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SUMMARY

Separated representations based on finite sums decompositions constitute an appealing strategy
for reducing the computer resources and the calculation costs by reducing drastically the number of
degrees of freedom that the functional approximations involve (the number of degrees of freedom scale
linearly with the dimension of the space in which the model is defined instead of the exponential
growing characteristic of mesh-based discretization strategies). In our knowledge the use of separated
representations is the only possibility for circumventing the terrific curse of dimensionality related
to some highly multidimensional models involving hundreds of dimensions, as we proved in some of
our former works. Its application is not restricted to multidimensional models, obviously separated
representation can also be applied in standard 2D or 3D models, allowing for high resolution
computations. Because its early life numerous issues persist, many of them attracting the curiosity of
many research groups within the computational mechanics community. In this paper we are focusing
in two issues never until now addressed: (i) the imposition of non-homogenous essential boundary
conditions and (ii) the consideration of complex geometries.

Copyright c© 2007 John Wiley & Sons, Ltd.

key words: Curse of dimensionality, separation of variables, singular value decomposition, essential

boundary conditions.

Contents

1 INTRODUCTION 2

2 IMPOSITION OF EBCs 6

2.1 Construction of the function ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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1. INTRODUCTION

Some models encountered in science and engineering are sometimes defined in multidimensional
spaces (as the ones involved in quantum mechanics or kinetic theory descriptions of materials,
including complex fluids) that exhibit the terrific curse of dimensionality when usual mesh-
based discretization techniques are applied.

In those models the difficulty is quite natural and their solution needs for new strategies. One
possibility lies in the use of sparse grids [5] but its use is restricted to models defined in spaces of
moderate dimensions. Another technique able to circumvent, or at least alleviate, the curse of
dimensionality consists of using a separated representation of the unknown field as we proposed
in our former works [1] [2] and then applied in numerous contexts: (i) quantum chemistry [13];
(ii) Brownian dynamics [12]; (iii) kinetic theory description of polymers solutions and melts
[17]; (iv) kinetic theory descriptions of rods suspensions [19]; among many others.

Basically, the separated representation of a generic function u(x1, · · · , xD) (also known as
finite sums decomposition) writes:

u(x1, · · · , xD) ≈
i=N
∑

i=1

F i
1(x1) × · · · × F i

D(xD) (1)

This kind of representation is not new, it was widely employed in the last decades in
the framework of quantum chemistry. In particular the Hartree-Fock (that involves a single
product of functions) and post-Hartree-Fock approaches (as the MCSCF that involves a finite
number of sums) made use of a separated representation of the wavefunction [11]. In the
context of computational mechanics a similar decomposition was proposed, that was called
radial approximation, and that was applied for separating the space and time coordinates in
thermomechanical models [15].

This kind of approximation only needs a technique able to construct, in a way completely
transparent for the user, the separated representation of the unknown field involved in a partial
differential equation.

The technique that we proposed for computing the different functions involved in Eq. (1)
consists of an alternating directions linearization strategy that we summarize here. For the sake
of clarity, and without any loss of generality, we restrict our discussion to the D-dimensional
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RECENT ADVANCES ON THE USE OF SEPARATED REPRESENTATIONS 3

Poisson’s equation:
△u = −f(x1, x2, ..., xD), (2)

where u is a scalar function of (x1, x2, ..., xD). Problem (2) is defined in the domain
(x1, x2, ..., xD) ∈ Ω = (−L,+L)D with vanishing essential boundary conditions.
The problem solution can be written in the form:

u(x1, x2, ..., xD) =

∞
∑

j=1

αj

D
∏

k=1

Fkj(xk), (3)

where Fkj is the jth basis function, with unit norm, which only depends on the kth coordinate.

It is well known that the solution of numerous problems can be accurately approximated
using a finite (sometimes very reduced) number (N) of approximation functions, i.e.:

u(x1, x2, ..., xD) ≈

N
∑

j=1

αj

D
∏

k=1

Fkj(xk). (4)

The previous expression implies the same number of approximation functions in each
dimension, but each one of these functions could be expressed in a discrete form using different
number of parameters (nodes of the 1D grids).

Now, an appropriate numerical procedure is needed for computing the coefficients αj as well
as the N approximations functions in each dimension.

The proposed numerical scheme consists of an iteration procedure that solves at each
iteration n the following three steps:

Step 1: Projection of the solution in a discrete basis

If we assume the functions Fkj(∀j ∈ [1, ..., n]; ∀k ∈ [1, ..., D]) known (verifying the boundary
conditions), the coefficients αj can be computed by introducing the approximation of u into
the Galerkin variational formulation associated with Eq. (2):

∫

Ω

∇u∗ · ∇udΩ =

∫

Ω

u∗f dΩ (5)

Introducing the approximation of u and u∗:

u(x1, x2, ..., xD) =

n
∑

j=1

αj

D
∏

k=1

Fkj(xk) (6)

and

u∗(x1, x2, ..., xD) =

n
∑

j=1

α∗
j

D
∏

k=1

Fkj(xk) (7)

we have
∫

Ω

∇





n
∑

j=1

α∗
j

D
∏

k=1

Fkj(xk)



 · ∇





n
∑

j=1

αj

D
∏

k=1

Fkj(xk)



 dΩ =
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4 GONZÁLEZ, AMMAR, CHINESTA AND CUETO

=

∫

Ω





n
∑

j=1

α∗
j

D
∏

k=1

Fkj(xk)



 f dΩ (8)

Now, we assume that f(x1, · · · , xD) can be written in the form

f(x1, · · · , xD) ≈

m
∑

h=1

D
∏

k=1

fkh(xk) (9)

Eq. (8) involves integrals of a product of D functions each one defined in a different

coordinate. Let
∏D

k=1 gk(xk) be one of these functions to be integrated. The integral over
Ω can be performed by integrating each function in its definition interval and then multiplying
the D computed integrals according to:

∫

Ω

D
∏

k=1

gk(xk) dΩ =

D
∏

k=1

∫ L

−L

gk(xk)dxk (10)

which makes possible the numerical integration in highly dimensional spaces.
Now, due to the arbitrariness of the coefficients α∗

j , Eq. (8) allows to compute the n-
approximation coefficients αj , solving the resulting linear system of size n× n. This problem
is linear and moreover rarely exceeds the order of tens of degrees of freedom. Thus, even if the
resulting coefficient matrix is densely populated, the time required for its solution is negligible
with respect to the one required for performing the approximation basis enrichment (step 3).

Step 2: Checking convergence

From the solution of u at iteration n given by Eq. (6) we compute the residual Re related
to Eq. (2):

Re =

√

∫

Ω (△u+ f(x1, · · · , xD))
2

‖u‖
(11)

If Re < ǫ (epsilon is a small enough parameter) the iteration process stops, yielding the
solution u(x1, · · · , xD) given by Eq. (6). Otherwise, the iteration procedure continues.

The integral in Eq. (11) can be written as the product of one-dimensional integrals by
performing a separated representation of the square of the residual.

Step 3: Enrichement of the approximation basis

¿From the coefficients αj just computed the approximation basis can be enriched by adding the

new function
∏D

k=1 Fk(n+1)(xk). For this purpose we solve the non-linear Galerkin variational
formulation related to Eq. (2):

∫

Ω

∇u∗ · ∇udΩ =

∫

Ω

u∗f dΩ (12)

using the approximation of u given by:

u(x1, x2, ..., xD) =

n
∑

j=1

αj

D
∏

k=1

Fkj(xk) +

D
∏

k=1

Rk(xk) (13)
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The weighting function can be expressed as:

u∗(x1, x2, ..., xD) =

= R∗
1(x1) ×R2(x2) × · · · ×RD(xD) + · · · +R1(x1) ×R2(x2) × · · · ×R∗

D(xD) (14)

This leads to a non-linear variational problem, whose solution allows to compute the D
functions Rk(xk). Functions Fk(n+1)(xk) are finally obtained by normalizing, after convergence
of the non-linear solver, the functions R1, R2, ..., RD.

To solve this problem we introduce a discretization of those functions Rk(xk). Each one
of these functions is approximated using a 1D finite element description. If we assume than
pk nodes are used to construct the interpolation of function Rk(xk) in the interval [−L,L],

then the size of the resulting discrete non-linear problem is
∑k=D

k=1 pk. The price to pay for
avoiding a whole mesh in the multidimensional domain is the solution of a non-linear problem.
However, even in high dimensions the size of the non-linear problems remains moderate and no
particular difficulties have been found in its solution up to hundreds dimensions. Concerning
the computation time, even when the non-linear solver converges quickly, this step consumes
the main part of the global computing time.

Different non-linear solvers have been analyzed: fixed-point, Newton or one based on an
alternating directions scheme. In this work the last strategy was retained. Thus, in the
enrichment step, function Rs+1

1 (x1) is updated by assuming known all the others functions
(given at the previous iteration of the non-linear solver Rs

2(x2), · · · , R
s
D(xD)). Then, functions

Rs+1
1 (x1), R

s
3(x3), · · · , R

s
D(xD) are assumed known for updating function Rs+1

2 (x2), and so on
until updating the last function Rs+1

D (xD). Now the convergence is checked by calculating
∑i=D

i=1 ‖Rs+1
i (xi) − Rs

i (xi)‖
2. If this norm is small enough we can define the functions

Fk(n+1)(xk) by normalizing the functions R1, R2, ..., RD and come back to step 1. On the
contrary, if this norm is not small enough, a new iteration of the non-linear solver should
be performed by updating functions Rs+2

i (xi), i = 1, · · · , D and then checking again the
convergence. Despite its simplicity, our experience proves that this strategy is in fact very
robust.

We must recall that the technique that we proposed in the papers just referred, is not
a universal strategy able to solve any kind of multidimensional partial differential equation
(PDE). Thus, the efficient application of the technique that we just described requires the
separability of all the fields involved in the model. Obviously, this separability is not always
possible because some functions need a tremendous number of sums. On the other hand, even
when the field is separable (one could perform this separation by invoking for example the
SVD or the multidimensional SVD) the finite sums decomposition of general multidimensional
functions is not realistic because the amount of memory needed for storing the discrete form
of such functions before applying the multidimensional SVD.

In many physical models (see for example [1] [13]) a fully separation (consisting of a sum of
products of one-dimensional functions) could not be envisaged from a practical point of view.
Thus, a better approximation lies in writing

u(x1, · · · ,xd) ≈
i=N
∑

i=1

F i
1(x1) × · · · × F i

D(xd) (15)

where the different functions taking part in the finite sums decomposition are defined in spaces
of moderate dimensions, that is xi ∈ Ωi ⊂ R

qi , where usually qi = 1, 2 or 3.

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–28
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6 GONZÁLEZ, AMMAR, CHINESTA AND CUETO

When the model is separable, as it is the case in many physical models coming from
computational science and engineering, the unknown field involved in the model can be
expressed as a tensor product of approximations defined in lower dimensional domains,
eventually one-dimensional. However in that case, two major difficulties appear: (i) the first
one is related to the enforcement of non-homogeneous essential boundary conditions; and (ii)
the representation of geometrically complex domains other than cubes or hyper-cubes. This
paper concerns these two difficulties that never until now, up to our knowledge, have been
addressed. For the sake of clarity (and mainly for the ease of representation of the results),
and without loss of generality, in what follows we restrict our analysis to 2D or 3D models.

The simplest way to enforce non homogeneous essential boundary conditions (i.e., u = ug in
∂Ω) consists in defining a function û(x), x ∈ Ω ⊂ R

D, with the requested regularity, verifying
the boundary conditions, i.e., û(x ∈ ∂Ω) = ug(x ∈ ∂Ω). Now, one could perform the separation
of û, by invoking the SVD or the multidimensional SVD, leading to

û(x1, · · · , xD) ≈

i=M
∑

i=1

Gi
1(x1) × · · · ×Gi

D(xD) (16)

that allows defining the approximation of the unknown field as:

u(x1, · · · , xD) ≈
i=M
∑

i=1

Gi
1(x1) × · · · ×Gi

D(xD) +
i=N
∑

i=1

F i
1(x1) × · · · × F i

D(xD) (17)

where the second part of the right member
∑i=N

i=1 F i
1(x1) × · · · × F i

D(xD) is subjected to
homogenous boundary conditions.

Finally, in some cases, even when the separability is assured, the geometrical complexity of
the domain needs for special treatments. Different possibilities could be envisaged. This paper
explores a very simple strategy based on the use of R-functions.

Sections 2 and 3 focuse in the treatment of non-homogeneous essential boundary conditions
and complex geometries respectively within the separated representation framework. Finally,
section 4 presents some numerical examples proving the efficiency of the strategies proposed.

2. IMPOSITION OF NON-HOMOGENEOUS ESSENTIAL BOUNDARY CONDITIONS

Consider, for simplicity and without loss of generality, the following problem:

− ∆u = f(x1, x2, . . . , xD) in Ω = (0, L)D (18)

subjected to the boundary conditions:

u = ug 6= 0 on Γ ≡ ∂Ω (19)

Let us assume that we are able to find a function ψ, continuous in Ω, such that −∆ψ ∈ L2(Ω)
verifying Eq. (19) [8]. Then, the solution of the problem given by Eqs. (18)-(19) can be obtained
straightforwardly by

u = ψ + z, (20)

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–28
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RECENT ADVANCES ON THE USE OF SEPARATED REPRESENTATIONS 7

where we thus face a problem in the z variable

− ∆z = f + ∆ψ in Ω (21)

z = 0 on Γ (22)

solvable by the method of separation of variables before presented.

2.1. Construction of the function ψ

We thus take an extension of the essential boundary conditions, ug, ψ, within the domain Ω.
The solution will be constructed in the form:

u ≈ ψ +

Q
∑

j=1

αj

D
∏

k=1

Fkj(xk) (23)

thus achieving the exact imposition of essential boundary conditions. In the last equation,
Fkj(xk) is a function of the approximation space of the solution, with homogeneous boundary
conditions.

In practice, the function ug can be defined at different portions of the boundary, through
different functions ψi. Assuming the domain where the model is defined given by the hypercube
(0, L)D, essential boundary conditions must be enforced on all the (D − 1)-dimensional faces
of the hypercube: the two limit points of a 1D segment, the four faces of a 2D square, the six
faces of a 3D cube, and so on. Thus, the number of faces of a D-dimensional hypercube results
P = 2D on which different essential boundary conditions ψi are assumed prescribed.

u(Γ1) = ψ1

u(Γ2) = ψ2 (24)

...

u(ΓP ) = ψP

where Γi represent the different (D − 1)-dimensional faces.
Each one of these functions ψi can be grouped to form a single, global, function ψ utilizing,

for instance, the transfinite interpolation method proposed in [9]. Each portion of the essential
boundary ∂Ωi can be described by an implicit function wi(x1, x2, . . . , xi−1, xi+1, . . . , xD) = 0,
where wi is a function vanishing on ∂Ωi and positive elsewhere (the distance function, for
instance, can be considered as a suitable wi function). Thus,

ψ =

∑P

i=1 ψi

∏P

j=1;j 6=i wj

∑P

i=1

∏P

j=1;j 6=i wj

(25)

constitutes a generalization of Lagrangian interpolation. The resulting function ψ interpolates
each ψi along each wi.

Following this procedure, the weak form of the problem will be: Find z ∈ H1(Ω) such that
for every z∗ ∈ H1

0 (Ω)
∫

Ω

∇z∗ · ∇zdΩ =

∫

Ω

z∗fdΩ +

∫

Ω

∇z∗ · ∇ψdΩ (26)

holds.

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–28
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8 GONZÁLEZ, AMMAR, CHINESTA AND CUETO

Remark 1. The proposed form for the function ψ, given by Eq. (25) is singular at some
points of the boundary. Provided that numerical integration has been performed in this work
through standard, first order, Gauss quadrature rules, no integration point will be placed in
these singular positions. There exist, however, some alternative expressions for the function ψ
that posses singular points at different positions. The interested reader can consult their form
in reference [10] and references therein.

Finally, the obtained function ψ, which is generally not product or sum separable, according
to [7], is separated approximately by employing the Singular Value Decomposition (SVD)
technique. To this end, we employ singular values up to a given precision, which is normally
fixed to 10−5||ψ||.

3. PROBLEMS DEFINED OVER GENERAL DOMAINS

The proposed solution strategy is based on the method of the characteristic function [3]. Let
us consider a function Φ : Ω� → R, with Ω� a hypercube (usually the smallest one) containing
the arbitrarily-shaped domain Ω, and with continuous derivatives such that:

Φ(x) > 0, x ∈ Ω

Φ(x) = 0, x ∈ ∂Ω

Φ(x) = 0, x /∈ Ω

|∇Φ(x)| ≥ α > 0, x ∈ ∂Ω

(27)

The solution space will then be SΦ
h = {u | u = Φv, v ∈ H1(Ω�)} ⊂ H1

0 (Ω�).
The approximate solution to the problem given by Eqs. (18)-(19) will be uh ∈ SΦ

h , where
uh is the solution of the problem:

Find u ∈ SΦ
h such that for every w ∈ H1

0 (Ω�)
∫

Ω�

∇w · ∇udΩ =

∫

Ω�

wfdΩ (28)

and SΦ
h = ΦSh, with Sh the finite-dimensional trial space, that depends on the particular

method employed.
A study of the error and convergence associated with this method can be found in [3]

and references therein, whereas the demonstration of the completeness of the method is
accomplished in [10].

The final form of the solution in the context of a separated representation will then be:

u ≈ Φ ·





Q
∑

j=1

αj

D
∏

j=1

Fkj(xk)



 (29)

which will verify straightforwardly the homogeneous essential boundary conditions enforced
along the boundary.

Remark 2. If the problem under consideration posseses non-homogeneous essential boundary
conditions and is defined in a domain other than an hypercube at the same time, the obvious

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–28
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f1

f2

f3

f4

f5
f6

Figure 1. Definition of the boundary of a given domain by a set of six inequalities.

choice for the approximation combines the techniques developed in Sections 2 and 3 above:

u ≈ ψ + Φ ·





Q
∑

j=1

αj

D
∏

j=1

Fkj(xk)



 (30)

3.1. Construction of the function Φ

It is clear that this approach is not very useful unless a method to easily construct such function
Φ in a general case is established. In this case we employ R-functions [9].

An R-function is a real-valued function whose sign is completely defined by the sign of its
arguments. Such functions encode boolean operations that help to construct combinations of
simple, basis, functions. For instance, consider the following functions [9], that behave like the
logical operators and and or:

x ∧ y ≡ (x+ y −
√

x2 + y2) (31)

x ∨ y ≡ (x+ y +
√

x2 + y2) (32)

Consider, for instance, the domain shown in Fig. 1. The domain is defined by means of a
set of six inequalities of the general form

f1 = y ≥ y1

f2 = x ≥ x2 (33)

f3 = y ≥ y3

. . .

These inequalities can be combined to render a definition of the whole domain as:

Ω = (f1 ∨ f2) ∧ f3 ∧ f4 ∧ f5 ∧ f6 (34)

An example of the performance of this technique is shown in Fig. 2, where the essential
boundary of the domain is defined (Fig. 2(a)) by black lines and the resulting R-function is
depicted (Fig. 2(b)).

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–28
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10 GONZÁLEZ, AMMAR, CHINESTA AND CUETO

(a) (b)

Figure 2. Essential boundary of a given domain (a) and associated R-function (b).

The question now lies in establishing a separated representation for the function Φ. By
employing standard SVD we can employ up to m singular values of the decomposition,
Φ11 × · · · × Φ1D, · · · ,Φm1 × · · · × ΦmD, necessary to obtain a prescribed precision. Thus,
the final expression for the approximate solution of the problem will be

u ≈ [Φ11(x1) × · · · × Φ1D(xD) + · · · + Φm1(x1) × · · · × ΦmD(xD)]×

×





N
∑

j=1

αj

D
∏

j=1

Fkj(xk)





(35)

The difficulty in this case is that a large number of terms in the SVD decomposition of
the function Φ would lead to a complex expression for the approximate solution with a large
number of terms in the sum. Each term would be integrated in its own 1D space through
standard Gauss quadratures. Thus, finally, the above difficulty can be easily circumvented.

4. NUMERICAL EXAMPLES

In this section we describe some simple numerical experiments for illustrating the potential of
the discretization technique based on the use of separated representations.

4.1. A first example

Let us consider the problem
∆u = 0 in (0, 1)3 (36)

with
u = x on ∂Γ ≡ Ω.

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–28
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In this case, essential boundary conditions can be expressed in the form given by Eq. (24)
as

ψ1 = 0 on Γ1 = (0, y, z)

ψ6 = 1 on Γ6 = (1, y, z)

ψi = x on the other four faces of the cube

With the help of the technique developed before, the obtained ψ function is shown in Fig.
3 that corresponds to the exact solution ψ = x.

X

0.2
0.4

0.6
0.8

Y

0.2
0.4

0.6
0.8

Z

0.2

0.4

0.6

0.8

X Y

Z

Figure 3. Function ψ obtained.

The weak form of the problem looks:
∫

Ω

∇z∗ · ∇zdΩ =

∫

Ω

z∗fdΩ +

∫

Ω

∇z∗ · ∇ψdΩ = 0 (37)

Solving the problem in variable z gives the trivial solution z = 0 and thus we have

u = ψ + z = x+ 0 = x (38)

which coincides with the analytical solution of the problem, as expected.

4.2. A second, more elaborated, problem

Let us consider now the problem

∆u = 0 in (−1, 1)2 (39)

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–28
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12 GONZÁLEZ, AMMAR, CHINESTA AND CUETO

subjected to the boundary condition

u = x2 + y2 on ∂Ω

that in this case do not verify the partial differential equation (39).
In this case, with the help of the approximation proposed in Eq. (25), we obtain the following

function verifying essential boundary conditions:

ψ =
−2 + x4 + y4

−2 + x2 + y2
(40)

which is represented in Fig. 4. This function cannot be written as a closed sums decomposition
according to [7]. Applying SVD, we arrive to the one-dimensional functions depicted in Fig.
5, that approximate the function ψ to the chosen level of precision, 10−5||ψ|| in this case.

Figure 4. Function ψ for the second problem, Eq. (39).

The error generated in this separation, by employing the first six singular values of the
decomposition, is depicted in Fig. 6.

The method before described was applied in meshes composed by 15, 20, 30, 50, 80 and 130
nodes along each spatial direction. The solution was compared to one approximate solution
obtained by standard Finite Elements in a mesh composed by 40000 nodes. The obtained
solution, that will be considered as the reference one, is depicted in Fig. 7.

The solution strategy can be resumed as follows. For each discretisation, ranging from 15
nodes to 130 nodes at each spatial direction, we have employed the same SVD decomposition
of function ψ, constructed to approximate the function to an error of 10−5. The separated
representation strategy presented in Sections 1 and 2 has been employed until reaching a
small enough residual. The obtained error for each discretization along each spatial direction
is depicted in Fig. 8.
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Figure 5. Singular Value Decomposition of ψ up to the precision 10−5||ψ||.
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Figure 6. Error in the approximation of ψ by employing the first six SVD values.

The final solution for the separation of variables technique is depicted in Fig. 9. The
homogeneous part of the solution, i.e., the solution for the problem in z variable, is shown
in Fig. 10.

4.3. Extension of the proposed technique to higher-dimensional problems

The main issue associated with the straightforward extension of the proposed technique
to higher dimensional problems lies in obtaining the appropriate counterpart of the SVD
decomposition in high dimensions. To this end, we have employed the technique implemented
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Figure 7. Solution obtained by standard FEM, assumed as the reference solution of the problem.

by Kolda et al. [6], in conjunction with the MATLAB tensor toolbox [4]. In general, we seek
for decompositions of our function ψ, whose nodal values are stored in an order n (n = 3 in
the example here considered, for simplicity of graphical representation) tensor A, in the form:

A = Σ×1 U ×2 V ×3 W ×4 . . . (41)

where Σ is a diagonal tensor and U , V , W , ... are the components or factors of the
decomposition. Columns of the factors are orthonormal in standard, two-dimensional SVD, but
this is not possible, in general, for tensors of order three or higher. The products involved in the
previous decomposition are defined as follows. Mode-nmultiplication, denoted by ×n, means to
multiply the matrix times the tensor in the n-th mode. In other words, the n-mode product of a
tensor C ∈ R

I1×I2×...×IN by a matrix U ∈ R
Jn×In is an I1×I2× . . . In−1×Jn×In+1× . . .×IN -

tensor whose components are given by

(C ×n U)i1i2...in−1jnin+1...iN
=

∑

in

ci1i2...in−1inin+1...iN
ujnin

. (42)

In this work we have employed the PARAFAC (Parallel Factors) decomposition, also known
as CANDECOMP or Canonical Decomposition, provided by the MATLAB tensor toolbox [4].
This technique provides a diagonal tensor Σ, suitable for the purpose of this work. The r most
relevant entries of this tensor are employed in the decomposition, in order to accomplish with
a user-predefined tolerance in the representation of the function ψ.

To analyze the behaviour of the technique, we have extended the previous problem to three-
dimensional settings:

∆u = 0 in (−1, 1)3 (43)
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Figure 8. Solution convergence obtained by the proposed technique.

subjected to the boundary condition

u = x2 + y2 + z2 on ∂Ω

The higher-order SVD decomposition of the function ψ up to the tolerance 10−6||ψ|| provides
the functions depicted in Fig. 11 (a) to (c). Only four functions along each spatial direction
were necessary.

With these functions thus calculated, we let the method run to obtain the solution to the
problem as depicted along each direction in Fig. 12. The global, three-dimensional, solution to
the problem is depicted in Fig. 13. In this case, 18 functions were necessary along each spatial
direction, that is a sums decompositions consisting of 18 sums, to reach the before mentioned
accuracy. This figure also depicts the trace of the solution at the plane x = 0.

4.4. A numerical model involving 109 degrees of freedom

In order to show the potential of the proposed method we have analyzed the problem

∆u = 2(1 − y4)(1 − z6) + 12(1 − x2)y2(1 − z6) + 30(1 − x2)(1 − y4)z4 in (−1, 1)3 (44)

(the same analyzed in [1]), subjected to the boundary conditions

u = 0 on ∂Ω

The analytical solution to this problem is given by the function u = (1−x2)(1−y4)(1−z6).
The solution has been approximated by using a separated representation where each one-
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Figure 9. Solution obtained by the proposed technique. Mesh consisting of 80 nodes in each direction.

Figure 10. Solution obtained by the proposed technique for the homogeneous problem in z variable.
Mesh of 80 nodes.

dimensional function along each coordinate was approximated by using standard piecewise
linear FE shape functions on a grid consisting of 1001 nodes on each direction.
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Figure 11. Functions obtained along x (a), y (b) and z (c) spatial directions for the boundary conditions
of the problem stated in Eq. (43).

The different computed one-dimensional functions are depicted in Fig. 14(a) to (c). As
expected an accurate enough solution was obtained after only one iteration, as was the case
in [1], because the particular form of the exact solution that consists of a single functional
product.

The solution obtained is represented in Fig. 15, where derefinement has been applied to the
results by employing a coarser mesh (for obvious reasons, it is difficult to depict the results on
a mesh of 109 nodes). The error obtained is depicted in Fig. 16, where a slice on an arbitrary
section of the domain has been performed for clarity.

In this example we do not pursue accuracy, but testing the possibility of employing a huge
number of degrees of freedom. What is noticeable about this solution, which approaches the
limits of traditional Finite Elements, is that, despite the extremely high number of degrees of
freedom involved, the Matlab code ran in around 10 seconds on a PC with four processors (only
one was employed, no parallel calculation was allowed, even if parallelization is an easy matter
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Figure 12. Functions obtained along x (a), y (b) and z (c) spatial directions for the problem stated in
Eq. (43).

in the context of separated representations) with 1.96 Gb of RAM memory each, running under
Linux.

4.5. Models defined in domains other than hypercubes

To show that the proposed method is applicable to problems defined over irregularly shaped
domains, other than hypercubes, we consider the following problem, defined over a cylindrical
domain whose geometry is depicted in Fig. 17. The problem is defined as ∆u = 1.0, with u = 0
on ∂Ω.

Since the analytical solution is not known, we have compared the results with those from a
finite element simulation over a fine enough mesh, using standard linear triangular elements
over the actual geometry of the domain. By applying the technique explained in section 3.1
we computed the characteristic function depicted in Fig. 18.

In order to apply the separated representation strategy we firstly embed the geometry in a
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Figure 13. Solution obtained by the proposed technique for the problem with non-homogeneous
boundary conditions in three dimensions. Mesh of 40 elements along each direction.

squared in which each axis contains 60×60 nodes. The solution outside the domain of interest
depicted in figure 17 is obviously discarded.

By comparing the separated representation solution to that obtained by a dense enough FE
mesh, and by using the norm ‖e‖2 = (1/n)

√
∑n

i e
2
i (with n the number of points in which

the error is evaluated and ei the pointwise error at that points), we have obtained after the
first iteration an error of 2.97 · 10−5, with no significant improvement by adding other sums
of the decomposition. The computed solution is depicted in Fig. 19. If more accurate solution
are desired, higher nodal densities along each direction should be employed. It is important to
note that the separated representation solution cannot produce solution more accurate than the
ones related to a finite element discretization on the mesh resulting from the one-dimensional
nodal distributions tensor product.

5. CONCLUSIONS

Problems defined in high-dimensional spaces are very common in Engineering and Applied
Sciences. The common feature of all these models relies in the exponentially-growing size
of the mesh with the number of dimensions of the problem. In previous works by the
authors a technique based on the use of a separated representation consisting of a finite sums
decomposition has proven to be very useful for some of these problems.

However, the theoretical establishment of these techniques still deserves further
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Figure 14. Functions obtained along x (a), y (b) and z (c) spatial directions for the problem stated in
Eq. (44).

developments. In this paper we have dealt with two particular features of the method, never
until now, in our knowledge, addressed. The first one is the imposition of non-homogeneous
essential boundary conditions and the second one is related to the simulation in domains other
than hypercubes.

The proposed technique is based upon the construction of a change of variable for the first
case. This change of variable must be compatible, of course, with the separated representation
strategy, needing the use of multidimensional SVD techniques for that purpose.The second
issue related to the treatment of complex geometries has been accomplished through the
method of the characteristic function, a very classical method, recently recovered within
the framework of meshless methods. Using both strategies we have solved some numerical
models proving the usefulness of the proposed techniques and, in turn, enlarge its field of
application. We believe that the proposed techniques have an enormous potential in a wide
range of applications, and this constitutes our current effort of research.
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Figure 15. Solution of the problem stated in Eq. (14).

Figure 16. Slice on the error map of the problem stated in Eq. (14).
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Figure 17. Geometry of the problem in Section 4.5.
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Figure 18. Characteristic function for the problem in section 4.5.

The extension of these strategies to some physical models defined in high dimensions and
the consideration of general boundary conditions including general natural conditions are some
works in progress.
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