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Abstract Experimental findings and rheological mod-

eling of chemically treated single-wall carbon nanotubes

suspended in an epoxy resin were addressed in a recent

publication Ma et al. (2009). The shear-thinning be-

haviour was successfully modeled by a Fokker-Planck

based orientation model. However, the proposed model

failed to describe linear viscoelasticity using a single

mode as well as the relaxation after applying a finite

step strain. Both experiments revealed a power-law be-

havior for the storage and relaxation moduli. In this

paper, we show that a single-mode fractional diffusion

model is able to predict these experimental observa-

tions.

Keywords Fractional derivatives · Functionalized

CNTs · Small amplitude oscillatory flows · Linear

Viscoelasticity

1 Introduction

The rheological modeling of untreated and chemically

treated Carbon Nanotubes (CNTs) suspended in an
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epoxy resin was addressed in Ma et al. (2008) Ma et al.

(2008). The resulting models were applied to simulate

complex flows Cueto et al. (2008) Cueto et al. (2010).

The untreated CNT suspensions exhibited signifi-

cant shear-thinning in steady state simple shear flow

and contained optically resolvable aggregate structures

depending on the applied shear rate Ma et al. (2008).

A simple orientation model, based on a Fokker-Planck

advection-diffusion description, failed to capture the

experimentally observed rheological responses for un-

treated CNT suspensions. A new model named the ‘Ag-

gregation/

Orientation’ (AO) model was then developed to de-

scribe the experimental findings Ma et al. (2008). A

hierarchy of states between CNTs that are free from

entanglement and a complete CNT network was incor-

porated into the AO model, thereby enabling different

microstructure populations to exist for different shear

conditions. Using a small number of adjustable param-

eters, it was found that the experimental data could be

fitted with reasonable accuracy. A comparison between

the rheology of CNTs and carbon black suspensions was

carried out in Yearsley et al. (2012).

In the case of chemically treated CNTs suspended

in an epoxy resin, the aggregation is prevented and we

can consider that we are dealing with a large popula-

tion of free rods in the dilute regime or rods experi-

encing interactions in the semi-concentrated or concen-

trated regimes. Thus, when a suspension of functional-

ized CNTs was subject to a steady shear flow, it exhib-

ited shear-thinning behaviour, which was subsequently

modelled by a Fokker-Planck (FP) based orientation

model Ma et al. (2009). The model assumes that the

shear flow aligns the CNTs in the flow direction, but

there are events such as Brownian motion and tube-

tube interactions that randomize the orientation. In the
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FP orientation model, randomizing events were mod-

elled with an appropriate rotary diffusion coefficient

Dr and the shear-thinning behaviour was explained in

terms of progressive alignment of CNTs towards the

shear direction.

With regard to linear viscoelasticity (LVE), small-

amplitude oscillatory measurements revealed mild elas-

ticity for semi-dilute treated CNT suspensions. The ex-

act origin for this elasticity is not clear and both tube-

tube interactions and bending / stretching of CNTs

have been proposed by other authors as possible origins

(see Cruz et al. (2010) and the references therein).

Intuitively, chemical treatment creates a weakly in-

terconnected network of CNTs and it is believed that

the mild elasticity originates from this weak network

as well as other randomizing events (Brownian motion

and tube-tube hydrodynamic interactions). Step strain

experiments confirmed the presence of a weak network

at small strains, which was found to be destroyed at

large strains.

Brownian dynamics modeling was addressed in Cruz

et al. (2010) Cruz et al. (2012), where the elasticity

effects were explained as a direct consequence of the

bending of CNTs having a non-straight natural config-

uration due to side-wall defects.

Experimental LVE data of the treated CNT suspen-

sions were fitted in Ma et al. (2009) using the FP orien-

tation model with an effective diffusion coefficient term.

An empirical relation was subsequently identified for

the effective diffusion term that assumed a dependency

of the diffusion coefficient on the applied frequency in

order to avoid the introduction of a large number of

relaxation mechanisms that are difficult to support on
physical grounds.

It should be noticed, however, that such an approach

based on the use of a single mode and a diffusion coef-

ficient depending on the applied frequency is inconsis-

tent. Indeed, we firstly assumed linearity, i.e. a diffusion

coefficient independent on the applied frequency. Then,

in order to fit the experimental results, the diffusion

coefficient was assumed dependent on the applied fre-

quency. Thus, from a linear assumption we concluded

on a nonlinear behaviour that invalidated the analysis

carried out. Concerning the relaxation after applying

a finite step strain, the model presented in Ma et al.

(2009) was unable to describe the experimental results

that again exhibit a power-law evolution instead of the

exponential one that the proposed model predicted.

In this paper, we revisit the experimental results

reported in Ma et al. (2009) concerning chemically

treated CNTs, in particular those related to LVE and

step strain relaxation after applying a finite step strain.

We show that a fractional diffusion model with a single

mode only is able to predict the power-law behaviour

observed in both experiments.

2 Experimental details

In what follows, we briefly summarize the experiments

carried out by Ma and Mackley in Cambridge, whose

results were reported in Ma et al. (2009).

Single-walled CNTs were produced by High Pres-

sure carbon monoxide disproportionation that were sup-

plied by Nanocomposites Inc., USA. In the case of treated

CNTs, aggregation was prevented by covalently attach-

ing arene diazonium salts onto the sidewall of CNTs.

The treated CNT suspensions were stablilised via elec-

trostatic repulsion between CNTs.

Microstructure of resulting mixtures was optically

characterized using the Cambridge Shear System. Op-

tical analysis proved that the suspension showed no op-

tically resolvable aggregates of CNTs, and the mixture

was well-dispersed at the micron-level. By contrast, the

untreated CNT suspension consisted of optically resolv-

able CNT aggregates Rahatekar et al. (2006).

Rheological measurements were made using an ARES

strain-controlled rheometer with 50mm parallel plates

and a gap size of 0.3mm. In the small-amplitude oscil-

latory shear experiment, a strain amplitude of 1% was

used. In order to minimize possible complication from

sample loading, samples were slowly squeezed between

the parallel plates and were rested for at least two hours

before any measurements were carried out. Step strain

experiments were carried out in order to explore the

transition from small to large strain deformations.

Linear viscoelasticity (LVE) of CNT suspensions was

studied using small-amplitude oscillatory measurements.

Epoxy resin showed scattered G′ data with torque val-

ues very close to the detection limit of the transducer,

implying that the elasticity of the matrix is negligible

(G′epoxy ≈ 0). Epoxy behaved essentially as a Newto-

nian fluid with viscous dissipation that is consistent

with steady shear measurements. Addition of CNTs in-

creased the values of both G′ and G′′ as reported in Ma

et al. (2009). Measurements were made at a strain of

1%, which was well within the linear strain response of

the suspensions. The enhancement of G′ was concentra-

tion dependent and was more pronounced at high con-

centration levels (0.2% and 0.5%). The evolution of G′

as a function of frequency is consistent with experimen-

tal results reported by others Song ang Young (2005)

Xu et al. (2005). Addition of CNTs increased the elas-

ticity of the system as a whole Ma et al. (2009). This

response is very different from that of a typical short

fibre suspension, where addition of fibres was reported
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to have no extra contribution to the storage modulus

G′ of the suspending medium Carter (1967) Ganani

and Powell (1986).

To assess the relative importance of viscous and

elastic contributions at a given concentration, we show

in Fig. 1 the obtained data for G′, G′′ and η∗ for the

0.5% CNT suspension. The value of G′′ was observed

to be higher than G′ within the full range of frequency

studied, which implies that elasticity associated with

the addition of CNTs is mild. Although the elastic re-

sponse is relatively weak, it is interesting to note that

the experimental evolution of G′ and G′′ does not follow

the prediction of a single-mode Maxwell model.

A series of step strain experiments were carried out

in order to reveal more detailed relaxation behaviour of

the treated CNT suspensions and to offer insights into

the origin of elasticity. A finite step strain (γ0) was ap-

plied to the CNT suspensions and the process of stress

relaxation was followed using the strain-controlled ARES

rheometer. Figure 2 shows the time evolution of the re-

laxation modulus (G), which is defined as G = τ
γ0

, for

a 0.5% CNT suspension for different values of the step

strain. The stepper motor had a response time of about

0.1s (as indicated in the figure) and for the epoxy ma-

trix, the stress dissipated almost instantaneously, con-

sistent with the fact that it behaved essentially as a

simple Newtonian fluid in both steady shear and LVE

experiments. Addition of CNTs prolonged the stress re-

laxation process, with the CNT suspensions showing a

viscoelastic response. The effect was progressive as the

CNT concentration increased and this confirmed the

earlier LVE experiments that addition of CNTs effec-

tively increases the elasticity of the system as a whole.

Strains of different magnitude were applied to the

0.5% CNT suspension. Figure 2 shows a strain depen-

dence in terms of the final mode of stress relaxation.

At small strains (1%, 5% and 10%), the CNT suspen-

sion responded essentially as an entangled gel. At high

strain, the CNT suspension behaved in a dominantly

viscous fluid manner. Intuitively, the strain-dependence

relaxation process can be explained by the yielding of a

network Amari and Watanabe (1980) Mewis and Meire

(1984). Depending on the strength of the network, if

a large enough strain is applied, the network will be

broken down and will finally dissipate as a fluid. The

network for the 0.5% suspension is considered to be a

relatively weak one and it broke down at a strain level

higher than 10%. These findings have two implications.

Firstly, it is highly probable that the mild elasticity ob-

served in LVE measurements is linked to the presence of

a weak CNT network. Secondly, the effect of elasticity

is negligible at high strain level, in line with the non-

linear experiments reported in Ma et al. (2009) that

Fig. 1 Linear viscoelastic (LVE) data, which include the
storage modulus G′, the loss modulus G′′ and the complex
viscosity η∗ as a function of frequency, for the 0.5% treated
CNT suspension (source Ma et al. (2009))

Fig. 2 Stress relaxation data for the 0.5% CNT suspen-
sion with varying magnitudes of step strain (source Ma et
al. (2009))

revealed small diffusion effects attributed to Brownian

effects and tube-tube hydrodynamic interactions.

3 Standard modeling

A standard modeling study was carried out in Ma et al.

(2009) by considering Brownian suspensions involving

rods (ellipsoids of infinite aspect ratio). The main in-

gredients of the model are summarized in this section.

For a more detailed discussion of the multiscale model-

ing of non-Brownian and Brownian suspensions of rods,

see Chinesta (2013).

The extra-stress tensor of the suspension is given by

τ = 2ηD + 2ηNp (D : A) + βDr

(
a− I

d

)
, (1)

where η is the viscosity of the suspending fluid (epoxy

resin), D is the rate of strain tensor (symmetric part
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of the velocity gradient tensor ∇v), Np is the particle

number that depends on the rod concentration, and a

and A are the second and fourth-order orientation ten-

sors respectively defined as Advani and Tucker (1987)

Advani and Tucker (1980)

a(x, t) =

∫
S
p⊗ p ψ(x, t,p) dp, (2)

and

A(x, t) =

∫
S
p⊗ p⊗ p⊗ p ψ(x, t,p) dp, (3)

where the unit vector p defines the rod orientation, S
is the surface of the unit ball, and ψ(x, t,p) is the ori-

entation distribution function that gives the fraction of

rods that at position x and time t are aligned along the

direction p; Dr is a diffusion coefficient, β is a parame-

ter affecting the diffusion term, I is the unit tensor and

d is the dimension of physical space (d = 2 or 3).

The evolution equation for the second-order orien-

tation tensor was derived in detail in Chinesta (2013):

ȧ = ∇v · a+ a · (∇v)T − 2A : D− 2dDr

(
a− I

d

)
. (4)

In order to close the model, a suitable closure rela-

tion expressing A as a function of a is needed. Among

the numerous available closure relations, we consider in

what follows the linear closure relation that becomes

exact for an isotropic distribution function Advani and

Tucker (1980).

3.1 LVE modeling

As LVE involves a small amplitude oscillation applied

to an essentially isotropic suspension (aiso ≈ I
3 ), the

linear closure relation is expected to be an accurate ap-

proximation for describing A. The linear closure reads

Advani and Tucker (1980):

Alin
ijkl(a) = − 1

35
(IijIkl + IikIjl + IilIjk) +

1

7
(aijIkl + aikIjl + ailIjk + aklIij + ajlIik + ajkIil) .

(5)

To predict the shear stress τ 12, we need to compute

the component (A : a)12 as well as the component a12
involved in the diffusion term of Eq. (1). Taking into

account that the applied flow (small amplitude oscilla-

tion) implies the strain rate

D =

 0 γ̇
2 0

γ̇
2 0 0

0 0 0

 , (6)

and that it only induces a small perturbation of the

isotropic orientation state aiso,

aiso =

 1
3 0 0

0 1
3 0

0 0 1
3

 , (7)

the linear closure approximation (5) yields (A : D)12 ≈
(Alin(aiso) : D)12 = γ̇

15 .

Thus, the shear stress can be approximated in the

general 3D case by

τ 12 ≈ ηγ̇ +
2

15
ηNpγ̇ + βDra12, (8)

wherein we can identify a viscous component (the one

affected by γ̇) and an elastic one (the one that does not

depend on γ̇). Obviously, elastic effects will be associ-

ated to the last contribution that in fact corresponds to

diffusion effects that depend linearly on the component

a12. In order to evaluate the time evolution of a12, we

consider Eq. (4) in the general 3D case (d = 3):

ȧ = ∇v · a+ a · (∇v)T − 2 ·A : D− 6Dr

(
a− I

3

)
. (9)

Now, using the same approximations as in the pre-

vious paragraphs, we obtain (∇v ·a+a · (∇v)T −2 ·A :

D)12 ≈ γ̇
5 . Thus, Eq. (9) reduces to

ȧ12 ≈
γ̇

5
− 6Dra12. (10)

For the sake of notational simplicity, we define a12 ≡
a and τ 12 ≡ τ . Thus, the LVE model reads:{
τ ≈ ηγ̇ + 2

15ηNpγ̇ + βDra

ȧ ≈ γ̇
5 − 6Dra

. (11)

Now, let us apply the small amplitude oscillation

γ(t) given by

γ = γ0e
iωt, (12)

with i =
√
−1, that results in the shear rate

γ̇ = iωγ0e
iωt. (13)

From the second equation in (11), we can expect

that a(t) has the same oscillation frequency but with a

certain phase delay ϕ, that is

a = a0e
iωt−iϕ = ã0e

iωt. (14)

Introducing expressions (13) and (14) into the sec-

ond equation in (11) and using the notations considered

in Ma et al. (2009) λ = 1
6Dr

and µ = 1
30Dr

, we obtain

iωλã0 + ã0 = iωµγ0, (15)
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from which we have

ã0 =

(
λµω2

1 + λ2ω2
+ i

µω

1 + λ2ω2

)
γ0. (16)

With this result, we go back to the stress expression

(first equation in (11)) and write the complex stress

amplitude according to:

τ̃ =γ0

(
iωη

(
1 +

2

15
Np

)
+

βDr

(
λµω2

1 + λ2ω2
+ i

µω

1 + λ2ω2

))
,

(17)

from which we can identify the storage and loss moduli,{
G′ = <(τ̃)

γ0

G′′ = =(τ̃)
γ0

, (18)

where <(τ̃) and =(τ̃) denote the real and imaginary

part of τ̃ respectively. We obtain

G′ = βDr
λµω2

1 + λ2ω2
, (19)

and

G′′ = ωη

(
1 +

2

15
Np

)
+ βDr

µω

1 + λ2ω2
. (20)

Thus, the loss modulus scales linearly with the fre-

quency ω of the applied oscillation in agreement with

the experimental findings.

The storage modulus G′ scales at small frequencies

with the square ω2 of the applied frequency. This result,

however, is inconsistent with the experimental findings

reported in Ma et al. (2009). See Fig. 1, wherein the

storage modulus is observed to scale roughly as ω0.6.

In Eq. (19), we notice that Dr appears at the power

−1 as both µ and λ are proportional to D−1r . Thus, by
assumingDr proportional to an adequate power p of the

applied frequency ω, i.e. Dr ∝ ωp, one could control the

fitting process. This was the route considered in Ma et

al. (2009). It is important, however, to emphasize that

this route implies a certain inconsistency: assuming a

frequency-dependent diffusion coefficient implies a non-

linear behaviour, while the entire analysis is based on

a linearity assumption. The authors followed this route

in Ma et al. (2009) to avoid the introduction of many

relaxation modes.

These relaxation modes could be associated with

the poly-dispersity, with thermally activated bending,

flow induced bending in the case of non-straight CNTs

as proposed in Cruz et al. (2010) Cruz et al. (2012).

However, in absence of the required information the use

of multiple modes reduces to the simple identification

of the associated parameters.

In section 4, we propose an alternative, consistent

and physically supported approach based on the con-

cept of fractional derivatives.

3.2 Step strain modeling

After applying the step strain, the stress relaxation re-

sults from Eq. (1), assuming the fluid at rest:

τ = βDra, (21)

where again τ = τ 12 and a = a12. The evolution of a

can be calculated from Eq. (4), that in absence of flow

reduces to

da

dt
= −6Dra. (22)

This yields an exponential decay for a and, consequently,

the same decay for the shear stress τ . As discussed in

Ma et al. (2009), the predicted exponential decay does

not agree with the power-law behaviour observed ex-

perimentally.

4 Fractional modeling

In complex fluids, micro-rheological experiments often

exhibit anomalous sub-diffusion or sticky diffusion, in

which the mean square displacement of Brownian tracer

particles is found to scale as 〈x2〉 ∝ tα with 0 < α < 1

(see Jaishankar and McKinley (2012) and the refer-

ences therein). In these cases, the use of non-integer

derivatives can constitute an appealing alternative as it

allows one to correctly reproduce the observed physical

behaviour while keeping the model as simple as possi-

ble. Moreover, from a physical point of view, the use

of non-integer derivatives introduces a degree of non-

locality that seems in agreement with the intrinsic na-

ture of the physical system.

In the case of semi-dilute and semi-concentrated sus-

pensions of functionalized CNTs, chemical treatment

creates a weakly interconnected network of CNTs re-

sponsible of the mild elasticity experimentally observed.

In a such a percolated system Brownian motion is ex-

pected to be disturbed exhibiting the just referred an-

omalous diffusion.

It is well known that standard diffusion mechanisms

imply a Brownian velocity ṗ|B

ṗ|B = −Dr

∂ψ
∂p

ψ
, (23)

that leads to the equations considered in the previous

section.

A fractional counterpart consists in generalizing Eq.

(23) by assuming a non-integer time derivative:

dαp

dtα

∣∣∣∣B = −Dr

∂ψ
∂p

ψ
, (24)
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where one could expect from the experimental data that

α < 1. See Appendix A for additional information on

fractional derivatives.

Now, in view Eq. (2), the time derivative of the

second-order orientation tensor a reads

da

dt
=

∫
S

(ṗ⊗ p + p⊗ ṗ) ψ dp. (25)

Here, the effective rotary velocity ṗ is given by

ṗ = ṗ|J + ṗ|B , (26)

where ṗ|J is the flow-induced velocity expressed from

Jeffery’s equation Chinesta (2013)

ṗ|J = ∇v · p− (∇v : (p⊗ p))p, (27)

and ṗ|B is the velocity related to fractional diffusion,

ṗ|B = −Dr
d1−α

dt1−α

(
dαp

dtα

∣∣∣∣B
)

= −Dr
d1−α

dt1−α

(
∂ψ
∂p

ψ

)
.

(28)

Introducing the effective rotary velocity into Eq.

(25) and proceeding as described in Appendix B, we

obtain

da

dt
= ȧ|J − 2dDr

d1−α

dt1−α

(
a− I

d

)
, (29)

with ȧ|J = ∇v · a + a · (∇v)T − 2(A : ∇v).

4.1 LVE fractional model

Since the extra-stress tensor of the suspension is given

by

τ = 2ηD + 2ηNp (D : A) + βDr

(
a− I

d

)
, (30)

and using again the linear closure and the same ratio-

nale as in Section 3, we obtain for the general 3D case

τ 12 ≈ ηγ̇ +
2

15
ηNpγ̇ + βDra12. (31)

On the other hand, the orientation evolution equa-

tion reads

ȧ = ∇v ·a+a · (∇v)T −2A : D−6Dr
d1−α

dt1−α

(
a− I

d

)
.

(32)

With the notations a12 ≡ a and τ 12 ≡ τ , the LVE

fractional model thus yields{
τ ≈ ηγ̇ + 2

15ηNpγ̇ + βDra
da
dt ≈

γ̇
5 − 6Dr

d1−αa
dt1−α

. (33)

As in Section 3.1, we apply the small amplitude os-

cillation γ(t) = γ0e
iωt. From the second equation in

(33), we expect that a(t) has the same oscillation fre-

quency but with a certain phase delay ϕ, that is

a = a0e
iωt−iϕ = ã0e

iωt. (34)

With the notations λ = 1
6Dr

and µ = 1
30Dr

, we obtain

iωλã0 + (iω)1−αã0 = iωµγ0, (35)

where i1−α = χ+ iν, with χ2 + ν2 = 1. Thus, Eq. (35)

can be rewritten as

iωλã0 + (χ+ iν)ω1−αã0 = iωµγ0, (36)

from which we have

ã0 =γ0

(
λµω2 + µνω2−α

χ2ω2(1−α) + (ωλ+ νω1−α)2

+ i
µχω2−α

χ2ω2(1−α) + (ωλ+ νω1−α)2

)
.

(37)

Note that for the case of the integer model α = 1, we

have χ = 1 and ν = 0, and the previous expression re-

duces to the one considered in Section 3.

From Eq. (37), we go back to the stress expression

(first equation in (33)) and write the complex stress

amplitude according to

τ̃ = γ0

(
iωη

(
1 +

2

15
Np

)
+

βDr

(
λµω2 + µνω2−α

χ2ω2(1−α) + (ωλ+ νω1−α)2
+

i
µχω2−α

χ2ω2(1−α) + (ωλ+ νω1−α)2

))
,

(38)

from which we identify the storage and loss moduli,

G′ = βDr
λµω2 + µνω2−α

χ2ω2(1−α) + (ωλ+ νω1−α)2
, (39)

and

G′′ =ωη

(
1 +

2

15
Np

)
+

βDr
µχω2−α

χ2ω2(1−α) + (ωλ+ νω1−α)2
.

(40)

At small frequencies, the predicted storage modulus G′

scales as ωα, i.e. with the power α of the applied fre-

quency. Thus, it suffices to select α = 0.6 to describe

the observed experimental behavior in the framework

of a consistent linear and single-mode theory.



Fractional modeling of functionalized CNT suspensions 7

4.2 Step strain fractional model

As in Section 3.2, the stress relaxation after a step

strain is given by

τ = βDra, (41)

where the evolution of a is now calculated from

da

dt
= −6Dr

da1−α

dt1−α
, (42)

instead of using the standard integer model (22). The

numerical solution of Eq. (42) injected into Eq. (41)

yields a prediction of stress relaxation.

As shown in the next section, use of the fractional

model indeed leads to a power-law behaviour in agree-

ment with the experimental findings.

5 Fractional model predictions versus

experimental data

In what follows, we discuss predictions of the proposed

fractional model in terms of the LVE storage modulus

G′ and the step strain modulus G.

The fractional model has 3 parameters: (i) the deriva-

tive order α, (ii) the diffusion coefficient Dr, and (iii)

the parameter β that quantifies the stress response.

The derivative order α can be identified easily as it

determines the slopes of G′ and G. Coefficient Dr and

β are adjusted for fitting the experimental data.

Figures 3 and 4 depict the global behaviour of the

storage modulus for different values of derivative order

α and coefficient Dr, respectively. Figures 5 and 6 de-

pict similar predictions for the time evolution of G in

step strain.

Finally, the fractional model fitting of LVE and step

strain experimental data was performed by considering

α = 0.6, Dr = 15 and β = 190. Figures 7 and 8 de-

pict the fit for, respectively, the storage modulus and

the step strain relaxation. An excellent agreement is ob-

tained, giving us confidence as to the relevance of the

proposed fractional model.

6 Conclusions

We have revisited in this paper the rheological modeling

of chemically treated CNT suspensions, first addressed

in Ma et al. (2009). It was noticed in LVE experiments

that such suspensions exhibit mild elasticity character-

ized by a storage modulus scaling with the power 0.6 of

the applied frequency.

The elasticity resulting from standard Brownian ro-

tary diffusion is unable to match these experimental
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Fig. 3 LVE storage modulus for different values of the
derivative order (Dr = 15 and β = 190)
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Fig. 7 LVE storage modulus: prediction of fractional model
(α = 0.6, Dr = 15 and β = 190) versus experimental data
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Fig. 8 Step strain modulus: prediction of fractional model
(α = 0.6, Dr = 15 and β = 190) versus experimental data

data by considering a single-mode model. Obviously

one possibility consists in introducing a spectrum of

relaxation times able to fit available data, but such an

approach is difficult to support physically.

Many authors noticed the existence of anomalous

diffusion mechanisms and proposed to model these phe-

nomena by means of models involving fractional (non-

integer) derivatives. In this work, we followed a similar

route for modeling LVE and step strain behaviour of

chemically treated CNT suspensions. We have shown

that a single-mode fractional derivative description of

rotary diffusion with a derivative order α = 0.6 suffices

for describing the available experimental data.

A On fractional derivatives

There are many books on fractional calculus and fractional
differential equations (e.g. Kilbas et al. (2006) Podlubny
(1999)). We summarize here the main concepts needed to
understand the developments carried out in this paper.

We start with the formula usually attributed to Cauchy
for evaluating the n-th integration, n ∈ N, of a function f(t):

Jnf(t) :=

∫
· · ·
∫ t

0

f(τ) dτ =
1

(n− 1)!

∫ t

0

(t−τ)n−1f(τ) dτ.

(43)

This can be rewritten as

Jnf(t) =
1

Γ (n)

∫ t

0

(t− τ)n−1f(τ) dτ, (44)

where Γ (n) = (n − 1)! is the gamma function. The latter
being in fact defined for any real value α ∈ R, we can define
the fractional integral from

Jαf(t) :=
1

Γ (α)

∫ t

0

(t− τ)α−1f(τ) dτ. (45)

Now, if we consider the fractional derivative of order α,
we select an integer m ∈ N such that m − 1 < α < m, and
it suffices to consider an integer m-order derivative combined
with a (m − α) fractional integral. Obviously, we could take
the derivative of the integral or the integral of the deriva-
tive, resulting in the left and right-hand definitions of the
fractional derivative usually denoted by Dαf(t) and Dα∗ f(t)
respectively.

Because these approaches to the fractional derivative be-
gan with an expression for the repeated integration of a func-
tion, one could consider a similar approach for the derivative.
This was the route considered by Grunwald and Letnikov –
GL – that defined the so-called ‘differintegral’ that leads to
the fractional counterpart of the usual finite differences. In
the present work we use the GL definition of the fractional
derivative.

It turns out that the composition of fractional derivatives
follows a rule similar to that that for standard derivatives. On
the other hand, the Fourier transform of a fractional deriva-
tive of order α reads F(g(t);ω) = (iω)αG(ω). This property
is particularly useful when addressing harmonic responses as
in the case of LVE experiments.
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B Derivation of the fractional derivative of the

orientation tensor

We discuss the contribution of fractional diffusion to the rod
rotary velocity (the flow induced contribution remains un-
changed):

dαp

dtα

∣∣∣∣B = −Dr
∂ψ
∂p

ψ
. (46)

Now, we consider the second-order orientation tensor

a =

∫
S
p⊗ p ψ dp (47)

whose time derivative can be rewritten as

ȧ|B =
d1−α

d1−α

{
dα

dtα

{∫
S

(p⊗ p + p⊗ p)ψ dp

}}
, (48)

or

ȧ|B =
d1−α

d1−α

{∫
S

dα

dtα
(p⊗ p + p⊗ p)ψ dp

}
. (49)

Considering the first term of the Leibnitz’s rule related to
the fractional derivative of a product of functions (it is easy
to prove that the second one leads to the standard diffusion
integer term while the others can be neglected), we obtain

ȧ|B ≈
d1−α

d1−α

{∫
S

(
dαp

dtα
⊗ p + p⊗

dαp

dtα

)
ψ dp

}
, (50)

or

ȧ|B ≈ −Dr
d1−α

d1−α

{∫
S

( ∂ψ
∂p

ψ
⊗ p + p⊗

∂ψ
∂p

ψ

)
ψ dp

}
, (51)

which finally gives

ȧ|B ≈ −2dDr
d1−α

d1−α

(
a−

I

d

)
. (52)
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