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Abstract This paper reports the numerical simulation of spin coating for function-

alised Carbon Nanotube (CNT) suspensions. Spin coating is a process commonly used

to deposit uniform thin films onto flat substrates by means of high rotation velocity

and centrifugal force. The functionalised CNTs modelled in this study were chemically

treated in a way such that aggregation was prevented through electrostatic repulsion

between CNTs. The functionalised CNTs in the semi-dilute suspensions can be mod-

elled as rigid fibres with their orientation dictated by the flow of the solvent. The

evolution of CNT orientations was simulated using a pre-averaged kinetic theory with

an appropriate rotary diffusion coefficient accounting for randomising events. A Nat-

ural Element (NE) strategy with an updated Lagrangian framework was implemented

to solve the free-surface problem involving large domain deformation and to avoid nu-

merical problems associated with Finite Element (FE) modelling. The model reported

herein couples micro-scale CNT orientation with the macroscopic suspension kinemat-

ics and it offers important insights in relation to the final properties of spin-coated

CNT films as well as the processing behaviour of CNT suspensions.
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1 Introduction

Carbon nanotubes have generated a tremendous interest in the scientific community

following a journal publication by Iijima in 1991 [15]. Single-walled carbon nanotubes

(SWNT) are one-atom thick sheets of graphite (called graphene) rolled up into seamless

cylinders with diameter in the order of a nanometer. They posses impressive mechanical

properties:

– Young’s modulus: 1 to 5 TPa

– Tensile Strength: 13-53 GPa

– Elastic strain up to 5%.

– Density 2160 kg/m3.

Given these properties, CNTs have been extensively researched as possible reinforce-

ment (and conductive elements) for high-performance nanocomposites. In addition,

nanotube based transistors have been made that operate at room temperature and

that are capable of digital switching using a single electron [20].

In order to design manufacturing processes more effectively, it is important to

understand and model the behaviour of CNT suspensions and the orientation of CNTs.

Although several studies have focused on producing polymer nanotube composites,

many practical challenges remain before their potential can be fully realized. Dispersing

the nanotubes individually and uniformly into the matrix seems to be fundamental in

producing composites with reproducible and optimal properties.

This work is aimed at establishing a method for the numerical simulation of car-

bon nanotube suspension forming processes. We focus our attention on spin coating

processes, although we believe that the technique is general enough to be applied to

other forming processes as well. Spin coating processes are used to apply very thin,

more or less uniform, films onto flat substrates. In short, a drop of solution is placed in

the center of the plate, which is then rotated at high speed. The centrifugal force makes

the solution to spread on the flat substrate until the desired thickness is achieved on

the film. The solvent is sometimes volatile in this kind of forming processes, an effect

that is not considered in this work.

From the simulation point of view, spin coating processes involving Carbon nan-

otubes suspensions present some very important challenges. First of all, tracking the

evolution of the free surface of the liquid, that undergoes very large deformations,

remains a problem for traditional, Eulerian or Arbitrary Lagrangian Eulerian (ALE)

Finite Element techniques [7], although some early references are available on the lit-

erature [9]. To this end, Lagrangian frameworks, in which the nodes of the simulation

move with the material velocity, seem to ba an appropriate choice for the simulation.

The family of meshless methods [2] [17] [24] seem to be an appealing choice, since they

do not rely on a mesh (and consequently mesh distortion does not affect the accuracy

of the results). In this work we employ a particular meshless method known as the Nat-

ural Element method and the method was proven to be capable of solving numerical

problems that involve large distortion [18] [12].

The other remaining challenge is the constitutive modelling of CNT suspensions.

In a first attempt, functionalized CNTs are considered as rigid fibres with very large

aspect ratio (between 103-104, possibly up to 106, but typically in the order of hundreds

after dispersion), whose orientation is governed by the flow of the solvent, which is

Newtonian in this study. A quadratic closure relation is then applied to the preaveraged

kinetic theory model. At the macroscopic scale, the flow kinematics of the suspension
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Fig. 1 Schematic representation of spin coating processes.

is governed by the momentum and mass conservation equations, which are further

coupled with the micro-scale orientation of the CNTs. The CNT orientation and the

suspension kinematics are updated at each time step as discussed in Section 6.

Some experimental measurements have been performed on the rheology of the

CNTs suspensions, in order to characterize its behaviour. The CNTs modelled in this

paper were chemically treated such that they did not aggregate and no mesostructures

were observed optically.

The paper includes a brief description of the Natural Element Method (NEM)

as well as the main assumptions involved the numerical modelling of spin coating.

Some numerical examples are given to illustrate the potential of the proposed process

simulation technique.

2 Spin coating processes

As mentioned before, spin coating processes consist of making a drop of liquid spread

on a surface by means of centrifugal acceleration. This acceleration is achieved using a

disk that rotates at a high angular velocity, ω, see Fig. 1.

The difficulties in the numerical simulation of spin coating processes arise from (1)

the tremendous deformation of the domain (in spin coating, the boundary can deform

from a liquid droplet to thin films with a thickness of 30−50µm) and (2) the multiscale

nature of the problem.

In this work, the rotating plate is assumed to be perfectly horizontal, so that there

is no radial component of gravity. Following [9], we assume that Coriolis forces are

negligible, compared to centrifugal forces. To model the geometry of the drop, axial

symmetry around the rotation axis is also assumed. A system of reference that rotates

with the disc was used in describing the equations of motion.

3 Numerical modelling of the spin coating process

Carbon Nanotube (CNT) suspensions are modelled as short fibre suspensions described

by the following equations (see [19] and references therein)

– The balance of momentum equations, where we only consider the centrifugal forces

as in the treatment of [9]

Divσ = −ρω × (ω × r) = f r (1)

where σ is the stress tensor, ρ represents the density, × denotes the tensor product,

and ω the rotation speed of the spin coater as schematically drawn in Fig. 1.
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– The incompressibility condition

Divv = 0 (2)

where v represents the velocity field.

– The constitutive equation, with a quadratic closure relation for the fourth order

orientation tensor and other simplifying assumptions, results

σ = −pI + 2η{D +NpTr(aD)a} (3)

where p denotes the pressure, I is the unit tensor, η is the equivalent suspension

viscosity, D is the strain rate tensor, Np a scalar parameter that depnds on both

the tube concentration and its aspect ratio, and a is the second order orientation

tensor defined by

a =

I
ρ ⊗ ρΨ(ρ)dρ (4)

where ρ is the unit vector defining the CNT axis direction, ⊗ denotes the dyadic

product, and Ψ(ρ) is the orientation distribution function, that should satisfy the

normality condition I
Ψ(ρ)dρ = 1 (5)

If Ψ(ρ) = δ(ρ − ρ̂), with δ() the Dirac’s function, all the orientation probability is

concentrated in the direction defined by ρ̂, and the corresponding orientation tensor

is â = ρ̂ ⊗ ρ̂. In this case the quadratic closure relation becomes exact. However,

when the tubes are not perfectly aligned in a certain direction the quadratic closure

is no more exact and it constitutes an approximation that is widely used in the

context of short fibre suspensions, see [19] and references therein.

From a physical point of view, we can consider that the eigenvalues of the second

order orientation tensor (a) represent the probability of finding the CNT in the

direction of the corresponding eigenvectors.

– With a quadratic closure relation the orientation equation is expressed as

da

dt
= Ωa − aΩ + k (Da + aD − 2Tr(aD)a) − 6Dr

�
a −

I

3

�
(6)

D and Ω are the symmetric and skew-symmetric components of Gradv, k is a

constant that depends on the nanotube aspect ratio r (fibre length to fibre diameter

ratio): k = (r2−1)/(r2 +1) with k ≈ 1 given the high aspect ratio of the CNTs. Dr

is a rotary diffusion coefficient accounting for randomising events such as Brownian

motion and fibre-fibre interaction in the suspension.

The flow model is defined in the volume occupied by the fluid at time t, Ωf (t). On

its boundary, Γf (t) ≡ ∂Ωf (t) either the velocity or the traction is imposed:

v (x ∈ Γ1) = vg (7)

or

σ n (x ∈ Γ2) = F g (8)

with Γ1∪Γ2 = Γf (t), Γ1∩Γ2 = ∅, and where n(x) is the unit outwards vector, defined

on the boundary at the point x.
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In terms of the initial condition, the CNTs are assumed to be isotropically orien-

tated (i.e., a = I/3). This model is solved on the domain defined by the nodes as they

evolve. More details can be found at [19] and references therein.

In this modelling, the following form of the orientation vector is used for describing

CNTs suspended within the solvent:

ρ =

0�rθ
z

1A (9)

with θ ∈ [0, 2π[.

The velocity field is expressed in cylindrical coordinates, after the imposition of

axial symmetry:

v =

0� vr

ω · r

vz

1A (10)

where ω, as mentioned before, represents the angular velocity of the spin coater. If,

following [9], we assume a system of reference rotating with the disk, we arrive at

v =

0�vr

0

vz

1A (11)

In this case, tensors D and Ω come from an axisymmetric flow, so their expression

in cylindrical coordinates, as mentioned before, gives:

D =

0BBB� ∂vr

∂r
1
2

�
1
r

∂vr

∂θ + ∂vθ

∂r − vθ

r

�
1
2

�
∂vr

∂z + ∂vz

∂r

�
1
2

�
1
r

∂vr

∂θ + ∂vθ

∂r − vθ

r

�
1
r

∂vθ

∂θ + vr

r
1
2

�
1
r

∂vz

∂θ + ∂vθ

∂z

�
1
2

�
∂vr

∂z + ∂vz

∂r

�
1
2

�
1
r

∂vz

∂θ + ∂vθ

∂z

�
∂vz

∂z

1CCCA , (12)

and, provided that the flow is axially symmetric (vθ = 0, vr = vr(r, z), vz = vz(r, z)),

and by combining the above equation with Eq. (11) D reduces to

D =

0BB� ∂vr

∂r 0 1
2

�
∂vr

∂z + ∂vz

∂r

�
0 vr

r 0
1
2

�
∂vr

∂z + ∂vz

∂r

�
0 ∂vz

∂z

1CCA . (13)

Similarly, the vorticity tensor takes the following form:

Ω =

0BB� 0 0 1
2

�
∂vr

∂z − ∂vz

∂r

�
0 0 0

− 1
2

�
∂vr

∂z − ∂vz

∂r

�
0 0

1CCA (14)

An isotropic orientation is defined in this model by the uniform distibution

ψ(ρ) =
1

4π
(15)

giving rise to an orientation tensor, for isotropic distributions,

a =
1

3
I (16)

These conditions are imposed at the initial time step only.
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4 Rheology of functionalized CNTs suspensions

A Fokker-Planck (FP) based orientation model was used to describe the steady shear

rheological responses of the chemically treated CNT suspensions. Fig. 2(a) shows the

model fitting of surface-treated CNT suspensions with three different weight concen-

trations (0.05%, 0.2% and 0.33%). Taking the 0.3% CNT suspension as an example,

the evolution of the apparent viscosity ηa in the orientation model is controlled by the

values of Dr and Np and the best constant-Dr fit was obtained for Dr = 0.005s−1 and

Np = 7. In Fig. 2(b), different values of Dr were used to illustrate the sensitivity of the

model on the fitting parameter Dr. In general, there is a good agreement between ηa

predicted by the model and the experimental data, but for high γ̇R, the predicted ηa is

slightly higher than the experimental value. For instance, at shear rate γ̇R = 60s−1, ηa

of the 0.3% suspension was found experimentally to be 10.5Pa · s, but the orientation

model predicted a viscosity of 11.3Pa · s (with a constant Dr = 0.005s−1) and this

gives an error of about 8%. Although there is an error of a few percents in predicting

high-shear-rate data, the use of a constant Dr should be sufficient to provide a rea-

sonably good estimation of ηa for general engineering problems, and this also saves

the effort in determining the exact relationship between Dr and γ̇R. However, in cases

where a more accurate description of high-shear viscosity is needed, the dependence of

Dr on should be carefully evaluated (see for example, [10] [16]). Moreover, our recent

modelling work suggested that the FP based orientation model cannot satisfactorily

describe the shear-thinning characteristics for untreated CNT suspensions where opti-

cally resolvable CNT aggregates are present (see for example [21]). For untreated CNT

suspensions, a new aggregation/orientation model should be used and in that model,

diffusion coefficient depends not only on the orientation of CNTs, but also on the en-

tanglement state of CNTs. Detailed model formulation and fittings for both treated

and untreated CNT suspensions can be found in the article entitled “The Rheological

Modelling of Carbon Nanotube (CNT) Suspensions” in this special issue.

5 Basics of the Natural Element (NE) Method

As mentioned in the introductory section, we have chosen to employ a meshless method,

the Natural Element Method, to perform the simulation, mainly because it allows for a

Lagrangian description of the flow kinematics, convenient for solving free-surface flow

problems with large surface deformation. The basics of the method are described next.

5.1 Natural Neighbour interpolation

The vast majority of meshless methods are based on the use of scattered data ap-

proximation techniques to construct the approximating spaces of the Galerkin method.

These techniques must have, of course, low sensitivity to mesh distortion, as opposed to

Finite Element (FE) methods. Among these techniques, the Natural Element Method

employs any instance of Natural Neighbour interpolation [23] [14] to construct trial

and test functions. Prior to the introduction of these interpolation techniques, it is

necessary to define some basic concepts.

The model will be constructed upon a cloud of points with no connectivity estab-

lished a priori among them. We will call this cloud of points N = {n1, n2, . . . , nM} ⊂
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(a)

(b)

Fig. 2 (a) Orientation model fitting of 0.05%, 0.2% and 0.33% surface-treated CNTs sus-
pended in epoxy resin. Np and Dr are the fitting parameters. (b) Sensitivity of the model to
Dr given the experimental data of 0.33% treated CNT suspension and Np = 7.

R
d, and there is a unique decomposition of the space into regions such that each point

within these regions is closer to the node with which the region is associated than to

any other in the cloud. This kind of space decomposition is called a Voronoi diagram

of the cloud of points and each Voronoi cell is formally defined as (see figure 3):

TI = {x ∈ R
d : d(x,xI) < d(x,xJ ) ∀ J 6= I}, (17)

where d(·, ·) is the Euclidean distance function.

The dual structure of the Voronoi diagram is the Delaunay triangulation, obtained

by connecting nodes that share a common (d−1)-dimensional facet. While the Voronoi
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Fig. 3 Delaunay triangulation and Voronoi diagram of a cloud of points.

structure is unique, the Delaunay triangulation is not, there exist some degenerate

cases in which there are two or more possible Delaunay triangulations (consider, for

example, the case of triangulating a square in 2D, as depicted in Fig. 3 (right)). Another

way to define the Delaunay triangulation of a set of nodes is by invoking the empty

circumcircle property, which means that no node of the cloud lies within the circle

covering a Delaunay triangle. Two nodes sharing a facet of their Voronoi cell are called

natural neighbours and hence the name of the technique.

In order to define the natural neighbour co-ordinates it is necessary to introduce

some additional concepts. The second-order Voronoi diagram of the cloud is defined as

TIJ = {x ∈ R
d : d(x,xI) < d(x,xJ ) < d(x,xK) ∀ J 6= I 6= K}. (18)

The most common natural neighbour interpolation method, is the Sibson inter-

polant [22] [23]. Consider the introduction of the point x in the cloud of nodes. Due

to this introduction, the Voronoi diagram will be altered, affecting the Voronoi cells of

the natural neighbours of x. Sibson [22] defined the natural neighbour coordinates of a

point x with respect to one of its neighbours I as the ratio of the cell TI that is trans-

ferred to Tx when adding x to the initial cloud of points to the total volume of Tx. In

other words, if κ(x) and κI(x) are the Lebesgue measures of Tx and TxI respectively,

the natural neighbour coordinates of x with respect to the node I is defined as

φI(x) =
κI(x)

κ(x)
. (19)

In Fig. 4 the shape function associated to node 1 may be expressed as

φ1(x) =
Aabfe

Aabcd
. (20)

It is straightforward to prove that NE shape functions (see Fig. 5) form a partition of

unity [1], as well as some other properties like positivity (i.e., 0 ≤ φI(x) ≤ 1 ∀I, ∀x)

and strict interpolation:

φI(xJ ) = δIJ . (21)

Sibson interpolants have some remarkable properties that help to construct the

trial and test functional spaces of the Galerkin method (see [24], [14]).

Besides properties like continuity and smoothness (everywhere except at the nodes

for Sibson interpolants), Sibson interpolants posses linear completeness (i.e., exact

reproduction of a linear field) and it is noteworthy that they are able to exactly in-

terpolate prescribed essential (Dirichlet) boundary conditions, a condition usually not

fulfilled by other meshless methods.
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Fig. 4 Definition of the Natural Neighbour coordinates of a point x.
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Fig. 5 Typical function φ(x).

5.2 The α-shapes-based Natural Element Method

The identification of the free surface in an updated Lagrangian flow simulation de-

serves some comments. Using meshless methods, in which models are constructed by a

set of nodes only, boundary tracking can be performed by employing different strate-

gies. In particular, we have employed shape constructors to perform this task. Shape

constructors are geometrical entities that transform finite point sets into a multiply

connected shape in general. In particular, we employ α-shapes [8]. α-shapes define a

one-parameter family of shapes Sα (being α the parameter), ranging from the “coars-

est” to the “finest” level of detail. α can be seen, precisely, as a measure of this level

of detail.

Details about the formal definition of the family of α-shapes can be found in [8]. In

brief, the use of α-shapes to define the boundary of the domain relies in the choice of

the level of detail needed to represent the domain, which is always an analyst’s decision.

It is obvious that the minimum nodal spacing parameter, say h, should be chosen so

as to reproduce at least that level of detail α.
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Fig. 6 Evolution of the family of α-shapes of a cloud of points representing drop impacting
on a flat surface. Shapes S0.03 (a), S0.05 (b), S0.5 (c), S2.0 (d), S100.0 ∼ S∞ (e) are depicted.

α-shapes provide a means to eliminate from the triangulation those triangles or

tetrahedra whose size is bigger than the specified level of detail. This criterion is very

simple: just perform a filtration to eliminate those triangles (tetrahedra) whose circum-

radius is bigger than the level of detail, α.

In Fig. 6 an example of the previously presented theory is presented. It represents

some instances of the finite set of shapes for a cloud in a intermediate step of the

simulation of drop impacting onto a flat surface. The experimental solution of this

problem, together with some snapshots of its numerical simulation, are shown in Fig.

7 and 8.

Note that the key question in using α-shapes is not to find the precise value of α for

a given configuration of the nodal cloud. Instead, we must set the problems in terms of

what level of detail we are interested in taking into account for a particular geometry.
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Fig. 7 Sequence of the drop deformation under very low ambient pressure. Photos courtesy
of Lei Xu and Sidney Nagel.
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Fig. 8 Evolution of the free surface in the drop impact.
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The use of α-shapes, however, has another relevant influence in the Natural Element

Method. As demonstrated in [4], the construction of natural neighbour interpolation

on an α-shape of the domain alters the distance measure. Natural neighbour interpo-

lation is performed on the basis of Voronoi diagrams, which employ euclidean distance

measure in their most general form. This leads to some lack of interpolation along non-

convex boundaries. This interpolation is recovered if we construct the natural neighbour

interpolants over an α-shape of the domain.

Thus, the use of α-shapes in the construction of updated Lagrangian simulations of

fluid flow provides an appealing way to track the boundary of domain while ensuring

appropriate interpolation of essential boundary conditions, that can be imposed directly

in the discrete system of equations, as in the Finite Element Method.

6 Discrete model

A mixed C0−C−1 NE interpolation has been applied to discretize the strong form of the

problem introduced before. More details on the application of mixed NE interpolations

in incompressible and nearly incompressible media can be found in [5].

In the formulation here presented, a C0 interpolation scheme —smooth everywhere

except at the nodes— has been chosen in the velocity field approximation, whereas a

discontinuous C−1 interpolation has been used in the pressure approximation:

v
h(x) =

nX
I=1

φI(x) vI (22)

ph(x) =
nX

I=1

ψI(x) pI =
nX

I=1

1

n
pI (23)

where vI and pI represent the nodal velocities and pressures, respectively, and n is the

number of natural neighbours of the point x under consideration.

This kind of approximation does not verify the LBB condition. However, it has

been shown that its behaviour is very similar to that of the bilinear velocity-constant

pressure finite element (see [13]). No spurious modes or locking have been observed in

all the simulations computed in this paper.

Thus, with the fluid domain Ωf (t) extracted at time t from the cloud of nodes by

using the α-shape technique, as described in the previous section, and the velocity and

pressure natural element interpolation defined by Eqs. (22) and (23), we can proceed

to a standard discretisation of the mixed variational formulation of the flow equationsZ
Ωf (t)

σ : D
∗dΩ =

Z
Ωf (t)

f rv
∗dΩ (24)Z

Ωf (t)
Divvp∗dΩ = 0 (25)

with

σ = −pI + 2η {D +NpTr(aD)a} (26)

where a null traction is assumed on the flow front and a prescribed velocity is enforced

on the other part of the fluid domain boundary. Essential boundary conditions involve

setting the velocity of the nodes in contact with the rotating plate to zero.
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The orientation equation is solved at each time increment. With the flow kinematics

known at time t, vt(x), the position of nodes can be updated at the same time that

the fibres orientation evolution, given by Eq. (6) is computed by using the method of

characteristics. The simplest explicit updating consists in writing

x
t+∆t
I = x

t
I + v

t
I∆t, ∀I (27)

and

a
t+∆t
I = a

t
I +

n
Ω

t
Ia

t
I − a

t
IΩ

t
I + kDt

Ia
t
I + kat

ID
t
I−

−2kTr
�
a

t
ID

t
I

�
a

t
I − 6Dr

�
a

t
I −

I

3

��
∆t, ∀I (28)

where Dt
I and Ωt

I are the symmetric and skew-symmetric components of the gradient

of velocity tensor, at time t in the node xI , respectively.

Finally, in the kinematics resolution stage, the fibre orientation described by the

second order orientation tensor a is assumed to be known at the nodes at present time

step, at
I . The value of a at the integration points used to evaluate Eqs. (24) and (25)

is computed by using the natural element interpolation

a
t(x) =

I=nX
I=1

φI(x) a
t
I (29)

The only difficulty in applying Eq. (28) to update the orientation is related to the

non-derivability of the natural element shape functions at their definition nodes. Thus,

we can evaluate the velocity gradient tensor from the expression

v
t
,k(x) =

I=nX
I=1

φI,k
(x) v

t
I (30)

where the subscripts k denotes the spatial derivative with respect to the k−coordinate.

The velocity gradient can be computed everywhere except at the nodes, since φI,k
(xI)

is not defined. A possible solution for this relies in the use of Stabilised Conforming

Nodal integration techniques [3][11] or to use some kind of projection from integration

points and then averaging [25] [6].

7 Numerical results

The previously presented model was applied to the simulation of spinning a drop of

CNT suspension, with the assumption that the initial shape is Gaussian. The model

was composed of 977 nodes under axisymmetric assumptions for the flow (but not for

the orientation field, which is three-dimensional). Non-slip boundary conditions were

assumed at the horizontal plane, whereas symmetry boundary conditions are assumed

at the axis of symmetry. Some snapshots for the simulated evolution of the velocity

field for different time steps are shown in Fig. 9.

The results on the orientation field for the carbon nanotubes are shown in Figs.

10-11. It can be noticed how CNTs tend to adopt an horizontal orientation in the r−z

plane, due to the gradient of velocities in this plane, very close to pure shear due to

the non-slip boundary conditions. On the θ − z plane, however, and by virtue of the

diverging velocity field, CNTs tend to align to the θ direction, although the ellipses

are not as distorted as those on the r − z plane and the degree of alignment is less

significant.
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Fig. 9 Snapshots of the velocity field at 1st, 10th, 20th and 30th time steps. ∆t = 0.01s.

8 Conclusions

A model has been presented for the numerical simulation of spin coating of carbon

nanotubes suspensions. The model is composed of a meshless (natural element) strategy

for the flow that allows for a proper description of the free-surface flow and a micro-

macro description of the nanotube scale that allows for a suitable description of CNT

orientation field.

The use of a meshless strategy in an updated Lagrangian framework, combined

with an α-shape approach, to describe the large motion of the free surface seems to be

an appealing choice, due to its simplicity. In this way since nodes move with material

velocity, the orientation field can be stored at the nodes and be updated easily by a

simple algorithm based on the method of characteristics.

Other possibilities, such as the kinetic description derived from the Fokker-Planck

equation or its equivalent stochastic (Itô) counterpart could also be applied in this
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Fig. 10 Orientation field for the CNT suspension at some intermediate steps of the simulation
(r − z orientation field). 1st, 10th, 20th and 30th time steps.

same framework. This remains an important part of ongoing research and the findings

will be reported in a future paper.
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