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SUMMARY

We present here a generalization of local maximum entropy approximation for high orders of
consistency (i.e., quadratic, cubic, ...). The method is based upon the application of the de Boor’s
algorithm to the standard, linear local maximum entropy approximation. The resulting approximation
possesses some interesting properties such as non-negativity, C∞ smoothness, exact interpolation on
the boundary and variation diminishing (no Gibbs effect). The resulting structure has many similarities
with B-spline surfaces, but without the tensor-product structure typical of that approximation.
Examples are provided of its use in the framework of a Galerkin method showing the potential of
the proposed method in solving boundary value problems. Copyright c© 2007 John Wiley & Sons,
Ltd.
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∗Correspondence to: Eĺıas Cueto. Mechanical Engineering Department. Edificio Betancourt. Universidad de
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1. INTRODUCTION

The development of approximation schemes more flexible than standard, piece-wise
polynomial, finite element approximation has engaged the attention of the Computational
Mechanics community during the last fifteen years [18][5][4][16]. The irruption of Moving Least
Squares (MLS) approximation showed an unexpected potentiality due to its inherent flexibility
(no need of a mesh in the traditional sense, smoothness of the approximation, ...) and easy
construction for different levels of consistency. However, some drawbacks also appeared, such as
difficulties in imposing essential boundary conditions or the development of accurate numerical
integration procedures adapted for these schemes.

After more than a decade after, there still seems to be difficult to obtain a general
enough approximation scheme able to verify, at the same time, desirable properties, such
as positivity (verified by natural element approximations, NEM, for instance [21]), general
levels of consistency (easy to obtain in Element Free Galerkin schemes, among others [5]),
“exact” imposition of essential boundary conditions (again possible in NE schemes, [7] [24] [2]
[1], under some weak restrictions). Note that no method among the previous verifies all the
mentioned properties.

Recently, Sukumar [20] studied the use of maximum entropy (max-ent) approximation
schemes in the framework of a Galerkin procedure. Max-ent schemes offer smoothness (which
is not the case for NE approximations), interpolation on the boundary (which is not the
case for MLS schemes, for instance) and strict positivity and variation diminishing properties
(again not attainable by MLS or Reproducing Kernel Particle Methods, RKPM). However, two
main limitations still hold: max-ent approximation is non-local in nature and possesses linear
consistency at most. In order to avoid full matrices, Sukumar [20] proposed to use max-ent
schemes over a mesh of polygons defined in the domain.

More recently, Arroyo and Ortiz [3] developed a local max-ent approximation scheme by
solving the max-ent approximation in the form of a statistical inference problem in which
the first order consistency is viewed as a restriction to the problem and where a parameter
controlling the support of the shape function is added to the formulation. Thus, a local
formulation based upon max-ent scheme is possible, but still no arbitrary degree of consistency
was possible.
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A HIGHER-ORDER METHOD BASED ON LOCAL MAXIMUM ENTROPY 3

In their paper, Arroyo and Ortiz [3] included a fundamental theorem showing that the
condition to fulfil to obtain an approximation scheme interpolating on the boundary is that
the shape functions can be viewed as a convex combination, i.e., they satisfy the partition
of unity property, together with the linear consistency and the non-negativity condition. This
result is, in our modest opinion, of utmost importance in the development of new approximation
schemes with good properties.

In parallel, we proposed recently a generalization of the Natural Element method in order
to achieve a general degree of consistency [10]. This generalization is based upon the use of the
de Boor’s algorithm, previously used to define high-order B-spline curves by recursive use of
linear interpolation. Natural neighbour shape functions are positive and satisfy the partition of
unity property by construction, so the resulting scheme is a convex combination and hence the
before mentioned interpolation behaviour on the boundary is obtained. In addition, B-splines
are constructed as convex combinations of linear interpolants [9], so the natural neighbour
interpolation proposed in [10] provides a scheme with strict interpolation on the boundary
and also a general degree of consistency.

However, natural neighbour (Sibson) schemes are only C0, and therefore the resulting scheme
is, in general, only C0 (it is smooth everywhere, but only C0 at the edges of the Delaunay
triangles). Although a more general scheme is possible, by using the Hiyoshi-Sugihara form of
natural neighbour interpolation [13], the resulting scheme is complex and of high computational
cost, see [10].

Arroyo and coworkers have proposed recently a max-ent form of their interpolation
scheme with second order of consistency [8], by enforcing the quadratic consistency in the
statistical inference problem defining the max-ent scheme. The resulting approximation scheme
conserves the interesting properties of the linear max-ent scheme (smoothness, positivity, strict
interpolation on the boundary, ...) but again has no direct extension to a general degree of
consistency.

Here we propose a different approach to the problem, by viewing max-ent interpolation
as a suitable generalization of linear interpolation to Euclidean spaces of dimension n ≥ 2.
Thus, max-ent schemes are a valid choice for the extension of the de Boor’s algorithm in order
to obtain a method with all the desired properties: positivity, smoothness, general degree of
consistency and, as a consequence, strict interpolation on the boundary [11]. The resulting
method also bears some similarities with the structure of isogeometric finite elements [14], but
avoiding the tensor-product structure typical of B-spline surfaces.

The outline of the paper is as follows: in section 2 we briefly review the standard, linear,
max-ent approximation scheme. The de Boor’s algorithm is then revisited in section 3, giving
rise to the development of high-order max-ent schemes in section 4. Some examples of the
performance of the method are shown in section 5.

2. LOCAL MAXIMUM ENTROPY APPROXIMATION

As explained in the Introduction, local max-ent schemes were derived from standard max-ent
schemes, which are global in nature. Their use in the framework of Galerkin methods dates
back to the original work of Sukumar [20], by constructing the interpolation over a mesh
composed by polygons, over which the interpolant is built. The local max-ent interpolation is
therefore reviewed first for completeness.

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–28
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4 GONZÁLEZ, CUETO AND DOBLARÉ

2.1. Global Maximum Entropy approximation

Consider a set of nodes X = {x1,x2, . . . ,xN} ⊂ R
d. Let u : convX → R be a function whose

values {uI ; I = 1, . . . , N} are known on the node set, where conv stands for the convex hull
of the node set. Consider an approximation of the form

uh(x) =

N
∑

I=1

φI(x)uI , (1)

where the functions φI : convX → R are the shape or basis functions. In many branches
of Science and Engineering these functions are required to satisfy the zeroth and first-order
consistency conditions:

N
∑

I=1

φI(x) = 1, ∀x ∈ convX, (2a)

N
∑

I=1

φI(x)xI = x, ∀x ∈ convX. (2b)

If these shape functions are, in addition, non-negative (φI(x) ≥ 0 ∀x ∈ convX), then, the
approximation scheme given by Eq. (1) is referred to as a convex combination, see for instance
[9].

The positivity of shape functions allows considering them as a probability measure [20]. The
Shannon entropy of a discrete probability distribution is given by:

H(φ) = −

N
∑

I=1

φI lnφI . (3)

In this framework, the basis function value φI(x) is viewed as the probability of influence of a
node I at a position x [20]. The problem of approximating a function from scattered data can
thus be viewed as a problem of statistical inference. Following [3], the optimal, or least biased,
convex approximation scheme (at least from the information-theoretical point of view) is the
solution of the problem

maximize H(φ) = −
N

∑

I=1

φI lnφI , (4)

subject to φI ≥ 0, I = 1, . . . , N,

N
∑

I=1

φI = 1,

N
∑

I=1

φIxI = x.

Proofs of the existence and uniqueness of the solution to this problem are given in [3].
Approximations obtained after solving the problem given by Eq. (4) are global in nature.

They were used by Sukumar [20] to solve PDEs in a Galerkin framework, after tilling the
domain into convex polygons. Arroyo and Ortiz [3], however, pursued a different approach,
and developed a local form of the max-ent scheme by modifying the size of the support of the
functions φI through the inclusion of constraints in the problem (4).

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–28
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A HIGHER-ORDER METHOD BASED ON LOCAL MAXIMUM ENTROPY 5

2.2. Local Maximum Entropy approximation

The locality of max-ent approximation schemes can be tuned by adding spatial correlation to
the problem given by Eq. (4). In this way, the width of the shape function φI can be defined
[3] as

w(φI ) =

∫

Ω

φI(x)|x − xI |
2dx (5)

which is equivalent to the second moment of φI about xI . The most local approximation is
that which minimizes

W (φ) =

N
∑

I=1

w(φI ) =

∫

Ω

N
∑

I=1

φI(x)|x − xI |
2dx (6)

subject to the constraints given by Eqs. (2a), (2b) and the positivity restraint.
The new problem

For fixed x minimize U(x,φ) =

N
∑

I=1

φI |x − xI |
2 (7)

subject to φI ≥ 0, I = 1, . . . , N

N
∑

I=1

φI = 1,

N
∑

I=1

φIxI = x

has solutions if and only if x belongs to the convex hull of the set of points [3]. If these
points are in general position, then the problem (7) has unique solution, corresponding to the
piecewise affine shape functions supported by the unique Delaunay triangulation associated
with the node set X (see [3] and references therein for the proof of this assertion).

The elegant solution of Arroyo and Ortiz [3] to the problem of finding a local approximation
satisfying all the interesting properties of a (global) Maximum Entropy approximation is to
seek a compromise between problems (4) and (7):

For fixed x minimize fβ(x,φ) ≡ βU(x,φ) −H(φ) (8)

subject to φI ≥ 0, I = 1, . . . , N,

N
∑

I=1

φI = 1,

N
∑

I=1

φIxI = x.

Problems (4) and (7) are recovered by taking β = 0 and β = +∞, respectively, as can be
readily seen. Proofs of the existence and uniqueness of problem (8) are also given in the before
mentioned reference.

It is important to note, however, that the evaluation of the approximation (8) does not
require the solution of this problem. It is enough to solve an unconstrained minimization

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–28
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6 GONZÁLEZ, CUETO AND DOBLARÉ

problem that arises from the dual form of the problem (8). The calculation of the shape
function derivatives is also explicit, see [3].

2.3. Properties of local Maximum Entropy approximations

As stated in the introduction, maximum entropy interpolation schemes solve many of the
traditional problems of meshless methods. It is interesting to review here the properties of this
scheme.

2.3.1. Smoothness

Proposition 2.1. Let the parameter β to vary such that β : convX → [0,∞) be Cr in
int(convX). Then, the local max-ent shape functions are of class Cr in int(convX).

The interested reader can consult [3] for a detailed proof of this property. In addition,
the max-ent shape functions recover the piece-wise linear polynomials over the Delaunay
triangulation of the point set if the parameter β is set to zero. Noteworthy, the following
property can be stated:

Proposition 2.2. Let x ∈ convX. Then, φβ(x), the minimizer of problem (8) for a parameter
β, is a C∞ function of β in (0,∞).

The proofs of these assertions can be found in [3] and [22].

2.3.2. Completeness It is straightforward to conclude that, by construction —see Problem
(8)— local max-ent approximations are linearly complete, i.e., they exactly reproduce linear
polynomials. However, it is highlighted here only because this property is the basis of the
consideration of max-ent approximations as a suitable generalization of linear interpolation to
n-dimensional spaces. This constitutes our generalization of the de Boor’s algorithm to R

d.
In Fig. 1 three different max-ent shape functions are depicted. On the left, a typical shape

function φI for a point located in the centre of a 7 × 7 regularly spaced cloud of sites. In the
centre, the same for a point located on the boundary of the convex hull of the cloud. Finally,
on the rightmost figure, the shape function for a site located in the corner of the cloud is
depicted, showing its interpolant character for this case.

The influence of the β parameter is analyzed in Fig. 2. In it, it can be noticed that the shape
functions φI take different supports. It is noticeable how, as β grows, the shape functions closely
resemble the finite element shape functions, which are attained for β > 4.0 for this particular
geometry of the point cloud.

3. THE DE BOOR’S ALGORITHM FOR B-SPLINE SURFACES REVISITED

It is noteworthy that local max-ent approximation schemes provide a means to control the
smoothness of the approximation by tuning the support of the shape functions. Thus, if the β
parameter is forced to grow, the piece-wise linear polynomials constructed over the Delaunay
triangulation of the points are recovered. In the context of B-spline-like approximation, this
fact will provide us with the freedom to control the smoothness of the resulting approximation.
The following paragraphs revisit the basics of B-splines under the de Boor’s framework.

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–28
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Figure 1. Shape functions on a set of 7 × 7 regularly distributed points. (a) Point in the centre of
the cloud. (b) Point located at the boundary. (c) Node at a corner. All functions are computed for a

parameter β = 0.8.

The de Boor’s algorithm constitutes a generalization of the de Casteljau algorithm for
Bézier curves, which states that such curves can be obtained by successive application of
linear interpolation [9]. For a set of points b0, b1, . . . , bn ∈ E

3 and t ∈ R, the construction

br
i (t) = (1 − t)br−1

i (t) + tbr−1
i+1 (t) with

{

r = 1, . . . , n

i = 0, . . . , n− r
, (9)

where b0
i = bi, gives the desired Bézier curve.

The de Boor’s algorithm introduces a parametric space, defined by an arbitrary sequence
of knots (u0, u1, u2, u3 for a quadratic curve), thus generalizing this algorithm and giving
considerably more freedom to the resulting set of curves. The bivariate function b[u, u] —
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Figure 2. Influence of the β parameter on the resulting shape function. Functions φI(x) for the point
located at the centre of the cloud and parameters β = 0.2, 0.6, 0.8, 1.2, 2.0 and 4.0, respectively. Note

the different supports, but also the different heights of the functions on the scale.
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known as blossom in the CAD community— can be defined as (see Fig. 3)

b[u, u] =
u2 − u

u2 − u1

b[u1, u] +
u− u1

u2 − u1

b[u, u2]

=
u2 − u

u2 − u1

(

u2 − u

u2 − u0

b[u0, u1] +
u− u0

u2 − u0

b[u1, u2]

)

(10)

+
u− u1

u2 − u1

(

u3 − u

u3 − u1

b[u1, u2] +
u− u1

u3 − u1

b[u2, u3]

)

u0 u1 u u2
u3ss U1

1

U1

2

s
U1

3

b[   ,   ]u  u0 1

b[  ,   ]u u1

b[   ,   ]u  u1 2

b[  ,   ]u u
2

b[   ,   ]u  u2 3

b[  ,  ]u u

Figure 3. Schematic representation of the de Boor’s algorithm.

The de Boor’s algorithm expresses u in terms of intervals of growing size (three intervals, and
thus four points, for a quadratic curve, four intervals for a cubic one, for instance). B-spline
curves consist of a union of polynomial curve segments that join with prescribed smoothness.
Following the notation in [9], let U be an interval [uI , uI+1] in the sequence of knots. Then,
there will be an ordered sequence of knots U r

i , each containing uI or uI+1, such that U r
i

consists of r + 1 successive knots and uI is the (r − i)-th element of U r
i .

A degree n curve segment corresponding to the interval U is then given by n + 1 control
points di. Each intermediate control polygon leg dr

i ,d
r
i+1 can then be viewed as an affine image

of Un−r+1
i+1

. The point dr+1
i is the image of u under such an affine map.

Extending this algorithm to n-dimensional spaces (n ≥ 2) forces us to work in non-
parametric form, since the two- or three-dimensional counterpart of the intervals U are

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–28
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10 GONZÁLEZ, CUETO AND DOBLARÉ

extremely difficult to define for cases other that tensor product of one-dimensional intervals.
Using the equivalence between max-ent and linear interpolation in one dimension, this simple
algorithm can alternatively be obtained by applying max-ent approximation over segments U r

i

in which we eliminate r − 1 of the closest neighbours of the point u:

b[u, u] = φ1(u)b[u1, u] + φ2(u)b[u, u2]

= φ1(u)
(

ϕ2
0(u)b[u0, u1] + ϕ2

2(u)b[u1, u2]
)

(11)

+ φ2(u)
(

ϕ2
1(u)b[u1, u2] + ϕ2

3(u)b[u2, u3]
)

where φI(u) represent the max-ent coordinates of point u with respect to knot I and ϕr
I(u)

represent the max-ent coordinates of point u with respect to knot I, but computed over an
interval U r

i , i.e., by eliminating r − 1 natural neighbours of the interval. The notation used is
shown in Fig. 4.

Figure 4. Schematic representation of the de Boor’s algorithm employing max-ent approximation in
1D.

This algorithm will be extended to higher-dimensional cases in the following section.
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4. A MAX-ENT SCHEME WITH ARBITRARY DEGREE OF CONSISTENCY

4.1. Definition

The de Boor’s algorithm thus presented can be extended to higher-dimensional cases as follows.
Consider again, for simplicity, a set of nodes X = {x1,x2, . . . ,xN} ⊂ R

2 and a quadratic
consistency scheme (the extension to three or higher dimensions and higher-order consistency
is straightforward, as will be seen). Then, we employ the same strategy as in [10] in the
context of natural element methods, to construct a new family of approximation schemes,
giving surfaces defined as:

s(x) =

n
∑

I=1

nI

∑

J=1

NIJ(x)dIJ , with dIJ = dJI (12)

where n represents the number of nodes contained in supp φI(x). In addition,

NIJ(x) = φI(x)ϕI
J(x) (13)

and dIJ play the role of the control points in standard B-spline curves or surfaces, although
their physical position is more complex to locate (except for linear and quadratic consistency,
as will be demonstrated) and therefore should be considered as mere weights. Note that the
true shape function will be composed by the sum of two terms, i.e., NIJ(x) +NJI(x). φI(x)
represents the max-ent node I shape function’s value at point x. Functions ϕI

J (x) represent
the max-ent node J shape function’s value at point x, in the original cloud of nodes, but
without the I-th node (see Fig. 5), in the sense described by the previous section. Finally, nI

is the number of nodes contained in supp ϕI(x) when we eliminate the site I, similarly to the
de Boor’s algorithm.

Remark 1. For the cubic case, for instance, the shape functions would be NIJK(x) =
φI(x)ϕI

J (x)ψIJ
K (x), where ψIJ

K represents the shape function associated to node K but after
eliminating nodes I and J .

The typical appearance of the functions NIJ described before is shown in Fig. 6 for a general
set of irregularly distributed sites.

4.2. Properties of the proposed approximation

The approximation defined after Eq. (12) possesses some similarities with standard B-spline
curves. These properties will be studied in this section, again with focus in the quadratic
case for the sake of simplicity. In general, these properties are similar to the approximation
proposed by the authors in [10], except in the degree of smoothness, but are reproduced here
for completeness.

Proposition 4.1. The functions NIJ form a partition of unity, i.e.,

n
∑

I=1

nI

∑

J=1

NIJ(x) = 1 ∀x ∈ R
2 (14)

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–28
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12 GONZÁLEZ, CUETO AND DOBLARÉ

(a) (b)

Figure 5. Schematic representation of the proposed algorithm. (a) Set of sites {I, . . . , N}. We consider
an evaluation point x, belonging to the support of knots I , J and K. (b) After eliminating site K, the
evaluation point belongs to the support (with possibly different radius) of knots I and J only. This is
an idealized case, since no point can belong to two shape function supports only in two dimensions.

Proof By applying the definition of the new basis functions, given by Eq. (13) we have

n
∑

I=1

nI

∑

J=1

NIJ(x) =
n

∑

I=1

nI

∑

J=1

φI(x)ϕI
J (x) =

n
∑

I=1

φI(x)
nI

∑

J=1

ϕI
J (x).

and, by using the well-known partition of unity property of max-ent approximation,

nI

∑

J=1

ϕI
J (x) = 1 ⇒

n
∑

I=1

nI

∑

J=1

NIJ(x) =

n
∑

I=1

φI(x) = 1. (15)

This property is of utmost importance if this kind of approximation is going to be used
in the approximate solution of PDEs by a standard Galerkin procedure, since it ensures that
rigid-body motions are reproduced properly. Following this reasoning, we demonstrate the
linear completeness of the approximation:

Proposition 4.2. The basis functions NIJ(x) span the space of linear polynomials.

Proof To prove this, we consider an approximation of the type:

s(x) =

n
∑

I=1

nI

∑

J=1

NIJ(x)

(

xk
I + xk

J

2

)

,

for each coordinate xk, where xk
I represents the coordinate k of the node I neighboring a

generic point x. Thus,

s(x) =

n
∑

I=1

nI

∑

J=1

φI(x)ϕI
J (x)

(

xk
I + xk

J

2

)

=
1

2

n
∑

I=1

nI

∑

J=1

φI(x)ϕI
J (x)

(

xk
I + xk

J

)

.
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Figure 6. Shape of the typical functions NIJ for a set of irregularly distributed sites. (a) β = 4.1. (b)
β = 5.2. Note the different heights of the functions and also the different support sizes. This difference,

however, is less evident than for standard, linear local max-ent shape functions.

Expanding the sums,

s(x) =
1

2

n
∑

I=1

nI

∑

J=1

φI(x)ϕI
J (x)xk

I+

+
1

2

n
∑

I=1

nI

∑

J=1

φI(x)ϕI
J (x)xk

J .
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Making use of the linear completeness of the max-ent approximation we arrive at

s(x) =
1

2

n
∑

I=1

φI(x) · xk
I · 1 +

1

2

n
∑

I=1

φI(x)xk,

and, finally,

s(x) =
1

2
xk +

1

2
xk

n
∑

I=1

φI(x) = xk.

Note that in this case the “control points”, i.e., the values dIJ are located at the midpoint
between neighbouring nodes and have a clear physical meaning.

Following a similar approach, the quadratic completeness can be deduced and, by induction,
the n-th order precision.

Proposition 4.3. The basis functions NIJ(x) span the space of quadratic polynomials.

Proof Let us consider now an approximation of the type:

s(x) =

n
∑

I=1

nI

∑

J=1

NIJ(x)xk
Ix

l
J ,

for each quadratic product xkxl of the coordinates k, l, where xk
I represents the k-coordinate

of the node I neighboring the generic evaluation point x. Thus,

n
∑

I=1

nI

∑

J=1

NIJ(x)xk
Ix

l
J =

n
∑

I=1

φI(x)xk
I

nI

∑

J=1

ϕI
J(x)xl

J .

We obtain finally

s(x) = xkxl,

thus obtaining, together with Props. 4.1 and 4.2, the desired proof for the completeness of the
quadratic basis.

Remark 2. Properties demonstrated so far are, essentially, the same demonstrated for higher-
order natural neighbour interpolation in [10]. However, in that case, the obtained surfaces did
not posses continuity higher than C0 along the edges of the Delaunay triangulation of the sites.
In this new approximation scheme, continuity is controlled by the β parameter.

Standard B-spline curves are constructed, however, by successive application of linear
interpolation. Piece-wise linear interpolation implies basis functions having C0 continuity only.
But second- and higher-order B-spline curve continuity is guaranteed by perfectly-matching
piece-wise polynomial curves. Continuity can be controlled by repeated knots in the B-spline
curve case. This is not the case in the proposed max-ent approximation, as mentioned before,
in which the role of the β-parameter is essential in controlling the smoothness, together with
the use of repeated nodes, of course.
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Proposition 4.4. The proposed surfaces, Eq. (12), posses a continuity of class Cr, of the same
order of the original max-ent surfaces. If ϕI

J and φI are constructed with different degrees of
continuity, rI , rJ , then r = min{rI , rJ}.

Proof Immediate, since the high-order max-ent approximation shape functions are convex
combinations of standard local max-ent approximations.

In our computational experiments we have seen that the proposed surfaces behave very
similarly to B-spline curves, i.e., the functions NIJ match smoothly at any point (for β
sufficiently small), see Fig. 7.
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Figure 7. x and y derivatives of a typical quadratic max-ent basis function, for β = 0.6.

4.3. The case of repeated knots

It is well-known that in the case of B-splines, the continuity of the sequence of curves can
be controlled by the use of repeated knots. In the proposed max-ent approximation, many
new combinations arise, since the continuity for the linear case is controlled by the parameter
β. If we employ C0 linear max-ent approximation at a repeated node, an interpolating C0

approximation is obtained.

Proposition 4.5. If a node I is of multiplicity n and φI ∈ C0, the approximation of order n
thus obtained possesses continuity C0 and is interpolant.

Proof Since node I is repeated, ϕI
I = φI , and therefore both φI and ϕI

I belong to C0(Ω). By
construction, any convex combination of these functions will inherit the lowest continuity of
both. The interpolant character follows since both functions are interpolant for the linear, C0

case.
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16 GONZÁLEZ, CUETO AND DOBLARÉ

By repeating the nodes on the boundary of the convex hull of the data sites, for instance,
one can make the surface to be (piecewise) quadratically interpolant along the boundary. The
resulting function NII for a site on the boundary is depicted in Fig. 8.
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Figure 8. Interpolating quadratic function NII(x) obtained by repeating nodes on the boundary of
the convex hull of the data sites. A discontinuity on the derivative appears at the node location.

This last property has again a tremendous importance when using this kind of approximation
in the context of Galerkin procedures, as in the Finite Element method. The use of repeated
nodes ensures interpolation and thus an easy imposition of essential boundary conditions by
simply fixing the value of the approximation at the node.

Remark 3. One property of utmost importance when dealing with B-spline surfaces is the
possibility of obtaining any degree of smoothness. In the case of the proposed max-ent surfaces,
this degree of smoothness can be achieved for the linear case by tuning the degree of continuity
of the parameter β, as explained in Property 2.1 below. Any convex combination of Cr surfaces
is Cr, so this provides a means to construct these surfaces. The issue of interpolating surfaces,
however, is still controlled by repeated nodes.

4.4. Approximation in non-convex domains

The issue of local max-ent approximation along non-convex boundaries has not been
deeply studied, in our opinion. As commented before, all the definitions given for max-ent
approximation are true for points on the convex hull of the nodes and nothing is said for
non-convex domains. In fact, this problem arose in the very early developments of meshless
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methods, and is common to the vast majority of such methods (up to our knowledge, only
natural element methods are able to circumvent these problems, see [7] [24]).

In the MLS family of methods, for instance, Belytschko and coworkers proposed a method
based on a visibility criterion [19], see Fig. 9, in order to seek for an appropriate measure of
distance near non-convex boundaries. In essence, the idea is to avoid the neighbourhood of two
nodes if it is established through a portion of the space located out of the domain. This kind
of criteria produced discontinuous approximations in the context of MLS methods, although
they led to a rigorous imposition of EBCs in the NEM, see [24].

Figure 9. Visibility criterion. The boundary of the domain is considered opaque, so that nodes whose
neighbourhood is established through this opaque boundary are prevented from being neighbours.

Following this rule, nodes A, B and C can not become neighbours, whereas nodes B and D can.

In the case of max-ent approximations, visibility criteria produce discontinuous shape
functions, just like in the MLS. A proper interpolation along non-convex boundaries is therefore
still a matter of research, and is currently one of the research lines of the authors. However, for
the time being, a direct solution exists. Since shape function’s support are controlable through
the value of the β-parameter, it can be adjusted near the boundary so as to minimize this
effect, with a limit in the use of finite elements along these boundaries. The resulting shape
functions for first order consistency and different β values are shown in Fig. 10.

The relative importance of the approximation along non-convex boundaries is investigated
in example 5.4 in the next section.

5. NUMERICAL EXAMPLES

5.1. Patch tests

Patch tests, although originally proposed for testing the compatibility of finite element
approximations [15], have been widely used in the development of meshless methods as a
measure of the numerical integration error [21] [12]. It is obvious that, if a method verifies a
certain given of consistency analytically, should verify exactly the patch test. If it is not the
case, this must be due to the errors related to numerical integration.

Here, (displacement) patch tests have been analyzed for different nodal arrangements and for
the quadratic consistency approximation, considering an elastic material given by E = 1.0 and
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Figure 10. Resulting first-order shape function for nodes at a non-convex boundary. Low β-value (left)
and high β-value (right) for the discretization of the plate with a hole problem (section 5.4).

ν = 0.3. Integration has been performed by using a background grid of 20 × 20 cells, divided
into two triangles, and three-point quadrature rules have been applied within the triangles.
Results are summarized in Table I.

Cloud ||Error||L2

3 × 6 3.7684 · 10−7

4 × 4 2.5784 · 10−6

4 × 8 8.1924 · 10−6

5 × 10 7.8942 · 10−7

Table I. Results for the patch test with quadratic consistency approximants.

In analyzing these results, some considerations should be taken into account. Firstly, it is
obvious that the patch tests are not passed within machine precision, as is the case with all
Galerkin meshless methods and triangle-based quadratures. It is also obvious that this is due
to numerical integration errors, since no other source of error exists.

Second, these errors are in good accordance with the errors reported by Arroyo and Ortiz
[3] for the linear consistency approximation. No patch test result is presented by the same
authors for the quadratic max-ent approximant [8]. Thirdly, these errors are computed by
using a constant β-parameter. This means that increasing the number of “nodes” in the model,
a much higher increase in the number of degrees of freedom is achieved (remember that the
degrees of freedom can be located in the quadratic case in between the original neighbouring
nodes of the cloud).

Increasing the number of integration points somewhat decreases the level of error, but not
definitely. For instance, for the cloud of 5×10 nodes, a background integration mesh of 25×25
cells decreases the error up to 3.55 · 10−5.

As mentioned before, the issue of numerical integration remains to be an active field of
research among the meshless community, but nevertheless many meshless methods still provide
very accurate results, as will be demonstrated.
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5.2. Convergence tests

In order to check the convergence of the proposed approximation for problems whose solution
is not spanned by the basis, we have considered the Poisson problem given by

− ∆u = −6x− 6y + 2 in Ω = [0, 1]2 (16)

considering appropriate Dirichlet boundary conditions so as to have an exact solution u =
x3 + y3 −2x2 + y2 −2y+1. A dense-enough background integration mesh, composed by a grid
of 420×420 squares, was employed. The squares were divided in two and three-point Hammer
rules were employed.

Results for this problem are shown in Fig. 11, where a convergence rate of R = 2.97 for
L2-norm has been found, in good agreement with the expected theoretical rate (R = 3 for L2-
norm and quadratic approximation). For the energy norm, a slightly bigger than expected rate
of cenvergence has been found (R = 2.21 in the last simulation), which is still in accordance
with the theoretical values (R = 2).
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Figure 11. Convergence plot for the Poisson problem. Left, L2-norm of the error. Right, energy norm.

5.3. Cantilever beam

In this example we tested the behaviour of the proposed approximation against the well-known
problem of a cantilever beam under bending subjected to a parabolically distributed load at
one end and fixed at the other end as shown in Fig. 12.

To test the performance of the proposed formulations, we compared the results of the
proposed method with quadratic consistency and the theoretical displacements at the beam
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Figure 12. Geometry of the beam bending problem.

tip [23]. The analytical solution is given by:

σx = −
Py(L− x)

Iz
(17)

σy = 0 (18)

σxy =
P

2Iz

(D2

4
− y2

)

(19)

and the displacements are given by

ux(x, y) = −
Py

6E′Iz

[

(6L− 3x)x+ (2 + ν′)
(

y2 −
D2

4

)]

(20)

uy(x, y) =
P

6E′Iz

[

3ν′y2(L− x) + (4 + 5ν′)
D2x

4
+ (3L− x)x2

]

(21)

where Iz represents the moment of inertia of the beam, given by Iz = D3/12. For plane stress
the material parameters are defined as

E′ =
E

(1 − ν2)
(22)

ν′ =
ν

(1 − ν)
(23)

In this case, L = 4.0 and D = 1.0. Young’s modulus was fixed to 1.0 and Poisson’s ratio to
0.25.

For numerical integration purposes, in all the examples shown, a regular background grid
of 50 × 50 cells was employed. Each cell was split into two triangles and standard three-
point quadrature rule was employed. The objective of this technique is to avoid the numerical
integration errors found in all meshless methods due to the non-polynomial character of the
approximation. The use of the Delaunay triangles as integration cells was found to be clearly
insufficient in order to obtain good convergence results.

The convergence results are shown in Fig. 13. Note that the convergence ratio is higher than
a priori expected. This is due to the quadratic form of the solution in the vertical direction,
which is reproduced analytically by the quadratic approximation employed. However, for finer
discretizations, the convergence is poorer. This can be attributed to the error in the numerical
integration, which is also present in this method for the numerical integration of the quadratic
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Figure 13. Convergence of the results in L2 norm for the beam problem.

load at the beam tip. Note that this last error was not present in the case of natural elements,
which in one-dimensional spaces are identical to linear finite elements, and therefore give exact
quadratic polynomial approximation in one dimension. This apparent lack of convergence
for finer discretizations, due to numerical integration errors is, nevertheless, not new among
meshless methods, see [21] [7] [12], among other possible references. If further refinement of
the integration cells is performed, results can be improved, but, as previously published in
previous works [6] [17] results do not achieve the expected rate of convergence (although they
are still convergent). In this case, augmenting the number of background integration cells to
80 × 80, the L2-norm of the error decreases to −2.4934, while augmenting to 160 × 160 cells
gives −2.4942.

Note also that the error levels provided by the quadratic max-ent approximation are much
lower (some orders of magnitude) than the equivalent errors provided by quadratic natural
elements, for instance, see [10]. This seems to confirm the Arroyo’s claim for the quality of
max-ent approximation and (relative) ease of integration.

5.4. Approximation along non-convex boundaries: plate with a hole problem

To clarify the issue of approximation in non-convex domains, we have studied the influence
of the β parameter on the accuracy of the result for the plate with a hole problem. To this
end, a cloud of 25 nodes was employed and different shape function supports—with linear
and quadratic consistency—, for different β values, were tested. In all cases, a background
integration mesh is used. This mesh is composed by a set of 30 × 30 squared cells that are, in
turn, split into triangles. Three-point quadrature is used within these triangles.

The theoretical solution to this well-known problem can be found in [23], among other
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Figure 14. Geometry of the problem of an infinite plate with a hole under traction.

classical books:

u1(r, θ) =
a

8µ

[ r

a
(κ+ 1) cos θ + 2

a

r
((1 + κ) cos θ + cos 3θ) − 2

a3

r3
cos 3θ

]

(24)

u2(r, θ) =
a

8µ

[ r

a
(κ− 3) sin θ + 2

a

r
((1 − κ) sin θ + sin 3θ) − 2

a3

r3
sin 3θ

]

(25)

Material parameters were Young’s modulus E=1.0 and Poisson coefficient ν = 0.25. µ
represents the shear modulus and κ is the Kolosov constant, defined as

κ = 3 − 4ν (26)

κ =
3 − ν

1 + ν
(27)

respectively, for plane strain and plane stress.
Applying symmetry conditions, only one quarter of the plate was modelled, and exact

tractions were applied at the boundary of the model. The geometry of the model is shown
in Fig. 14. The plate was discretized with quadratic consistency approximants and, again,
repeated nodes were employed along the essential boundary.

The idea of this example relies on the fact that two nodes whose neighbourhood is established
through portions of the space lying outside the domain must influence the final result, obviously
decreasing the accuracy. In this way, the bigger the shape function’s support is, the worst the
expected accuracy.

The aim of this section is thus to clarify the true incidence of the shape function’s support
on the result, though different approaches are possible to elucidate this influence. In order to
alleviate the influence of the β-parameter on the result, for instance, finite element-like shape
functions can be used for nodes lying on the non-convex boundary —thus obtaining a true
interpolation—, with the use of adaptive β values. In order to simplify the exposition as much
as possible, we kept the β parameter constant over the domain and determined its influence on
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Figure 15. Convergence of the results in L2 norm for the plate with a hole problem. Error versus β
parameter for linear consistency approximation.

the final result. Of course, other sources of error can lead to misunderstanding the true sources
of the final error, such as the integration error, that can vary for different shape function’s
support size. However, we believe that the results of this analysis allow us to have an overall
impression of the influence of the size of the support when dealing with non-convex supports.

The results, for linear consistency firstly, are summarized in Fig. 15. It can be noticed
that, as expected, error decreases for higher β values, and thus for smaller supports. Further
refinements on the cloud size will also lead to lower errors.

A similar plot is shown in Fig. 16, but for an approximation with quadratic consistency. The
error is plotted in L2-norm and in the discrete 2-norm (mean of the squared root of squared
nodal errors), to eliminate the error associated with the integration of the error itself. In this
case the effect of the β-parameter is not so clear, and there seems to be an optimum value
from the point of view of accuracy. This minimum is interpreted, according to our experience,
as related to the influence of the linear shape function’s support on the resulting support of
the quadratic shape functions, and therefore on the quadrature error. Smaller supports seem
to minimize the issues related to non-convex geometry, but in turn increase the presence of
small quadratic shape function’s supports and therefore the quadrature error, thus generating
an optimum in between.

This example provides an overall impression of the influence of the support on the accuracy
of the proposed method. Since no method is currently available, up to the authors’ knowledge,
to exactly integrate this kind of non-polynomial approximations, there is no way to determine
the relative influence of the integration error on the result.
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Figure 16. Convergence of the results in L2 norm for the plate with a hole problem. Error versus β
parameter for quadratic consistency approximation.

6. CONCLUSIONS
In this paper we analyze a new method of generating local maximum-entropy-based
approximations with high order of consistency based on the de Boor’s algorithm. The method
is general and can lead to any degree of consistency. Smoothness is also controlable by
means of the use of, on one hand, the β-parameter typical of max-ent approximations and,
on the other, the use of repeated nodes, as in a B-spline framework. Thus, a new type of
meshless approximation, strictly positive and interpolant along the boundary, is developed.
This constitutes, to the best of our knowledge, the only meshless method verifying these
properties (with the only exception of Arroyo and Ortiz’s quadratic max-ent approximation
[8], that has no further generalization to higher-order consistency).

We have presented several examples of the performance of the new approximation. In
particular, we have focused in analyzing the error related to numerical quadrature of the
weak form of the problem and also the method’s behaviour along non-convex domains, an
issue not properly studied so far. It has been noticed that the approximation along non-convex
domains is affected by the size of the shape function’s support, although this error is partially
obscured by the quadrature error typical of meshless methods and has not been definitely
quantified.

In any case, the proposed max-ent Galerkin schemes seem to constitute an appealing
choice in the family of meshless methods. They combine the low computational cost with
the generality of the approximation, in terms of both consistency and smoothness, and also
the ease in the imposition of essential boundary conditions. The issue of numerical integration,
which is nevertheless common to all Galerkin meshless methods, remains to be an issue that
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deserve further efforts of research.
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