoted,
as usual, by Γ. The prescribed displacements and tractions are applied to
Γu and Γt. We assume that Γ=Γu ∪ Γt and Γu ∩ Γt = ∅. After the body
is loaded each material point is described by its position vector, x, in the
current deformed configuration.

Following classical approaches to the problem, the deformed configuration
of the solid will be given by

x = X + u (14)

while the deformation gradient tensor can then be obtained as F = ∂x
∂X

. By
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recalling that the Green-Lagrange strain tensor, E, is given by

E =
1

2
(F TF − 1) = γl(u) + γnl(u,u) (15)

where we have used the same notation as in [16]:

γnl(u, v) =
1

2
∇(uT )∇(v),

γl(u) =
1

2
(∇(uT ) +∇(u)) (16)

Hyperelastic materials are based upon the definition of a strain-energy
function, Ψ. The second Piola-Kirchhoff stress tensor S can be obtained
after this function by

S =
∂Ψ

∂E
(17)

that is a symmetric tensor and is related to the first Piola-Kirchhoff stress
tensor, P , by P = FS.

Using quantities related to the reference configuration the equilibrium
equation is as following

∇ · P +B = 0 in Ω0 (18)

in which B is the body force. Note that, for simplicity, quasi-static processes
are assumed. Application of reduced-order modeling to dynamical problems
has been successfully treated in [14].

The boundary conditions of the body are defined by

u(X) = ū on Γu,

PN = λt̄ on Γt (19)

where N is the unit vector normal to Γ, t̄ is an applied traction and λ is a
loading parameter. The work associated to the equilibrium equation is given
by

∫

Ω0

S : δE dΩ = λ

∫

Γt

t̄ · δudΓ ∀δu ∈ H1(Ω) (20)
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where in the above equation δE is expressed by

δE =
1

2
[F T

∇(δu) +∇(δu)TF ] = γl(δu) + γnlS(u, δu) (21)

where γnlS(u, δu) is defined by

γnlS(u, δu) = γnl(u, δu) + γnl(δu,u) (22)

The Saint-Venant Kirchhoff model (linear elastic behaviour under large
strains) is usually considered as a suitable approximation to most living tis-
sues for real-time purposes, although it seems to be quite limited if a more
detailed descriptin is needed. Nevertheless, we can say that the state-of-the-
art in the field assumes this model as suitable, see for instance, [14]. It is
characterized by the energy function

Ψ =
λ

2
(tr(E))2 + µE : E (23)

where λ and µ are Lame’s constants. The second Piola-Kirchhoff stress tensor
can be obtained by

S =
∂Ψ(E)

∂E
= C : E (24)

in which C is the classical fourth-order elastic tensor.

3.2. An asymptotic numerical method for geometrically nonlinear problems

Asymptotic numerical methos, as created by Potier-Ferry and coworkers
[16][24][25] (whose notation is also being used here) seek to obtain an analytic
expression of the load-displacement curve of a solid or structure in terms of
an expansion parameter “a”. This expansion of the terms of interest is
developed in the neighborhood of a known solution (un;Sn;λn) at step n.
The series is truncated at order N , being λ the loading parameter introduced
in the weak form. For Kirchhoff-Saint Venant models it is sufficient to take







un+1(a)
Sn+1(a)

λ
n+1

(a)







=







un(a)
Sn(a)

λ
n
(a)







+

N
∑

p=1

ap







up

Sp

λp







, (25)

where (up,Sp, λp) are unknowns. Above, (un+1(a),Sn+1(a), λ
n+1

(a)) repre-
sents the solution along a portion of the loading curve described continuously
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with respect to “a”. The introduction of Eq. (25) into Eq. (20) and Eq.
(24) leads to a series of linear problems with the same tangent operator, a
circumstance that seems to be optimal for the purposes of this work.

The series expansion of δE(u) gives

δEn+1(a) = γl(δu) + γnlS(δu,u
n) +

n
∑

p=1

apγnlS(δu,up) (26)

The series expansions of S gives in turn

Sn+1(a) = C : En+1(a) = C : [γnl(u
n,un) + γl(u

n)+ (27)

n
∑

p=1

ap

(

γl(up) + γnlS(u
n,up) +

p−1
∑

i=1

γnlS(ui,up−i)

)

] (28)

at order p we obtain

Sp = C :

{

γl(up) + γnlS(u
n,up) +

p−1
∑

i=1

γnlS(ui,up−i)

}

(29)

Introducing this asymptotic expansion into Eq. (24) gives

∫

Ω0

{(

Sn +
N
∑

p=1

apSp

)

:

(

γl(δu) + γnlS(u
n, δu) +

N
∑

p=1

apγnlS(up, δu

)}

dΩ =

(30)
(

λ
n
+

N
∑

p=1

apλp

)

Ψext(δu) (31)

with Ψext(δu) =
∫

Γt
t · δudΓ. Introducing Eq. (29) into Eq. (30) gives a

series of problems, one for each level of p (p = 1, . . . , N), that take the form

L(δu,un) = λpΨext(δu) + F nl
p (δu) (32)
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with

L(δu,un) =
∫

Ω

{Sn : γnlS(u
n,up)+[γl(δu)+γnlS(up, δu)] : C : [γl(up)+γnlS(u

n,up)]}dΩ
(33)

and where F nl
p (δu) is equal to zero at order one and at order p it reads

F nl
p (δu) =

−
∫

Ω

{
p−1
∑

i=1

Si : γnlS(up−i, δu)+

p−1
∑

i=1

[γnlS(ui,up−i)] : C : [γl(δu)+γnlS(u
n, δu)]}dΩ

(34)

Replacing Eq. (29) into Eq. (30), and discretization of Eq. (32) by
standard finite element procedure, it leads to a sequence of linear problems
in the form

order 1

{

Ktu1 = λ1f

uT
1u1 + λ

2

1 = 1
(35)

order p

{

Ktup = λpf + fnl
p (ui) i < p

uT
pu1 + λpλ1 = 0

(36)

where Kt denotes the tangent stiffness matrix associated with Eq. (33),
common to the problems at different orders p. It is the same as the one
applied in a classical iterative algorithm like Newton-Raphson, but without
updating. Above, up is the discretized form of the displacement field at
order p, f is the loading vector and fnl

p is the discretized form associated

with F nl
p (δu) in Eq. (34), which at order p only depends on the values of ui,

i < p. The solution of the problem can be obtained as a sequence of p linear
problems:

order 1











û = {Kt}−1f

λ1 =
1√

ûT û+1

u1 = λ1û

(37)
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order p











unl
p = {Kt}−1fnl

p

λp = −λ1{unl
p }Tu1

up =
λp

λ1

u1 + unl
p

(38)

4. A geometrically nonlinear reduced-order model

As explained before the solution of reduced-order models leads to a very
fast calculation of the system of equations but the price to pay is the im-
possibility of non-linear simulations. On the other hand, by using ANM we
can obtain the solution of highly nonlinear problems in the neighbourhood
of an equilibrium point very accurately. In this section we combine these
two methods to solve geometrically nonlinear problems. This approach was
previously established in a very different context by Yvonnet and coworkers
[25] and later generalized in [26].

Here we assume that the POD basis has been calculated as explained
in section 2. The terms of the asymptotic expansion associated with the
displacements are expressed as functions of POD basis as

up =

M
∑

m=1

φmζmp = Aζp, (39)

where ζp are the degrees of freedom. So the new asymptotic expansion of u
is expressed by

un+1(a) = A

(

ζn +
N
∑

p=1

apζp

)

(40)

where (ζn, λn) represents the previous known solution. Introducing Eq. (40)
into Eq. (32) results in

L(Aζp,Aδζ) = λpδΨext(Aδζ) + F nl
p (Aδζ) (41)

after finite element discretization and taking into account that the POD
basis is orthonormal, we arrive at the following sequence of linear systems of
equations:

at order 1

{

ATKtA
Tζ1 = λ1A

Tf

ζT
1 ζ1 + λ

2

1 = 1
(42)
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at order p

{

ATKtAζp = λpA
Tf + fnl

p

ζT
p ζ1 + λpλ1 = 0

(43)

The size of the above equations depends on the number of the POD basis and
the chosen level of expansion. In general, very low orders are necessary, as will
be demonstrated below. It is noteworthy that these problems have a common
tangent stiffness matrix that can be computed off-line with important time
savings.

The solution of these equations can be obtained as

order 1



















ζ̂ = {ATKtA}−1ATf

λ1 =
1√

ζ̂
T
ζ̂+1

ζ1 = λ1ζ̂

û = Aζ̂,u1 = λ1ζ1

(44)

order p



















ζnl
p = {ATKtA}−1ATfnl

p

λp = −λ1{ζnl
p }Tζ1

ζp =
λp

λ1

ζ1 + ζnl
p

up = Aζp

(45)

5. Interpolation of reduced models

From Eq. (13) we can notice that the reduced model employs the tangent
stiffness matrix, K, linearized from the non-linear problem formulation at a
given time instant. Instead of inverting the full stiffness matrix of size N×N ,
we employ model reduction techniques to invert the matrix ATK A, of size
r × r, that is much lower than the original size, as mentioned before.

However, this tangent stiffness matrix K corresponds to a given state
of the model (i.e., a given load position and load value, for instance, in
mechanical problems). Different load values would lead to different matrices
K along the loading path (this is due to the non-linear character of the
problem). This problem is now translated into the sequence of problems (44)-
(45). This means that the non-linearity of the problem has somehow been
translated to the fnl

p term of Eqs. (44)-(45), whose evaluation constitutes
now the most time-consuming part of the algorithm.

The philosophy of the method proposed in [15] is to perform some direct
simulations for a set of different positions of the surgical tool. For each tool
position a reduced-order basis set can thus be computed. But the position of
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S0

S2

S1

G(n,N)

TS0G(n,N)

X = S1 0logS ( 1)

X

S X=Exp ( )S0

Figure 1: Schematic description of the Grassman manifold formed by the set of basis
functions of all the reduced modes of a given model.

the tool at the on-line simulation does not need to be coincident to the pre-
computed ones, and therefore some interpolation scheme is needed if the load
is placed at positions far from the originally computed ones. This complex
interpolation procedure has now two different parts: on one side we need to
interpolate the reduced basis sets, from pre-computed complete models, to
an arbitrary position of the load, for instance. On the other side, we need to
also interpolate the terms fnl

p , again from the pre-computed complete models
to the arbitrary, reduced ones.

5.1. Interpolation of the reduced basis: a geometrical approach

Farhat and coworkers have pointed out that the set of empirical eigen-
functions given by Eq. (4) for a given model forms the so-called Grassman
manifold G(n,N) [27]. Therefore, in order to interpolate the set of basis func-
tions, that consequently do not form a vectorial space, we must move to the
tangent plane at a point of the manifold, which is a “flat” space, interpolate
there, and project back to the manifold, as schematically explained in Fig.
1.

In this way, the columns of A constitute a basis of the subspace S0 of
dimension n of the space RN . At each point S of the manifold G(n,N) one
can define a tangent plane of the same dimension, TS , with its points defined
by a matrix Γ ∈ RN×n. The exponential mapping ExpS transforms χ in an
n-dimensional subspace S ′ given by a matrix A′ ∈ R

N×n, such that

Γ = UΣV T (Singular value decomposition)
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A′ = AV cosΣ+U sinΣ

Conversely, the logarithmic mapping LogS , defines a map between a point
in the neighborhood of S ∈ G(n,N) and the tangent plane at the origin.
Thus, the image of S ′, in a neighborhood of S, given by the logarithmic
mapping, χ = LogSS ′ ∈ TS will be

(I −AAT )A′(ATA′)−1 = UΣV T (Singular value decomposition)

Γ = U tan−1(Σ)V T

So, consider, for instance, A0 ∈ RN×n and A1 ∈ RN×n, two matrices
representing two subspaces, obtained for different parameters of the model
(for instance, load positions, but the theory is completely general for other
parameters of the model), s0 and s1. Let S0, S1 be the two subspaces origi-
nated by considering parameters s0 and s1. Let, in turn, Y(t) be the geodesic
line that joins both subspaces (points in the Grassmann manifold), having
S0 as origin. In that case, the initial derivative of the geodesic line, that
belongs to the tangent plane at S0, will be

Ẏ0 = LogS0
S1

such that the matrix representing this initial derivative of the geodesic will
be (see [27] for a complete proof of this)

(I −A0A
T
0 )A1(A

T
0A1)

−1 = UΣV T

Γ = U tan−1(Σ)V T

Let S̃ denote the point of the Grassmann manifold representing the
reduced-order basis for the new value of the parameter. s̃. The initial deriva-
tive of the new geodesic line, joining S0 and the sought interpolated subspace
S̃, will be

˙̃Y0 = r̃Ẏ0

with

r̃ =
s̃− s0

s1 − s0

The computation of the singular value decomposition is not a very time-
consuming task. For instance, on a PC at 2GHz, the computation of the
Matlab instruction svd(A), with A a random matrix of 5 × 5000 elements
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takes on average much less than 1ms, still compatible with real-time con-
straints.

5.2. POD with interpolation

A less rigorous, but much simpler, method to interpolate among previ-
ously computed reduced models was established in [28]. This procedure is
known in the literature as Proper Orthogonal Decomposition with Interpo-
lation (PODI) [28]. Let [Um(X i)]

k
i=1 be the response of the system for k

different parameter values (in this case, loads at positions X i), at time step
m. The basic algorithm is described as

1. Perform the complete model simulation for each parameter value.

2. Although in the standard PODI technique the POD procedure is applied
to the complete set of snapshots of the system to obtain an orthonor-
mal basis A = [φ1 · · ·φn], we proceed by just applying the POD to
each complete model (i.e., to each load position). Thus, we obtain an
orthonormal basis for each system’s parameter value.

3. Interpolate from neighboring basis sets to obtain a reduced basis for the
new state of the system. To this end we employ finite element piece-wise
linear interpolation.

Results obtained with this technique showed to be much more efficient
and accurate than those obtained with the more rigorous technique base upon
interpolation on the Grassman manifold. This surprising result is still not
well understood by the authors and is currently one of our research topics.
In any case, results presented in section 6 were obtained with the PODI
technique.

Finally, in order to establish a good set of basis A = [φ1 . . .φn], what-
ever the chosen interpolation technique, a good sampling strategy should be
chosen for the position of the loads in the complete models. In this case, a
lattice was established over the domain. Loads were applied at every lattice
position. Obviously, other strategies can also be implemented. If the lattice
is not dense enough, it is clear that the mentioned interpolation described in
this section would lead to less accurate results.

5.3. Interpolation of the non-linear force terms

The other big ingredient of the resulting method, namely the non-linear
force term fnl

p of Eqs. (44)-(45) needs also to be interpolated between pre-
computed models, since it is too computationally-demanding to be evaluated
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Figure 2: Geometry of the finite element model for the human cornea.

in real-time. To this end, we establish a piece-wise polynomial (FE-like)
interpolation among complete models. This simple procedure has rendered
excellent results, as will be shown in the subsequent section.

6. Numerical examples

In order to show the performance of this method we have applied it to
some academic examples devoted to the simulation of soft tissues. The first
one is the pinching of a model of the human cornea, while the second is
devoted to liver palpation.

6.1. Pinching the human cornea

In this example we applied 0.014N to nine neighboring nodes located at
the central region of the cornea, that was meshed using trilinear hexahedral
elements. It consisted of 8514 nodes and 7182 elements. The mesh is shown
in Figure 2 in two views. The material properties of the cornea were assumed
to be E = 2MPa and ν = 0.48. A more detailed constitutive model can be
found at [29].

In this example nine modes were applied that provide decent approxima-
tion. The solution has been obtained using ANM-POD for p = 1, . . . , 6. The
tangent stiffness matrix at the origin, that is independent of the load state
of the organ,is employed for all the simulations. In order to verify the results
we have computed the solution by full FE Newton-Raphson method. The
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Figure 3: The loading factor vs maximum displacement [mm] for the Pinched cornea.

loading factor (λ) has been plotted versus the maximum displacement (in
modulus) in Figure 3.

As it can be seen the results have good accuracy with Newton-Raphson
solution. The deformed cornea obtained using ANM-POD for λ = 1 is shown
in Figure 4 and the one obtained using full FE Newton-Raphson is depicted
in Figure 5.

If we consider a case in which the load is placed at a position for which
a reduced model has not been stored, the interpolation procedure, as de-
scribed in section 5, is applied. As mentioned before, the tangent stiffness
matrix at origin is identical for all load states. The procedure follows by
(linearly) interpolating the reduced basis set from the four nearest neighbor
pre-computed states and also by interpolating the non-linear force term fnl

p

for each order of the expansion.
The resulting load-displacement curve is depicted in Fig. 6. The excellent

agreement with the complete model results (denoted by pFEM in the legend)
is noticeable.

6.2. Palpation of the liver

In this example we consider the palpation of a liver with a surgical tool,
assumed perfectly rigid. The liver is the biggest gland in the human body,
after the skin. Liver geometry has been obtained from the SOFA project
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Figure 4: uy, [mm], contour of the pinched cornea obtained by ANM-POD.
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Figure 5: uy, [mm], contour of the pinched cornea obtained by Newton-Raphson.
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Figure 6: The loading factor vs minimum displacement, [mm], for the Pinched cornea.
The resulting behavior is interpolated among four previously stored reduced models.

[30] and post-processed in order to obtain a mesh composed by 2853 nodes
and 10519 tetrahedra, whose geometry is shown in Fig. 7. The anterior
surface of the liver is considered free, while the posterior one was assumed
to be supported over different organs (it is connected to the diaphragm by
the coronary ligament, for instance). The inferior vena cava travels along the
posterior surface, and the liver is frequently assumed clamped a that location.
Although the assumed boundary conditions are not strictly correct from a
physiological point of view, our main interest is to show that the model can
be solved under real-time constraints with reasonable accuracy.

Although the literature on the mechanical properties of the liver is not
very detailed, we have assumed a Young’s modulus of 160 kPa, and a Poisson
coefficient of 0.48, thus nearly incompressible [1].

As in the previous example, a load of 1.2N has been applied at an arbi-
trary point and the reduced model has been constructed, composed in this
case by the 9 modes depicted in Fig 8, that capture the 99.9% of the energy
of the system.

The FE complete model was left to run until lack of convergence of the
Newton-Raphson algorithm. A standard Newton-Raphson algorithm was
employed, without any modification such as arc-length methods or anything
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Figure 7: Geometry of the finite element model for the liver.

similar. The load (in terms of load factor λ)-displacement curve obtained
by POD-ANM techniques is depicted in Fig. 9. It is worth noting the high
accuracy of the results for a wide range of displacements (up to ≈ 5mm under
the tool tip) for expansions of order 5 and 6, less than 5%. This accuracy
can also be noticed from Figs. 10 and 11, representing the displacements
for FE complete mode and POD-ANM (sixth-order expansion) techniques,
respectively.

6.3. Timings

The examples below have been performed on a laptop running Matlab
on a Windows-operated computer at 2 GHz., with 2 Gb RAM. The code
prototype is obviously thought for the design and testing of new algorithms.
Under these circumstances, the examples ran at around 20 Hz, which is
enough for visual perception, but not for haptic environments. This can be
improved by considering more sophisticated programming and not a general-
purpose language such as Matlab. The summary of the computational cost
for a typical simulation is as follows:

• Interpolation of the basis and the non-linear force term: 3.9 · 10−3s.

• Construction of the reduced stiffness matrix ATKtA (note that the
complete tangent stiffness matrix at the origin, Kt, is identical for
all simulations and therefore could be previously stored in memory):
4.7 · 10−2s.
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Figure 8: Nine most important eigenmodes for the simulation of the liver palpation. The
corresponding eigenvalues are: 2.69E− 03 (a), 8.28E− 05 (b), 8.82E− 07 (c), 1.07E− 08
(d), 6.73E − 11 (e), 5.21E − 13 (f), 2.52E − 15 (g).
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Figure 9: Load-displacement, [mm], curve for the liver palpation for different orders of
approximation. The continuous blue line represents the solution for the complete model
employing Newton-Raphson methods.
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Figure 10: Result for the FEM model, displacement uy, [mm].
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Figure 11: Result for the reduced-ANM model, displacement uy, [mm].

• Solving the resulting system of equations (6 × 6 in this particular ex-
ample): 3.1 · 10−4s.

The use of Graphics Processing Units [10] is obviously another possibility
to achieve true real-time performance, that seems to be at hand.

7. Conclusions

In a previous work by the authors [15], model reduction techniques were
applied for real-time simulation of the palpation of the human cornea. It
was demonstrated that even for very sophisticated constitutive laws, model
reduction techniques provided reasonable results at real-time frequencies for
haptic environments. However, it has been noticed that, although reduced
models obtained by POD techniques are optimal in some statistical sense,
no tangent stiffness matrix updating was possible under such severe con-
straints imposed by real-time. Thus, the models obtained by employing this
technique are still linear.

In this paper we have pursued a different strategy. Through the combi-
nation of model reduction techniques and an Asymptotic Numerical Method
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(ANM) we have shown that it is possible to obtain an expansion of the solu-
tion in a neighborhood of a previous equilibrium state that provides a very
simple algorithm that fits reasonably well to the true solution within some
radius of convergence. The main feature of the method is that it possesses
only one tangent stiffness matrix that does not need to be updated within
a large interval of strains (much larger that traditional Newton-Raphson
schemes). It has been show how this radius of convergence is enough for
many applications, involving strains on the order of 10%.

Other approaches based upon reduced models exist, see [14], for instance.
The main difference between the approach followed in this work and that of
Barbic and James is that in the latter case a general-purpose reduced basis
is employed. These basis functions are obtained from mass-scaled principal
component analysis. These basis functions are thought to be optimal for any
load state of the solid. In the present approach different sets of basis functions
are obtained for different load (and possibly boundary conditions) states
that can be changed according with the user experience. Basis sets for any
state different from the precomputed ones are obtained after interpolation,
as explained in the previous sections. In section 5.1 we have explained how
the set of reduced models for different loading states of the organ forms a
manifold. Therefore, it is crucial for the method to work well that the set
of complete models to be solved to feed the algorithm is chosen adequately.
For the moment, the brute-force approach seems to be out of reach. In
our opinion, this process should be guided by surgeons, by indicating the
most probable loading states for each surgical procedure, distinguishing, for
instance, between experienced surgeons and medicine students.

The method has been developed for Saint Venant-Kirchhoff constitutive
laws. This kind of laws is among the best state-of-the-art existing models [14],
but is judged to be poor for some applications. It is well-known that it suffers
from instabilities when subjected to compression (although no instabilities
have been found in the examples tested by the authors), so it would be
interesting to extend the proposed technique to some more sophisticated
constitutive laws, such as neo-hookean laws, for instance, or other much
better suited for specific applications [29].

Despite the facts commented above, the proposed technique seems to be
an appealing method for the simulation of linear elastic materials undergoing
large strains at real time. The authors continue to work in the development
of the technique. For instance, the issue of the simulation of cutting in the
context of reduced models is also a bottleneck of the method. This constitutes
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our current effort of research and will be published elsewhere.
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[22] D. González, A. Ammar, F. Chinesta, and E. Cueto. Recent advances
on the use of separated representations. International Journal for Nu-
merical Methods in Engineering, 81:637–659, 2010.

[23] H. Zahrouni, M. Potier-Ferry, H. Elasmar, and N. Damil. Asymptotic
numerical method for nonlinear constitutive laws. Revue europeenne des
elements finis, 7(7):841–869, 1998.

[24] N. Damil and M. Potier-Ferry. A new method to compute perturbed
bifurcation: application to the buckling of imperfect elastic structures.
International Journal of Engineering Science, 26(9):943–957, 1990.

[25] J. Yvonnet, H. Zahrouni, and M. Potier-Ferry. A model reduction
method for the post-buckling analysis of cellular microstructures . Com-
puter Methods in Applied Mechanics and Engineering, 197:265–280,
2007.

[26] S. Niroomandi, I. Alfaro, E. Cueto, and F. Chinesta. Model order re-
duction for hyperelastic materials. International Journal for Numerical
Methods in Engineering, 11:1180–1206, 2010.

[27] D. Amsallem and Ch. Farhat. An Interpolation Method for Adapting
Reduced-Order Models and Application to Aeroelasticity. AIAA Jour-
nal, 46:1803–1813, 2008.

[28] Hung V. Ly and Hien T. Tran. Modeling and control of physical pro-
cesses using proper orthogonal decomposition. Mathematical and Com-
puter Modelling, 33:223–236, 2005.

[29] V. Alastrue, B. Calvo, E. Peña, and M. Doblaré. Biomechanical model-
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