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Natural Element simulation of free surface

flows

Abstract

Numerical simulation of free surface flows remains to be a problem of utmost difficulty
in the field of Computational Mechanics. The origin of these problems is twofold. On
one side, the most typical description of the fluid kinematics is the Eulerian description.
But this description is by no means the most adequate for describing the evolution of
the free surface, which would be most easily described in a Lagrangian approach.

Onthe otherside, if a Lagrangian description of the movement is preferred, then the
most extended numerical techniques for solving the resulting Navier-Stokes equations,

such as finite elements, finite differences or finite volumes, become extremely intricate.

In this thesis a different approach has been pursued. Meshless methods have been
chosen to approximate the Navier-Stokes equations, and particularly, the natural el-
ement method has been chosen due to its particular characteristics. Among these,
one can cite the exact imposition of essential boundary conditions, the ability for high-
order approximations, and its strong link with the geometrical structure of the descrip-
tion of the free surface that has been chosen.

In this thesis a second order in time natural neighbour Lagrange-Galerkin method
has been developed. This method has demonstrated excellent results in problems
where previous approaches failed. In addition, a shape constructor method has been
proposed for the automatic extraction of the geometry of the domain as it evolves in
time. It is based on the concept of a-shapes, but two additional a-filtrations are per-
formed on top of the traditional algorithm that make it much more powerful and less
sensitive on the choice of the parameters.

Finally, the developed method has been applied to a particularly challenging prob-
lem, which is that of the Worthington jet and, in general, free surface, non-Newtonian
fluid mechanics.






Simulacion de flujos con superficie libre por el

meétodo de los elementos naturales

Resumen

La simulacién numérica de flujos con superficie libre continta siendo hoy dia un prob-
lema de extrema dificultad en el campo de la Mecanica Computacional. El origen de
estas dificultades tiene dos vertientes. Por un lado, el hecho de que la cinemética de
los fluidos se describe habitualmente y de manera natural en un marco euleriano. Pero
este tipo de descripcidn no es, en modo alguno, la mas apropiada para describir el
movimiento de la superficie libre, que aceptaria de un modo mucho mas natural una
descripcioén lagrangiana.

Por otro lado, si se escoge una descripcion lagrangiana, las técnicas numéricas mas
extendidas (elementos finitos, diferencias finitas o volumenes finitos, entre otros), se
vuelven extremadamente complejos en su aplicacién a las ecuaciones resultantes de
Navier-Stokes.

En esta tesis de plantea una aproximacion al problema de Navier-Stokes con su-
perficie libre completamente diferente. Se han escogido los métodos sin malla, y mas
concretamente, el método de los elementos naturales, para realizar la simulacién. Este
ultimo se ha escogido por sus peculiares caracteristicas, entre las cuales cabe citar la
imposicién exacta de condiciones de contorno esenciales, su capacidad de desarrollar
aproximaciones de alto orden y su estrecho lazo con la estructura geométrica que se
ha escogido para la descripciéon del movimiento de la superficie libre.

En esta tesis se ha desarrollado un método de Lagrange-Galerkin de vecindad natu-
ral de segundo orden en el tiempo, que ha mostrado excelentes resultados en proble-
mas en los que intentos previos han fallado. Ademas se ha desarrollado un constructor
de formas para la extraccion automatica de la geometria del dominio conforme ésta
evoluciona en el tiempo. El método desarrollado se basa en la técnica de formas «,
pero se han anadido dos filtrados adicionales que hacen que método sea mucho mas
robusto y menos sensible a la eleccién de los parametros.

Finalmente, el método recién desarrollado se ha aplicado a un problema especial-
mente complicado como es el del jet de Worthington y, en general, a los flujos de flui-
dos no newtonianos con superficie libre.
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Chapter 1

Introduction

The contemporary significance of numerical methods in a wide range of fields is a fact
already accepted. This is evidenced by the large number of such tools routinely applied
in the industrial sector. Additionally, the increased performance of computers, which
took place in the last twenty or thirty years, has allowed the numerical simulation of a
large number and variety of phenomena studied by various disciplines. Whether in the
fields of mathematics, engineering, physics or medicine, computer simulations can pro-
vide quantitative results in highly complex processes. Problems such as the mechani-
cal response of solids, fluids, and even living tissues, have been successfully addressed
through the development of mathematical formulations of the laws that govern those
behaviors. However, we are far from providing a mathematical description for every
problem and even more from solving them —if that would be even possible—with the
techniques currently available.

This thesis originated in the framework of the project “*"Meshless simulation of fluid-
structure interaction', funded by the Spanish Ministry of Science and Innovation. One
of the most difficult problems we faced during the development of such project was
the design of an efficient computational technique which could face effectively the bur-
den associated with free-surface fluid-solid interaction. The complexity associated with
this phenomenon was mainly due to the complex nature of the free surface problem,
which, added to the inherent fluid-structure interaction difficulties, led to numerous
difficulties.

In the first half of the decade of 1990 a new family of numerical methods arose that
were coined as meshless methods. These methods share one common characteristic,
despite the wide range of names and different techniques that they encompass. This
characteristic is that, either based upon Galerkin or collocation techniques, meshless
methods do not greatly suffer of mesh distortion, and hence their name. They thus
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26 Andrés S. Galavis Borden

appeared as a natural choice for the problem at hand. Meshless methods allow for an
updated Lagrangian description of the fluid flow, thus avoiding remeshing nor complex
descriptions such as Arbitrary Lagrangian Eulerian methods (ALE).

This thesis proposes using the natural element method to study certain flow features
in the presence of a free surface for both Newtonian and Viscoelastic fluids. To this
end it is necessary to improve the robustness of this technique, to implement the fluid
model focus of our study and to solve some algorithmic aspects which are troublesome
for this method, as will be deeply described later on.

In this thesis we will move away from traditional models in at least two ways. On
the one hand, the fluid mechanics is usually treated from an Eulerian approach, which
assumes that there are fixed observation points from which sampled particles allow
to describe the state of flux at a given time instant. This way of studying flows is very
useful for stationary situations or for internal flows, where the shape of the volume oc-
cupied by the liquid does not change, or if it does, at least is possible to predict where
to place the observation points. However, the Eulerian point of view is not equally
suitable when we are in the presence of largely changing free surfaces. An arbitrary
Lagrangian Eulerian (ALE) approach has been developed and it is well established by
now, although it does not come free of problems. The approach we adopt in this thesis
is the use of an updated Lagrangian scheme, in which each observation point moves
associated to a material particle. We consider that this strategy will be the most appro-
priate to track domains evolving in time, typical of the problems that concern us. This
scheme has been successfully used in Gonzalez (2004) for the case of Newtonian fluids.
This method for fluid flow simulation will be fully explained on Chapter 3, where some
examples showing the technique capabilities will be presented as well.

The second relevant aspect regarding the way on which this work parts from the
norm is on the numerical solution of the fluid (Navier-Stokes) equations. The Finite Ele-
ment Method is the most widely used and developed numerical technique for the ap-
proximate solution of partial differential equations. Applying this method to problems
with heterogeneous materials, anisotropic or nonlinear behavior has yielded high-qual-
ity results. It seems logical, therefore, that the first choice for the approximate solution
of solid mechanics equations, would be precisely the FEM. This choice is not so clear in
the field of fluid mechanics. Its election presents not a few drawbacks to contend with.
First, in order of construction, and perhaps also in order of difficulty, would be the mak-
ing of a mesh that accurately represents the domain under study. The resolution by the
finite element method involves a discretization of the domain. This is necessary both
for the required numerical integration of Galerkin method and for the very construction
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of FEM shape functions.

While great strides on improving these procedures have been made and some func-
tionality has been achieved, computational mesh generation is still a very active re-
search field. It has a large number of groups dedicated to it, being far from a solved
problem or sufficiently automated (as an amused activity, the interested reader can be
bothered to perform a quick search for papers published on 2010 on this topic). On
this topic, three-dimensional domains represent additional and particular difficulties.
In fact, mesh generation is still one of the most time consuming parts in the process
creating a model by the finite element method, and to some extent could be perceived

almost as an art.

Itis on the numerical method of solution, where the mostimportant selection in the
direction of this thesis was made. On this matter a road less well-traveled has been cho-
sen, so the Finite Volume Methods (very popular in commercial simulations of fluids)
and Finite Differences (more typical of academia) that are usually used with Eulerian
schemes where set aside. Also ignored has been the method of Finite Elements, which
as already mentioned, despite being the most popular approaches used in Lagrangian
(both industry and academia), is not capable of withstanding large deformations do-
mains—at least not without modifications to the method. The employed technique in
this work has been the Natural Element Method, which belongs to the family of afore-
mentioned meshless methods. The characteristic of these is that they do not require
fixed information about the connectivity between nodes, which is why there is no prob-
lem in following material particles even if they change their neighborhood at each time
step.

1.1 State-of-the-art for meshless methods

Several names have been proposed for these methods in an attempt to characterize
them: methods of particles, finite point, element-free methods, diffuse elements, etc.
each time putting emphasis on a characteristic of each method. Still, the commonality
between them is that the nodal connectivity is obtained through a search algorithmin
a process transparent to the user, releasing the burden of generating a suitable mesh
for the domain at each stage of the simulation.

Most meshless methods continue to progress, even though the last two decades
produced great advances in their understanding. Just to cite an example, works like
(Babuska and Melenk, 1996) have provided some of the theoretical basis needed to
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identify the approximation spaces from which meshless shape functions can be con-
structed.

Many methods have found their niche application, and have proven to be adequate
in problems of rapidly evolving topology, like crack propagation Krongauz (1996). The
first meshless method was presented in 1977 by Lucy (1977) and Monaghan (1982).
It was called Smooth Particle Hydrodynamics and came from the field of theoretical
astrophysics. It has later been applied to a wide range of phenomena, including fluid
and solid mechanics. The method called Reproducing Kernel Particle Method (Liu and
Chen, 1995) (Liu et al., 1995) arose from the SPH as a generalization of the former in
which a correction function is added in order to provide linear consistency.

Coming from a different family, we find all the methods that derive from the Mov-
ing Least Squares Method. The idea behind this method is to obtain approximating
functions around a given point from scattered nodal data which has been fitted via a
moving least squares formulation. This method is used in 3D surface construction as a
way to modify the sampling of a nodal cloud. Members of this family are the Diffuse
Element Method (Nayroles et al., 1992), the Element-Free Galerkin Method (Belytschko
etal., 1994) or its related counterparts (Atluri et al., 1999), (Atluri and Zhu, 2000), or the
Hp-Clouds Method (Duarte and Oden, 1996a)(Duarte and Oden, 1996b). It has been
independently developed by Duarte and Oden; and by Babuska and Menlek, that the
main issue with these methods resided in the need to construct a partition of unity.
The shape functions obtained by the general formulation of each of these methods are
not strictly interpolant, meaning that shape functions do not evaluate to one at the the
ascribed node and zero at any other (lack of fulfillment of the Kronecker delta prop-
erty). As a result the approximated solution will pass through the nodal values. This
situation constitutes a problem for the imposition of essential boundary conditions in
many meshless methods. This problem has been studied and is partially solved for
some methods (Belytschko et al., 1994) (Krongauz, 1996). Also new methods have been
developed which circumvent this situation. To name but one, the approximation based
upon maximum entropy schemes seems to be one of the most promising (Arroyo and
Ortiz, 2006), (Cyron et al., 2009).

Natural Elements were born in the late 1990s and has been Zaragoza University one
of the main research centers for the development of this method, see Cueto (2001),
Gonzalez (2004), Alfaro et al. (2006b) to name a few of these university contributions.
An in-depth review of this method will be presented in Chapter 2. Yet for now, suffice
it to say that it provides a convenient way to implement the aforementioned updated
Lagrangian approach for fluid simulation.
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One of the most cited capabilities of meshless methods is that of simulating large
deformation phenomena. With the possibility of simulating flows in an updated La-
grangian framework many works have been devoted to this end in the last years. The
interested reader can consult, for instance, Martinez et al. (2004), Idelsohn et al. (2003),
Idelsohn et al. (2004), Gonzalez et al. (2007), among others. In these problems, we can
add to the obvious advantages of updated Lagrangian meshless methods the absence
of numerical diffusion associated with remeshing and the lack of convective terms in
the formulations, that consequently do not need for any stabilization.

1.2 State-of-the-artin the simulation of free-

surface flows

Regarding the treatment of free surfaces, these have been traditionally dealt with by
either tracking methods or by surface capturing techniques. The Volume of Fluid (VoF)
technique is an example of the later techniques, while the ALE formulation could be
seen as an instance of the former. With traditional approaches is particularly note-
worthy is the difficulty in the selection of mesh velocity in ALE formulations. In ad-
dition, tracking the free surface with boundary markers can be implemented in an ele-
gant way in two dimensional problems —by employing a chain of markers and check-
ing self-intersections of the chain to detect merging flows—, as in (Lewis et al., 1997),
(Duchemin et al,, 2002), for instance, but becomes much more intricate in three dimen-

sions.

If one tries to avoid any form of meshing and only a set of nodes without explicit
connectivity is employed, then finding the position of the free surface becomes a prob-
lem. In other words, the geometry of the domain must be extracted from the current,
updated, position of the nodes, that move with the material velocity. To this end, vari-
ous authors have employed Computational Geometry techniques. In particular, Cueto
et al. (2000) seem to have been the first in employing shape constructors —a-shapes in
this case—techniques to extract the geometry of the domain. Shape constructors are
geometrical techniques that enable to find the shape of a cloud of nodes at each time
step. a-shapes (Edelsbrunner et al., 1983), (Edelsbrunner and Miicke, 1994) have been
employed in a number of previous works involving free surface flows, see for instance
Idelsohn et al. (2004), Idelsohn and Onate (2006), Martinez et al. (2004), Gonzalez et al.
(2007) and Birknes and Pedersen (2006), among others.
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Different shape constructors have been proposed to extract the geometry of the
domain. The Delaunay triangulation (Delaunay, 1934) is the base ingredient of these
techniques, since it characterizes unequivocally the cloud of points —it is unique for
each cloud. Different criteria have been proposed in order to select the triangles per-
taining to the shape of the domain. The simplest one is maybe the a-shape technique,
that proposes to eliminate all triangles (or tetrahedra) whose circumscribing radius is
greater than a prescribed level of detail. One of the main drawbacks of the a-shape tech-
nique, as recognized in many works (see, for instance, Cazals et al. (2006) Teichmann and
Capps (1998)) is precisely the choice of the a-value. In general, a-shapes work well for
uniformly-distributed clouds of points, which generally does not constitute a problem
for stationary problems. However, for our intended use it remains to be an issue that
deserves further insight.

The jump of the aforementioned techniques to the field of Computational Mechan-
ics has posed additional difficulties. By definition a-shapes are not able to detect holes
or cavities of size smaller than «a. This implies that contact between different surfaces
is detected with an error O(a) ~ O(h), i.e., prior to the true expected contact (Te-
ichmann and Capps, 1998). Precisely in this last reference a method is proposed to
alleviate this drawback, but it needs information on the normal of the boundary at the
sampling points. This is easy to achieve for three-dimensional scans of solids, for in-
stance, but this kind of information is not readily available for the type of simulations
we are interested in.

1.3 Structure of the thesis

Along with this first introductory chapter, this thesis is composed by five more chapters.
In Chapter 2 a detailed exposition of the natural element method, together with its
merits in the problem we face, will be addressed. Chapter 4 deals with the description
of the free-surface problem. In it, a proposed solution for the problem of on-the-fly
extraction of the shape (i.e., the boundary) of the domain will be described.

In Chapter 5 we will delve into the problem of simulating Non-Newtonian fluids,
that add additional difficulties to the before presented problem. Examples of these flu-
ids can be found almost anywhere, from body fluids as blood or mucus to man-made
substances like paint, shampoo or molten plastics. Of course not all non-Newtonian flu-
ids behave in the same manner so many different constitutive equations, with a wide
range of complexity, have been developed to describe their mechanical response. The
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great industrial importance of these fluids has originated a great deal of interest in its
numerical simulation from a relatively long time. A great deal of success has been
achieved, and we count with tools for solving a huge variety of complex fluids. Still
the processes has been plagued with difficulties, many of which seem to come from
the so called high Weissenberg number problem. Regardless of the employed numerical
method or the viscoelastic constitutive equations used, when the elasticity of the fluid
isincreased by in a given measure, the simulation would suffer from a huge loss in accu-
racy leading to convergence problems. This situation limited the application spectrum
of cases, rendering the numerical tools ineffective to deal with industrial grade prob-
lems. Amounting to this problem, the interesting free-surface phenomena that occur
in some viscoelastic flows creates an unmissable setting for the applications tryout of
the developed method.

Finally, a summary of all the main results and conclusions will be presented along
with some remarks regarding the future lines that could be followed from this work.
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Chapter 2

The Natural Element Method

The Natural Element Method (NEM) is a meshless Galerkin procedure based on the nat-
ural neighbor interpolation scheme, which in turn relies on the concepts of Voronoi
diagrams and Delaunay triangulation to build Galerkin trial and test functions. All of
these will be defined and explained in the following sections.

To explain the appeal of this method to our work, first we have to establish our mo-
tivation. Traditionally the fluid models are built using an eulerian frame of reference
(Donea and Huerta, 2003). This framework is not particularly well suited for simulating
free-surface flows, forcing different authors to tackle the problem with different meth-
ods. Several techniques have been developed to keep track of the evolving boundary
(Duchemin et al., 2002). Other researchers have decided to change the formulation in
order to work with pure or mixed lagrangian frames of reference. Our approach lies in
this camp as we have adopted an updated Lagrangian fluid model which will be de-
scribed thoroughly in chapter 3. We aim at simulating the fluid-structure interaction
from a Lagrangian-Lagrangian standpoint considering it to be the most natural way to
accomplish fluid-solid coupling.

The most prevalent method for solving partial differential equations in a Lagrangian
approach is arguably the Finite Element Method. Yet this technique does not cope very
well with the high deformation of the mesh which may occur in transient fluid prob-
lems. In this way seems natural to use a meshless method One of the main drawbacks
of some of these methods is that the calculated variables do not correspond with the
essential variables. This implies that the imposition of boundary conditions needs sup-
plementary steps.

The natural element method allow us bypass the aforementioned problemes. First, its
meshless character allows us to employ a Lagrangian formulation in situations where
we know there will be large deformation, yet the future position of the particles is not

33



34 Andrés S. Galavis Borden

known beforehand. We avoid the need for a conscious, and usually very time consum-
ing, mesh generation. Second, by the properties of the method, the inter-domain data
transfer can be accomplished without any extra load which also open the door to also
tackle fluid-structure interaction problems, but more on this topic will be discussed in
another section of this work

2.1 Natural neighbors

For the introduction of the geometrical concepts related to the Natural Element Method
we will refer to adomain in it%, explaining about a generalization to R™ when necessary.

2.1.1 Voronoi Tesellation

Given a set of points S = {xg, 1, xs,...,xN}, there exists a unique division of the
plane such that every region T; (called Thiessen or Voronoi polygon) is closer to a par-
ticular point ; than to any other ;. The union of these areas tessellate the whole
plane without gaps or overlapping. This division is called first-order Voronoi diagram
(Voronoi, 1908), and is defined as

T, ={x e R : d(z,x;) < d(z,z;)Vj # i}, 2.1)

where d(-,-) denotes the euclidean distance between two points in ®2. Figure 2.1
shows the Voronoi diagram of a set composed of 9 nodes. The cells T; and 7 are di-
vided by an hyperplane perpendicular to the line that passes through nodes i and j.
The intersection between three or more hyperplanes is called Voronoi node or vertex,
and is equidistant to all the nodes s; to which the neighboring cells T; are related. The
regions can be either closed or unbounded, but always convex.

A higher-order Voronoi tessellation can be defined by including more nodes into
the definition. In this manner, a second-order cell T;; is defined as the locus of all the
points whose distance to x; is less than to any other x;, but more than the distance to

x;. This can be written as

Ty ={x e R d(z,x;) < d(x,x; < d(z, 2)Vk # j,i} (2.2)

This set is non-empty only in the case where T; borders with 7. In this case, x; and
x; are neighbors
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Figure 2.1. Voronoi Tessellation of a set .S of points.

2.1.2 Delaunay Triangulation

The straight-line dual structure of the Voronoi tessellation is called Delaunay triangula-
tion (Delaunay, 1934). It is constructed by connecting the nodes of S which are neigh-
bors. Of all the possible three-node tesselations, the Delaunay triangles are the ones
that maximize its minimal angle. This property make this graph very interesting for
mesh generation and as such has been well studied (see Sukumar et al. (1998) and ref-
erences therein). Figure 2.2 (b) depicts this triangulation. The Voronoi diagram of this
set is shown in dashed lines.

If a circle passing through the three nodes of a triangle DT'(x;, z;, ;) (a circumcir-
cle) isdrawn, no other node of the set S will be enclosed by it. This property is called the
empty circumcircle criterion (Fig 2.2 (a)). The circumcenter for each triangle is located
at the Voronoi vertex where each node's cell converge. There exists a special case on
which two (or more) triangles comply with this condition. This occurs when a number
of nodes k > d + 2 are located on the same empty n-sphere, wheren = d — 1. In two
dimensions this means that at least 4 points are located in the same circle (1-sphere).
Thus the Delaunay triangulation may not be unique for a given set of points (Fig 2.2
().

The convex hull is the minimal external boundary of the set that contains all nodes
of S. This concept has applications in numerous fields, ranging from image process-
ing to GIS (Edelsbrunner et al., 1983). It can be obtained by means of the Delaunay
triangulation as the union of all triangle segments that belong to only one triangle.

With the concepts of Voronoi tesselation and Delaunay triangulation, we can define
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Figure 2.2. Empty circumcircle. Delaunay triangulation. Degenerated triangulation

the natural neighbors (n.n.) of a point p as those nodes whose cells limit with 7}, As
an alternative, they can also be defined as those nodes which share a triangle with p,
forming DT'(p, x;, ;). The same definition applies whether p is a node of the set or
an introduced point.

2.2 Natural Neighbour Interpolation

With the use of the second-order Voronoy diagram, the relation of neighborhood of an
introduced point with the nearby nodes can be quantified. This is the principle used
by Sibson (1980), when firstly proposing the natural neighbor interpolant, which is the
basis of the NEM.

Years later, Belikov et al. (1997) showed the non-uniqueness of the natural neighbor
interpolation schemes and introduced a new interpolant, known as non-Sibsonian (nS)
or Laplacian interpolator. More recently, Gonzalez et al. (2008) introduced a new class
of interpolant constructed over a generalized de Boor algorithm. With this technique,
it is possible to generate high-order consistency natural neighbor approximations.

2.2.1 Sibson Interpolant

Let « be a point introduced in a set of nodes S = {xg, x1, T2, ..., xN}. And let k;(x)
and k(z) be the Lebesgue measures of the second order cell T,; and the first order cell
T, respectively. Since the second order cell will be empty for every pair of nodes which
are not neighbors, we have that k;(x) = 0 when i is not a natural neighbor of x. From

there we get that
N n
D kilm) =D ki(w) = k()
=0 =0
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Figure 2.3. Modified Voronoi diagram by the inclusion of point «

where n is the number of natural neighbors of point x

The natural neighbor coordinate with respect to node i is defined as the ratio of
k;(x) to k(x). In two dimensions, the Lebesgue measure £ is the area A of the cell.

_ Ralm) _ Ar,

To illustrate the construction of the Sibson interpolant we will present an example.
Figure 2.3 shows a set of 7 nodes to which a point  has been added. The coordinate
respect to node 1 of this point is

Aabfe

o1(x) = I (2.4)

abed

With the natural neighbor coordinates we can interpolate the value of some vecto-
rial (or scalar) field u(z) : Q C R? — R? as

w'(@) = Y ail@uli) = Y- dil@)ul) (25)

where n is the number of natural neighbors of z.

Given the interpolant character of the natural neighbor coordinates and some other
properties that will be treated next, they have been chosen as the shape functions in a
Galerkin method, thus originating the Natural Element Method. Figure 2.4 depicts the
Sibson shape function of a point centered in a four nodes square.
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Figure 2.4. Sibson shape function. (Courtesy N. Sukumar)

2.2.2 Non-Sibson Interpolant

As mentioned before, Belikov et al. (1997) proposed a different interpolation scheme
based on natural neighbors. This new interpolant required the calculation of Lebesgue
measures in one dimension less than the working dimension. With this approach, to
obtain the natural natural neighbor coordinates in 2 only distances have to be calcu-
lated instead of areas, as required by the Sibson shape function. Since both schemes
share most of their properties, the non-sibson interpolant presents itself as a very at-
tractive option due to its ease of implementation and lower computational cost.

To define this interpolant we will assume again a finite set S = {x1,x,,..., T}
in }™. Based on the Voronoi cell, Eq. (2.1), and its closure T, = T, U §7}, we define
tiy = {x € T, NT;,i # j}. With d(x;, x;) as the distance between points x; and x;,
the non-Sibson interpolator is

|twi‘

d(xz;,x)
ST
i=1 d(z,z;)

where | - | denotes the Lebesgue measure in R"~!. As with the second order Voronoi

di(x) = (2.6)

cell, ¢;; is non-empty only for pairs of neighboring nodes.

Figure 2.5 shows a set comprised of four nodes in which a point « is inserted. The
Voronoi cell T}, is also depicted. In this setting, |t.4| is the Lebesgue measure of the
edge x4 and d(x, 4) is 2 - h4. In Belikov et al. (1997) the non-Sibson shape function is

defined as
az‘(l“)

_a) () = si(7)
S 7

gi(z) =
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Figure 2.5. Laplace shape function construction.

In Fig. 2.6, a picture of the non-Sibson shape function is shown in the same situation
as was presented the Sibson shape function.

2.3 Natural Element Shape Function Proper-
ties

The NEM has interesting qualities which derive from the use of the interpolation func-
tions explained in the past sections. In this sections we will cover such properties in
some detail. Unless stated otherwise, the notation will be the same used before.

2.3.1 Meshless Character

It is a known fact (Babuska and Aziz, 1976) that the accuracy of many approximation
methods is dependent on the nodal distribution. As an example, the triangulation used
in the FEM must comply with a minimum angle criterion in order to guarantee a mini-
mum level of accuracy. However the NEM shape functions are not limited by such re-
quirement, being independent of the nodal distribution. While this condition has not
been formally demonstrated, studies in two (Sukumar, 1998) and in three (Cueto, 2001)
dimensions have not found any dependence between the angles of the Delaunay tri-
angles and the accuracy of the obtained results, hence implying a meshless character.
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Figure 2.6. Laplace shape function (Courtesy N.Sukumar)

Indeed, in Alfaro et al. (2007) numerical tests are performed that show the superior ac-
curacy of NEM over FEM when highly distorted meshes are employed.

2.3.2 Strictly Interpolant Character

Unlike most meshless methods, which are of approximate character, the NEM shape
functions are strictly interpolant. That is, the approximated surface contains the nodal
values. It satisfies the Kronecker delta condition at the nodes:

@'(%’) = 0jj (2.8)

Applying Eqg. (2.5) to node i
u'(@) =) i@y =) Giu,; = u;,
j=1 i=1

which shows that the nodal parameters are directly the nodal variables

As a consequence of this property, there is no need to use enforcing techniques
to impose essential conditions while solving PDEs. However, this property alone is
not sufficient to properly impose Dirichlet conditions, for the nodal satisfaction at the
boundary nodes does not imply full compliance within the boundary.

2.3.3 Approximation

Whereas in one dimension Sibson's shape functions equals that of the natural elements,
non-Sibsonian shape functions are undefined (the Lebesgue measure of a point equals
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Figure 2.7. Natural neighbor coordinates in 1D.

zero). To prove it, let us consider a line segment of length L discretized in N elements.
By definition the Voronoi nodes in one dimension will be located in the middle points
of each element. The natural consequence of this is that each node will have only two
natural neighbors. By establishing a coordinate system (see Fig. 2.7)

r — X;

§=—7r, (2.9)
Lit1 — Ly
with £ € [0, 1]. The shape functions for each element are written as
Le;
&) = ———, (2.10)
with ¢ ¢
Ly =—= Ley =2

from whichwe getto ¢, ({) =1 —¢and ¢»(§) =&

In two dimensions the approximation depends on the number of natural neighbors.
If the point has three n.n. the natural coordinates are equivalent to the barycentric co-
ordinates that constitute the linear triangular FE shape functions (constant strain trian-
gles, see Sukumar et al. (1998)). To prove this, lets take a point x = (z,y) with only
three neighbors, numbered 1 to 3 with coordinates (x;,y;). Due to method's linear
consistency, it is possible to write the following system

11 1 ¢1(x) 1
D(x)= |2, 29 a3 | | d(z) |=]2 2.11)
Y1 Y2 Y3 ¢3(m) Y
which is solved by
¢ () = %((ww)) (2.12)
Po(x) = %((f)) 2.13)
d3(x) = %3((;) (2.14)
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being
1 1 1
D(x) = |21 o x3|=2A123 (2.15)
Y Y2 Y3
and Dy (x) = 2A;(x), Da(x) = 2A42(x) y Ds(x) = 2A3(x), which are the FE shape
functions that we were looking for.

For four nodes in a regular grid a bilinear approximation is obtained. For any other
configuration or in the case of more neighbors, the shape functions have a quartic ra-
tional expression—see Sukumar et al. (1998) for proof.

In higher dimensions the Sibson shape function is a generalization of the univari-
ate 1-D interpolation. The interpolant is built based on the appropriate dimension
Lebesgue measure, which gives it very sound mathematical and geometric base.

2.3.4 Partition of Unity and Positivity

Because the NEM shape functions are constructed —Egs. (2.3) and (2.7)—as ratios of a
quantity related to each natural neighbor between the sum of all those quantities, it is
direct to see that

> i) = 1. (2.16)
=1

That is, the shape functions constitute a partition of unity.

Since the mentioned quantities are areas or distances, it is also easy to show that
¢; > 0. Which means that the Natural Element Interpolation constitutes a convex com-
bination of nodal coordinates (Arroyo and Ortiz, 2006).

2.3.5 Linear Consistency

As stated by Sibson (1980), the NEM shape functions satisfy the local coordinate prop-
erty

T = Zqﬁz(m)wl (2.17)
i=1

which along with the partition of unity condition imply that the method posses linear
consistency. Proof of this can be found on Sukumar (1998) for the Sibson interpolant
and in Sukumar et al. (2001) for the non-Sibsonian approximation. Being able to repro-
duce alinear field, means that this shape functions can be used to solve PDEs of degree
two, e.g., the elastostatic problem.

UniversidadZaragoza



Natural Element Simulation of Free Surface Flows 43

2.3.6 Smoothness

According to Sibson, NEM shape functions are infinitely differentiable everywhere in-
side its domain except at the nodes, where they are only continuous. Various modi-
fications have been proposed in order to raise the differentiability class of this shape
functions. Some of this approaches include the use a weighted least squares fit as a
modifier in the original Sibson scheme (Sibson, 1981); embedding natural neighbor co-
ordinates in the surface representation of a Bernstein-Bézier cubic simplex (Farin, 1990);
or reformulating Sibson's interpolant to incorporate them into spline theory (Traver-
soni, 1994). Achieving to obtain a C* () class shape function allows to make use of the
NEM in higher order problems.

2.4 Shape Function Construction

In this section we will discuss the two most extended methods for the shape function
calculation. The Bowyer-Watson is based on the calculation of the natural neighbor
coordinates by decomposing the Voronoi cells into triangles which are a subset of the
Delaunay triangulation. The second, Laserre's algorithm performs the task by calculat-
ing areas of convex polygons.

2.4.1 Useful formulas

These are some geometric formulas which are used on the implementation of the fol-
lowing algorithms (Sukumar et al., 1998). We will consider three two-dimensional non-
collinear points in global coordinates: A(a) = (a1, as), B(b) = (b1,b2) and C(c) =
(c1,co) forming a triangle t(A, B, C).

Area of a Triangle

The signed area of ¢, is given by

4 (a1 — ¢1)(by — c2) ; (by — c1)(ag — ¢2) (2.18)
If @ and b coordinates are dependent on x, the derivatives of A is
A(@) = (a1 () — c1)bai(x) ‘QF (ba(®) — c3)ani(x)

~ (h(=) — c1)az(x) ‘QF (a2(x) — c2)by () (2.19)
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where i = 1, 2, denotes the spatial coordinate and a comma denotes differentiation in
the corresponding direction. This definition can be extrapolated to higher dimensions.

Circumcenter Coordinates

The circumcenter of t(A, B, C') denoted by v = (vq, v3) is obtained by:

v — (af — ¢t + a3 — c3)(by — c2) — (bf — ] + b5 — 3) (a2 — 2
1 — )
D
po U d e —a) (odrd-dih-a) oy

where D equals four times the area of t(A, B, C')—Eq. (2.18).

To calculate the derivatives of the circumcenter's coordinates, make ¢ = x = (x4, z3).
Assume a and b are independent of x. Then

(21 — v (2))Ca(x)

Ul,l(a:) == D(:C) )
_(a+zoD () —vi(x)D o)
vl,Q(w) - D(w) )
_ (a+ a1 Ds(x) —va(x)Da(x))
U2,1(€I3) = D(z) )
_ (2 —wa(x)) D ()
va(T) = D(x) (2.21)
with v given by Egs. (2.20), D(x) equals four times the area of t(A, B, X)) and
Dy () = 2(az — by), (2.22)
DQ(CU) = 2(b1 — al) (223)
and
a=0bf —a+b5—a; (2.24)
Circumradius
The square of the circumradius R?(x) is
R*(z) = (a1 — v1(x))? + (ag — va(x))? (2.25)

2.4.2 Bowyer-Watson Algorithm

The Bowyer-Watson algorithm (Watson, 1981) is originally an incremental insertion al-
gorithm to obtain the Delaunay triangulation of a set S. It starts with a super-triangle
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that encompasses all the set. One node is added, the algorithm is carried on and then
another node is added until all the set has been processed. Yet for obtaining the areas
of the second order Voronoi cells, we will assume that the starting point already is a
Delaunay triangulation.

At each step, a node x is inserted into the triangulation; a search is performed on
a triangle-by-triangle basis to determine the natural neighbors of x using the empty

circumcircle criterion.

For each of the n neighboring triangles ¢ (with circumcenter v), a new set of trian-
gles {t1,ts,t3} converging at x is created. The circumcenters (¢, (), cz(x) and c3(x))
of the new sets are obtained and second subset of triangles is formed from the newly
calculated points and v. This triangles are: t(cy(x), c3(x), v) t(cs(x), cs(x),v) and
t(ci(x), ca(x), v). Theareas of this triangles and its derivatives are calculated by Egs. (2.18)
and (2.19) respectively. This are partial results which can be written as a;; () and cv¢ . (),
wherei = 1,2,...,nand m = 1,2. Up to this point, care must be taken to maintain
the node numbering always counterclockwise in each triangle in order to obtain ar-
eas properly signed. Note that some areas must not contribute to the total result, and
those areas will be negative, but that is accounted for.

The partial results for each ¢ are added on accumulator variables 5;(x) and j; . (x).
Finally the area of the second order Voronoi cell A;(x) and its derivatives A, ,,(x) are
the values stored in the accumulator after the pass for all neighbor triangles.

The area of the first order Voronoi cell and its derivative are obtained as

Alm) =) A=), (2.26)
i=1

Ap(@) =Y Aim() (2.27)
I=1

and the shape functions are obtained as per Eq. (2.4).

Regarding the non-sibsonian shape functions in 2, the steps involving the area cal-
culations can be skipped. Having the the circumcenters coordinates ¢;(x) it is possible
to obtain all the necessary distances to calculate the nS shape functions.

This algorithm fails if the inserted point falls on a Delaunay edge, as one of the tri-
angles formed will have a non-unique circumcenter. In any case, since we only insert
integration points —which are internal to the triangles—this problem will not appear.
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Figure 2.8. Starting point for the Bowyer-Watson algorithm.
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Figure 2.9. Natural neighbor search.
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/ .C24x \

Figure 2.10. Triangles ¢; and their circumcenters c;(x).
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Figure 2.11. Subset of triangles(t(c;(x), ¢;(x), v)) and their areas ;.
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Figure 2.12. The sum of a;; over all ;s yields the area of the second order Voronoi cells.
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2.4.3 Laserre's Algorithm

A different approach is to directly obtain the areas of the Voronoi cells without resort-
ing to the duality with the Delaunay triangulation. In their implementation, Braun and
Sambridge (1995) made use of the Lasserre algorithm (Lasserre, 1983) for obtaining the
convex polygon areas (polyhedra volumes in )t3) that define natural neighbor coordi-
nates. This algorithm works in a recursive way, presenting the polytope volume in R"
as a function of volumes of polytopes in 3" 1.

The main virtues of this method is that is defined for " and is independent on
the relative position between the nodes and the evaluation point. However, has been
found to be approximately twice as computationally expensive as the Bowyer-Watson
algorithm.

The algorithm starts by defining the volume of a convex polytope as the inequality
{c|Az < b} (2.28)

where x represents a point in ", A is a (m,n) matrix and b is a column vector of size
m. Here n is the dimension on which the polytope is defined and m is the number of
non-redundant constraints that define the volume. This enclosed volume is denoted
as

V(n, A,b) (2.29)

The i-th face of the polytope is defined as
with a; representing the i-th column of A.
The polytope volume will be obtained as:

V(n, A,b) —ég Vi(n —i, A, b) (2.31)

where a is the evaluation point, H; is the hyperplane defined by the i-th constrain.
d(a, H;) is the distance from a to the hyperplane H .

We now eliminate the t-th variable by solving a;x = b;. The reduced matrix ob-
tained from A after the elimination is denoted by Am . Likewise, the reduced b vector
will be called b, and a;, is the t-th term of a;. With this notation, the formula for the

volume calculation is

I~ b -
V(n,A,b) = - > m\/ﬁ(n —1,A;,,b) (2.32)
=0
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where V, is the volume of the polytope in the (n — 1)-dimenson. In %, V;; would be
the area of the facets of the polyhedron, and in ®? would be the length of the edges of
the polygon. In their work, Braun and Sambridge Braun and Sambridge (1995) chose ¢
such that |a; | is the maximum value of a;.

2.5 Imposition of Essential Boundary Condi-

tions

The NEM shape functions will present different approximation properties depending
on the type of boundaries present. Sukumar (1998), Sukumar et al. (2001) demon-
strated that Sibson and non-Sibsonian shape functions have a linear behavior on con-
vex boundaries, being able to reproduce a linear displacement field. This means that
in those contours the essential boundary conditions can be imposed exactly as in finite

elements.

In the case of non-convex boundaries, the Sibson interpolant does not comply with
this condition. The natural coordinates at the contour will have non-zero contributions
from the interior nodes. This contribution will cause the loss of the linear consistency.
According to Sukumar (1998) the error incurred by the use of this interpolant may be of
the order of 2 per cent, and can be mitigated by a higher nodal density on that bound-
ary.

It was believed that this problem is not present when using the Laplace shape func-
tions (Sukumar et al., 2001). Thus by choosing non-Sibsonian interpolants, essential
boundary conditions could be imposed directly, in the same way as in the FEM. How-
ever, Cueto et al. (2003) demonstrated that this is not the case and proposed a differ-
ent approach, discussed in the next section, which allows the proper imposition of the
aforementioned conditions.

2.6 «-shape Based Natural Elements

A slight modification of the way in which the Natural Neighbour interpolant is built
was proposed to achieve linear interpolation also over non-convex boundaries (Cueto,
2001)(Cueto et al., 2000). This modification was based on the concept of a-shapes,
which will be exposed in more detail on Chapter 4. These are a generalization of the
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concept of the convex hull of a cloud of points and are widely used in the field of sci-
entific visualization and computational geometry to give a shape to a set of points.

Itis a polytope thatis not necessarily convex and that can be triangulated by a subset
of the Delaunay triangulation, thereby maintaining the empty circumcircle criterion.
It has been demonstrated (Cueto, 2001) how the construction of the interpolant over
an appropriate a-shape of the domain gives rise to an exact imposition of essential
boundary conditions over any kind of domain (convex or not.) In addition, it enables
us to track the flow front position accurately.

This variant of the NEM is based on the fact that if a pair of nodes are neighbors, thew
will share a Voronoi cell frontier an also will define the edge of a Delaunay triangle. The
a-shape restricts this condition to all nodes which are apart by a distance defined by a
parameter c.

The shape functions are build based on a modified definition of the Voronoi cell:
T, ={x € R*/d(zx,s;) < d(z,s;) Nor € Co(S) Vi #i} (2.33)

where o7 is a k-simplex formed by nodes s;,s; and any other node of the set S. C,,(.5)
is the set of all triangles of DT'(.S') whose circumradius is less than a given «. The shape
functions are obtained in the traditional way, either with Eq. (2.3) or (2.7). This functions
will have linear consistency over all the contour, be it convex or not (Cueto et al., 2000).

2.7 High-Order NEM

Precisely the fact that the NEM possesses linear consistency and C° continuity only is
perhaps on the basis of its limited popularity, if compared with other meshless meth-
ods, which easily achieve higher-order consistency and even C* continuity. Only one
attempt has been made to overcome this difficulty, up to our knowledge, by applying
a quadratic consistency and C! interpolant based on natural neighbours that, however,
does not seem to posses any further generalization (Sukumar and Moran, 1999). This
interpolant can be used, for instance, for solving fourth-order partial differential equa-
tions such as those arising from the theory of Kirchhoff plate bending.

An attempt to overcome these NEM limitations was performed by Gonzilez et al.
(2008), by going back to the foundations of B-splines and how by linear combinations
of linear interpolants, higher-order curves can be obtained. B-spline curves can be ob-
tained by means of the so-called de Boor's algorithm (Farin, 2002). For the surface case,
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tensor product B-spline surfaces were initially proposed in de Boor (1962). An exten-
sive review of this topic can be found in Farin (2002, Ch. 16). Tensor product B-spline
surfaces are, however, very rigid. For instance, no tensor product surface can have the
connectivity of a double torus. This algorithm is here generalized, without the use of
tensor products, to higher dimensions. This is done by employing different natural
neighbour interpolation schemes.

Recently, the use of NURBS or B-splines as basis functions for a Finite Element-like
simulation has been studied (Hughes et al., 2005). The main objective is clear: B-splines
(or, more properly, NURBS) are the standard for CAD systems, and they reproduce the
geometry of the domain exactly, which is not the case in Finite Element models. The
use of the same approximation for both the construction of the geometry and the
approximation of the essential field of the problem obviously simplifies the burden-
some mesh generation process. Other interesting properties of NURBS like the so-
called "variation diminishing" (Farin, 2002) property also apply. This means that, unlike
high-order polynomials, B-splines or NURBS do not show the well-known Gibbs effect
(Gibbs, 1898).

However, it remains unclear whether the use of B-splines-like finite elements leads
to remeshing problems when large distortions of the mesh occur. Tensor-product B-
splines, as mentioned before, are quite rigid. In addition, fulfillment of (inhomoge-
neous) essential (Dirichlet) boundary conditions should be done typically in an approx-
imate sense, or by imposing them weakly. This same problem is common for many
meshless methods.

Another aspect deserves some comments at this point. Stability restrictions im-
posed by the LBB condition (Babuska, 1973) when simulating incompressible media
makes it interesting to have at hand high-order approximations that could help in ver-
ifying the LBB condition. As it is well-known, the higher the approximation is for dis-
placements (or velocities) and lower it is for pressure, the more stable is the resulting
approximation. Thus, the development of high-order natural elements is interesting
also from the point of view of the problem here tackled, that of free-surface flow of
incompressible fluids.

2.7.1 Revisiting the de Boor's algorithm for B-splines

The de Casteljau algorithm for Bézier curves states that such curves can be obtained
by successive application of linear interpolation (Farin, 2002), i.e., given some points
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bo,bi,...,b, € R3andt € R, the construction
bi (t) = (1 — )b~ (t) + tbi | () with ¢ o : (2.34)

where b? = b;, gives the desired Bézier curve.

The de Boor's algorithm generalizes this algorithm by introducing a parametric space,
defined by an arbitrary sequence of knots ug, u1, us, u3. A quadratic Bézier curve can
thus be seen as parametrized by the series 0, 0, 1, 1, for instance. The quadratic blossom
b[u, u] can then be written as (see Fig. 2.13)

blu,u] = 2= bfur,u] + - blu, vy
Uo — U7 Uy — Uy
= s — U ( Y2 7 4 b[uo, Ul] -+ 4% b[ul,u2]> (235)
Uy — UL \ U2 — Up Uz — Up
uUu—u us —u uUu—u
+ ! ( 3 b[ul, UQ] + ! b[UQ, U3])
U — Uq Uz — Uy us — Uy

blu,,u,]

blu,u,] Blua]
u,u,

Figure 2.13. Schematic representation of the de Boor's algorithm.

The key aspect of the de Boor's algorithm is that it expresses u in terms of intervals of
growing size. B-spline curves consist of a union of polynomial curve segments. Follow-
ing the notation in Farin (2002), let U be an interval [u;, u;, 1] in the sequence of knots.
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Then, there will be an ordered sequence of knots U/, each containing u; or w41, such
that U consists of r + 1 successive knots and u; is the (r — i)-th element of U

A degree n curve segment corresponding to the interval U is then given by n + 1

r

control points d;. Each intermediate control polygon leg d;, d;_ ; can then be viewed

as an affine image of U["*'. The point d; ™! is the image of u under such an affine
map.

It is well-known (Farin, 2002) that a non-parametric B-spline function d(u) can be
written as a parametric curve with control points

and L = K — n+ 1, with K the number of knots and n the degree of the curve. In this
case, the points &; are called Greville abscissae and can be determined as:

1
é}- = —(ul + ...+ ui+n,1)
n
For n = 2 it is straightforward to prove that the Greville abscissae coincide with the

Voronoi vertices of the knot sequence.

Working in non-parametric form, and using the equivalence between Sibson and
linear interpolation in one dimension, this simple algorithm can alternatively be ob-
tained by applying Natural Neighbour (Sibson) interpolation over segments U in which
we eliminate r — 1 of the closest neighbours of the point u:

blu, u] = ¢1(u)bluy, u] + Pa(u)blu, us)
= ¢1(u) ((pg(u)b[uo, uy] + @3 (u)bluy, us]) (2.36)
+ ¢a(u) (7 (u)bluy, ug] + 5 (u)blus, us))
where ¢;(u) represent the natural neighbour coordinates of point u with respect to
knot I and ¢ (u) represent the natural neighbour coordinates of point u with respect

toknot /, but computed overaninterval U/, i.e., by eliminating r— 1 natural neighbours
of the interval. The notation used is shown in Fig. 2.14.

2.7.2 B-splinesurfaces constructed over natural neighbor interpo-

lation

The de Boor's algorithm thus presented can be extended to higher-dimensional cases
as follows. In the following development we employ Sibson coordinates, although
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blu,,u,]

blu,u,]

bluyu] blu, ;]

o(U)  (U)

Figure 2.14. Schematic representation of the de Boor's algorithm employing natural
neighbours. Between parentheses, the domain of each function.

the proposed algorithm can also be applied to Laplace interpolants, as will be shown
later. Consider again, for simplicity, a set of nodes N = {x,zs,...,zy} C R?and
a quadratic surface (the extension to three or higher dimensions and higher-order sur-
faces is straightforward). From now on, we will work in non-parametric form, since it is
extremely hard to find the two-dimensional counterparts of the intervals U/ for irreg-
ularly scattered sites. Then, we define a new class of surfaces constructed in the way:

S(%) = ZZN]J($)dIJ, with dIJ = dJ_[ (237)

I=1 J=1

where n represents the number of neighbors of the point x. In addition,

Nij(x) = ¢r(z)p](z) (2.38)
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Figure 2.15. Schematic representation of the proposed algorithm. (a) Set of sites
{I,...,N}. We consider an evaluation point x, whose neighbours are depicted as
filled circles. The support of the function ¢; is highlighted. (b) After eliminating site
I, the support of function ¢/ is highlighted. Note the new set of neighbouring sites,
{J,K,L,M}.

and d;; represent the control points in B-spline terminology (i.e., the degrees of free-
dom). ¢;(x) represents the natural neighbor (Sibson) coordinate of the point x with
respect to site 1. Functions ¢’ () represent the natural neighbor coordinates of point
a with respect to site .J, in the original cloud of points, but without the /-th site (see Fig.
2.15),in the sense described by the previous section. Finally, n! is the number of natural
neighbors of the point & when we eliminate the site 7, similarly to the de Boor's algo-
rithm. Note that the number of degrees of freedom of the proposed approximation is
much less than M2 /2, since the sums in Eq. (2.37) extend only over natural neighbors

of each node.

The typical shape of the functions N;; described before is shown in Fig. 2.16 for a
general set of irregularly distributed sites.

Among the properties that can be cited about this type of approximation, we can
cite the following (see Gonzalez et al. (2008) for more details):

e Positiveness.
e They form a partition of unity.

e They span the space of linear and quadratic polynomials (and, by recursive appli-
cation of the algorithm, polynomials of arbitrary degree).
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Figure 2.16. Shape of a typical function N;; for a set of irregularly distributed sites.

e Continuity is C°~!, where p stands for the order of consistency, except at lines join-
ing neighboring nodes, where they are C°.

e Very much like B-splines, we can make the surfaces to be interpolant by repeating

knots.

With this in mind, we face the challenge of simulating complex free-surface flows in
the following chapter. In it, a thoroughly description of the techniques employed will
be made, with particular emphasis in the development of a novel shape constructor
algorithm that fits very well into the needs of this particular problem.
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Chapter 3

An Updated Lagrangian
Approach to Fluid Dynamics

In this chapter we will present the fluid formulation introduced in Gonzélez (2004) and
that will be subsequently enhanced in this thesis. We have adopted an updated La-
grangian fluid model which relies in turn on the method of characteristics to fully ex-
ploit the meshless characteristics of the Natural Element Method. We aim at simulating
fluid flows with moving free surfaces where the fluid domain topology might be heavily
altered along the time history of the process. This scenario posses two main obstacles
to the use of traditional simulation methods, namely: we need to know the position of
the boundaries at each time instant; and the fluid particles inside the domain move at
different speeds and in different directions, which makes it difficult to know how their
connectivity will evolve in time.

The way in which the fluid is represented by the computational method —be it by
particles or elements—is heavily determined by the kinematic description of the move-
ment adopted. This selection may either hamper or enable the solution of certain prob-
lems.

3.1 Kinematic Description of Fluid Flows

In continuum mechanics, two coordinate systems are used to describe a particle's move-
ment. The first is the material frame, which is fixed to the particles place at all times and

is defined by the basis vectors I,. .., I, in a n-dimensional space. The second refer-

ence frame, defined by vectors i4, . . . , 2, , is shifted and could be interpreted as a point

where an observer is located watching all the particles that go by. This is called the

spatial frame of reference (Donea and Huerta, 2003).
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Let us consider a travelling material particle P in R". At the beginning of its move-
ment (initial configuration), it can be localized by its position vector

X=XI,+...+X,I, (3.1

At a later time, in the “deformed configuration’, the particle has moved to a new
position whose spatial coordinates could be defined as

T =218+ ...+ Tply (3.2)

It is possible to define an application ¢ to map the reference configuration Rx to
the spatial configuration R, such that

QY Rx X [to,t] — R, X [to,t] (3.3)
(X, t) = (X, 1) = (z,t) (3.4)

and thus, the relationship between the material and spatial coordinates is

r=x(X,t), t=t (3.5)

According to the selected frame, the methods for describing the movement may be
classified in Eulerian, Lagrangian and Arbitrary Lagrangian-Eulerian (ALE).

3.1.1 Eulerian Description

Probably the most common approach for the fluid simulation is the Eulerian approach.
In these methods a set of spatial nodes is used to “observe" the evolution of the fluid
domain. Since there is no mesh distortion, the problems related to particles moving
in a very heterogeneous way are easily overcome. These techniques are specially well
suited to address situations on which the boundaries are fixed, even if they are inflow
or outflow boundaries. Also, these formulations are able to cope with large distortions
in the fluid motion, indispensable quality in the treatment of turbulent flows. On the
other hand, following moving surfaces can prove to be very challenging, requiring extra
steps in order to be able locate the position of the fronts and adding difficulty to prop-
erly impose boundary conditions. One example of the ways to treat this problem are
the Volume of fluid (VoF) techniques, see Duchemin et al. (2002) and references therein,
which rely on the employ of an implicit function called presence of fluid function, that
evaluates to one in the fluid region and zero at the empty zones. This function is ad-
vected with the velocity of the fluid throughout the computation. Other techniques,
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N

Figure 3.1. Eulerian approach. () Numerical nodes. /A Material particles.

=

known as tracking methods (Crank, 1987) rely on the use of markers, whose position is
updated with the just computed fluid velocity field.

Another effect of the Eulerian kinematic approach is that because of the relative
motion between the material particles and the spatial nodes, convective terms will ap-
pear in the equations, leading some to numerical difficulties. Still, the wide use of this
method have spurred the development of techniques that addressed the mentioned
shortcomings as the Volume-of-Fluid or Level-set methods (Sethian, 1999) for follow-
ing of free surfaces or several upwinding techniques for convection problems (Donea
and Huerta, 2003).

3.1.2 Lagrangian Description

In Lagrangian methods, the computational domain follows the material particles, thus
the mesh or cloud of nodes moves and deforms accordingly to the fluid movement.
These techniques allow moving boundary tracking explicitly, not needing any inter-
polation technique to locate free surfaces or to impose boundary conditions. These
formulations are the standard in solid finite element models, where not-so-large de-
formations are common and these techniques are very efficient. In time-dependent
problems, as nodal position changes, the quality of the mesh might degrade, mak-
ing it necessary to regenerate the grid in order to maintain accuracy. Depending on
the application, remeshing can be performed automatically, but there are cases where
this is not a possibility and manual mesh creation is very time consuming. When large
deformations appear, this problem accentuates. The discussed problem has posed a
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N

Figure 3.2. Lagrangian approach. () Numerical nodes. /A Material particles

limitation for the application of Lagrangian formulations in fluid flow simulations even
though it is not inherent to the approach but to the numerical method.

As meshless methods begun to appear, the interest in Lagrangian approaches resur-
faced. Some early examples of this methods can be found in Belytschko et al. (1994)
and Nayroles et al. (1992). More recent works on fluid simulations include for instance
an application of the Meshless-Local Petrov-Galerkin method (Atluri et al., 1999) to non-
linear water-wave problems or Idelsohn et al. (2004) for an application of the particle fi-
nite element method to free-surface problems. As discussed in the last chapter, each of
this methods present problems of their own, but open the door to feasible Lagrangian
fluid simulations. In his thesis, Gonzalez (2004) introduced a fluid model which tackles
some of the problems posed by the previous methods.

3.1.3 Arbitrary Lagrangian-Eulerian (ALE)

The Arbitrary Lagrangian-Eulerian approach appeared in the ranks of the finite volume
and finite differences methods as a means to take advantage of the Eulerian capabilities
for treating large motions of the particles while at the same time being able to track
moving boundaries in a Lagrangian way. In these methods, the numerical grid is not
tied to the material particles nor is it fixed to any specific spatial point. Instead the mesh
moves in a prescribed way in order to control its deformation in a new domain called
a referential configuration. This allows us to follow the shape of the material domain
while maintaining the best possible mesh to perform the calculations. See Donea and
Huerta (2003) for a historical review of the development of these methods. These are
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Figure 3.3. ALE approach. () Numerical nodes. /A Material particles

specially useful in modelling large deformation in solids, free surface fluid flows and
fluid-structure interaction.

Both Lagrangian and Eulerian approaches can be obtained as specific cases of the
ALE formulation. In one case, if the mesh motion equals the material domain motion,
the Lagrangian approach is obtained. If, on the opposite case, the referential configu-
ration stays still, the kinematic description is Eulerian. The main drawback of the ALE
approachis the need to determine a suitable mesh velocity. This can be done manually,
although is a very difficult process for any but the simplest cases of motion. To avoid
this, automatic mesh update strategies have been developed, like mesh regularization,
to avoid as mush as possible the mesh distortion; or mesh adaptation, to focus on areas
of steep gradients.

3.1.4 Material and Spatial Time Derivatives

In order to describe the influence of the chosen frame of reference on time derivatives
we will follow Donea and Huerta (2003) and define two physical scalar quantities f(x, t)
and f**(X,t) on the spatial and material domains respectively. In this case, the aster-
isks denote that both quantities are different. For a moving particle, they are related
by:

FHXL ) = f(p(X,0),1) o fT=foqp.

The gradient of this expression can be obtained

af O (40 2%
(X, 1) Az, t) (X, t)

(X ,t) = (X,1)
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which in its matrix form is

af=af=\ _[(of of\ (& w
<8X m)‘(szE) o7 1

After matrix multiplication, we arrive at the following equations

Of*\ _ (9f\ (9=

(%% )= (5) (%) 39)
of« _of of
o ot oz’ (3.7)

on which the relationship between the material and spatial derivatives is expressed.

This equations indicate that the physical quantity variation in time for a given material
particle equals its local variation plus some quantity related to the relative movement
between the material and spatial frames of reference, that is, a convection term. For
the sake of notation, we will write

g—{ng—{m—i—?wVf or %:g—{—i—’v'Vf (3.8)
where
d 0
@ o,
is called the material time derivative and
9 0
o ),

is the spatial time derivative.

Another useful relation between material and spatial time derivatives is the Reynolds
transport equation. Assuming the quantity f can be represented by a smooth motion
over an arbitrary control volume, we arrive at

4 flx,t)dV = / Mdv + / f(z,t)v - ndS (3.9)
dt Jy, =y, Ot =5
Where V, and S, represent the control volume and its surface, and subscript ¢ refer to

the domain configuration at time t.

3.2 Governing Equations

In this section, the conservation equations are developed to arrive at the Navier-Stokes
equations. We consider here the flow of an incompressible viscous fluid. In this kind of
problems, the non linear convective terms mentioned in the last sections are usually a
source of numerical problems. Since a Lagrangian scheme is employed in our method,
these terms will not appear in the equations, bypassing those difficulties.
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3.2.1 Conservation Equations

For the development of the governing equations, we consider, following Donea and
Huerta (2003) closely, a fluid occupying a region €2 in 12 or 3, although in general we
will say it occupies a volume V. The fluid presents a density p and a dynamic viscosity

73
Mass Conservation

The conservation of mass through time in a given volume, assuming no mass is added
or destroyed, is given by

dM  d
_ AV — 3.10
it dt /th V=0 (3.10)
By introducing Eq. (3.9), we obtain
dM dp dp
_ [ 9 . — ap : — 0. A1
o g ath—l— /St pv - ndS /w (8t +V (pv)) dV =0 (3.11)
which holds for any V;. This means that
dp
— . = 3.12
BT +V . (pv) =0 (3.12)

for all fluid particles. This is called the continuity equation and can also be expressed
as
dp

it v = 3.13
dt—l—pV v=20 (3.13)

Momentum Conservation

Now, let we assume that the fluid particles are subjected to tensional state o and dis-
tributed body forces pb. The linear momentum of the body is defined as

P(t) —/pvdV (3.14)
v

The linear momentum conservation principle states that the time variance of linear
momentum equals the sum of all forces acting on the body, that is

d d
L pwdv = / v = /0' - ndS +/ pbdV (3.15)
This integral relation holds for all material particles, and it is possible to write
dv
— = pb . 3.16
poy = pb+ V.o, (3.16)
The last equation is equivalent to
d d
pd—$+p(v'V)v:pb+V~0' or dL::pb—l—V'(a—i-pfv@v). (3.17)
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3.2.2 Constitutive equations for a Newtonian fluid

Fluids are characterized for a continuous deformation under shear stresses and for as
long as the stresses act. As a by-product of this property, resting fluids cannot undergo
any shear stress at all. This is true for any arbitrary point in this fluid and also implies
that the stress vector on any surface is proportional to the normal at that point but
independent of its direction. We have then that

oin; = —pn; = 0;; = —pdj;

where the proportionality constant p is called hydrostatic pressure. This shows that a
fluid at rest is compressive in every direction and that p is the mean of the normal stress

For fluid in motion, the shear stresses are non zero and we get
0ij = —POij + Tij (3.18)

where 7;; is the viscous stress tensor and appears only as long as the fluid is moving. In
this case the p is called thermodynamic pressure and is no longer one third of o;;

For developing the fluid constitutive equation, we must satisfy both rest and mo-
tion conditions. The term 7;; must be a function of the deformation tensor, and in the
Newtonian case, this relation is linear. The expression for the viscous stress tensor is

81)1' 8vj
Tis H (895] + (9:171) ( )
which leads to the constitutive equation
dv;  0v;
0ij = —pOij + i < o, * axji ) = —Pdij + 20,5 (3.20)
or
o= —pl +2uV°v (3.21)

which is known as Stokes' law.

3.2.3 Navier-Stokes Equations

The laminar flow of fluids subject to external and body forces can be described by solv-
ing the conservation equations coupled with a given constitutive relationship. This
set of equations along with some boundary conditions are collectively known as the
Navier-Stokes equations and they describe the motion in terms of particle velocities
rather than displacements.
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To formally enunciate the Navier-Stokes problem we will consider a closed finite
fluid domain Q in R™ with n = 2 or 3 and a closed and sufficiently regular boundary
' = 09). The time-dependent flow of an incompressible viscous fluid must follow

plvi+(v-V)v)=V.-o+pb inQx(0,T), (3.22)
V-v=0 inQx(0,7T) (3.23)

v(x,t) =vp(x,t), xe€lp, te(0,T) (3.24)
n-o(x,t)=txt), xecly, te(0,T) (3.25)

Eg. (3.23) isthe incompressibility condition and implies that the elements of the fluid
do not suffer any change in density when subjected to pressure changes.

3.3 The Method of Characteristics

The aforementioned equations define a convection problem that describe non-linear
momentum transport phenomena. This is the standard Eulerian formulation for fluid
mechanics. One of the methods for solving this equations is to convert them to an
equivalent system in a Lagrangian reference frame. This is accomplished with the use
of the characteristics lines concept which will be explained first by the use of a simpler
linear hyperbolic PDE, following again Donea and Huerta (2003, Ch. 3). The strong form
of this problem is

ur + V- f(u) = s(x,t) inQx]0,T7, (3.26)
u(x,0) = up(x) on Qf4—o, (3.27)
u=wup onTpx]0,T], (3.28)

—f-mn=h onTxx]0,T]. (3.29)

here u (the solution) and s (a source term) are functions of t and x, and the Dirichlet and
Neumann BCs are applied only in the inflow part of the boundary. The flux function is
defined as

fu) =au (3.30)

where a is the convection velocity. In this case, since the problem is linear, a is inde-
pendent of u and represents the velocity at which the solution is propagated in time
and space.
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3.3.1 Characteristic Lines

After rewriting the Eq. (3.26) by using the convection velocity, we get
U+ ay, = S (3.31)

and from it, the total derivative of « in the direction of slope dz/dt = a equals s. This
direction is called characteristic direction or simply characteristic. To show the transport
of the solution along these lines, we follow the development explained in Donea and
Huerta (2003), and take the homogeneous form of the above equation. First let us per-
form the following change of variables

E=x—at, n=x+at

and the transformation
9 B
Uy = a_Z Uy 1 1 Uy,

2au, =0

SO we arrive at

which is solved by any function such as
u=f(§) = f(z—at),

By evaluating f att — At and x — aAt we observe that the solution is the same than
when evaluating at ¢ and x. This shows that the solution propagates the spatial profile
of u along a line of slope a. Thus, we can backtrace the solution at any point to one
of known value at ¢, or to the influx boundary, where the value of the solution is also
known or can be determined via BC. Since the equation is linear, the characteristic lines
are fixedinthe (x, t) plane, regardless of the value of u(x, ). If the equation coefficients
are constant, the characteristics are straight lines. In case a depends on u, the equation

is non-linear.

3.3.2 Solution Strategies Based on Characteristic Lines

As mentioned in the previous section, to resolve the transport problem, one can trans-
form the Eulerian equations to its Lagrangian equivalent by using the characteristic
lines concept. This is performed by replacing the material derivative in Eq. (3.26) with
a total time derivative in the Lagrangian sense.
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Let us say we can determine trajectory of a material particle traversing a spatial point
of coordinates x at time 7. This trajectory is the characteristic line X = X (x, 7;7) and

satisfies
e r:0) = a(X (1)), 332
X(x,m;7) = . (3.33)

This equation is typically non-linear, but solving this problem allows to reduce the linear
unsteady convection equation to an ordinary differential equation.

Along the characteristic X the material derivative

du  Ou
—=Z+a- 34
7 (‘3t+a Vu, (3.34)

reduces to a simple time derivative.

It is possible now to transform the original problem into its characteristic form. The
characteristic line that passes at space-time point (x, 7) will be denoted as X (¢), the
value of the transported quantity (the solution) along the that line will be U(t) :=
w(X (x,7;t),t) and the source term S(t) = s(X (t),t). The problem is written now
as

aUu
— =5(t 3.35
subject to the initial condition
U(tr) = UD(XF, tF) (336)

wheretr is the time at which the characteristic line X intersects the Dirichlet boundary.
The intersection is denoted by X = X (x, 7; tr).

Solving this equation for time 7, we have two situations: if the characteristic line
intersects the Dirichlet boundary the solutions is

U(CB,T) = UD(XF,tF) + /T S(t)dt, (337)

or, .
u(x, 7) = ug(X(0)) +/ S(t)dt, (3.38)

if the characteristic line passed through a point of known solution at ¢ = 0.

We will treat now convection problems with a variable convection field a(x, t). As
suggested before, in these problems the solution is constant along characteristic lines.
This fact is used either in semi-Lagrangian or in Lagrange-Galerkin approaches to solve
the transport equations.
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The semi-Lagrangian methods are very well suited to treat unsteady convection
problems. They are extensively used in the field of meteorological forecasting and in
environmental flows in non uniform cartesian meshes. This is due to the excellent ac-
curacy and efficiency yield in problems that exhibit a low to medium wave number. In
these methods, the characteristic lines—Eq. (3.32)—over the interval ]¢, t" | are ap-
proximated by a mid-point rule. Then, the characteristic form of Eq. (3.35) is solved
to obtain the values at ¢"*! of the solution u. This method implies evaluating u"(x)
and s"(x) at points different from the nodes, which is done by interpolating the nodal

values.

3.4 Lagrange-Galerkin Methods Based on Char-

acteristic Lines

The Lagrange-Galerkin methods are similar to the semi-Lagrangian but instead of dif-
ferentiating along the characteristic lines, these methods employ a spatial discretiza-
tion based on Galerkin projections.

Two different approaches fall in the Lagrange-Galerkin type of methods. The first
consists in directly integrating along the characteristics. For this, and assuming the
convection velocity a(x, t) is known, the characteristic lines for all nodes are calculated
and then the integrals in Egs. (3.37) and (3.38) are solved via a Galerkin method.

The second approach consists in the use of a variational formulation, which is the
method employed in this work. Briefly put, the Navier-Stokes problem is recast into its
weak form and then solved by integrating in space and time along the characteristic
lines.

3.4.1 Weak Formulation

For the presentation of the weak formulation we will consider now the full problem
that is being solved instead of the simpler equations used until know. To recall, we are
treating with the dynamic response of incompressible viscous fluids described by

ov dv
V~a+pb—p(a+vV«v>—p$, (3.39)
V-v=0, (3.40)
o=—pl+2uNV°v=—pl+s (3.41)
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After introducing the constitutive equation, Eq. (3.41), in the momentum conserva-
tion equation, Eq. (3.39), and multiplying for a suitable test function, we obtain

/2;LD : D*dQ—/pI:D*dQ: —/pbv*dQ+/ Cal;t’v*dg (3.42)
Q Q
/ V-vp*dQ =0 (3.43)
Q

where D = V*v represents the strain rate tensor and b are the body forces. The test
functions are v* and p* which correspond to the different essential variables, namely:
the velocity and pressure.

3.4.2 Time Discretization

The convective terms of Eq. (3.17) were replaced by a Lagrangian temporal derivative
term, which is a material derivative along the fluid particle trajectories. This term, the
second in the r.h.s. of Eq. (3.42) gathers the inertial effects of the flow. Using a standard
first order temporal discretization, and knowing the solution at time t"~* = (n — 1) At,
we can calculate the solution at t" = nAt by means of

dv v(x) — v H X (1))
~ v dQ) = *dQ A4

In this equation X(t) represents the position at time ¢ along the characteristic line that
passes through point  at time ", so X (t"~!) is the position the material particle occu-
pied during the last time step. For an even simpler notation, we will denote this point
as X ,,_1. Using this notation the particle position can be written as

=X, 1+v" (X, 1)At (3.45)

This was the temporal discretization employed in Gonzalez (2004). With it, the weak
form of the Navier-Stokes equations is

2D : D*dS) —/pI : D*d) — / p — —/pbv*dQ _ / p————dQ,

(3.46)

/ V- -opdQ =0 (3.47)
Q

When a more accurate scheme is needed, it is possible to employ a second order
time discretization. In Boukir et al. (1997) it is shown that a higher order time discretiza-
tion not only increases accuracy but also relaxes the spatial-temporal restrictions im-
posed by the CFL conditions. This is also the experience obtained in the GEMM group
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with the usage of the first-order in time characteristic method developed in Gonzalez
et al. (2007). This first-order scheme very often lead to numerical difficulties and lack of
convergence in finding the root of the characteristic line that made it non suitable for
fluid-structure interaction problems. In this thesis a second-order in time approach is
suggested instead:

dv 3v(x) — 4o HX (1Y) + v (X (1772))
—v*dQ = *dQ 3.48
/Q Pa? /Q p SAL v'dQ),  (3.48)

leaving the weak form of the problem as

3 vv*
2uD:D*dQ—/pI:D*dQ—— P =
~ / Pbu*dQ) — 2 / PN / P (3.49)
Q o At 2 Jo At ’
/ V-op*dQ =0 (3.50)
Q

Please note that in the weak form equations, the past velocities have been written as
v"~* but they are still evaluated at points X ,,_;.

3.4.3 Algorithmiclssues

The most difficult terms to evaluate in Eq. (3.46) or Eq. (3.49) are those which refer to
the particle position at past times. The numerical integration of this terms depends on
the quadrature scheme employed. If we employ traditional Gauss-based quadratures
on the Delaunay triangles, it will be necessary to find the position at time t*~! (and at
t"~2) of the material particle now (at time ") occupying the position of the integration
point in question.

To explain this problem and the employed solution method, we will refer to the first
order time discretization, Eq. (3.46). The integration of the term in question is per-
formed according to

n—1,.% n—1/m=
/ pv Y dS) = va (Hk)v(gk)wk, (3.51)
Q k

where w;, represent the weight associated to integration point k. That point occupies
the position &, at the current time instant, and the characteristic line X (§,,t"; t) takes

the value E;, at " 1.

Two main difficulties need to be addressed: finding Z;, and evaluating v"~1(E},).
The later may be performed by interpolation between neighbouring nodes, given that
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the past nodal velocities are stored, which is fairly easy to assure. It is also necessary
to know which nodes were near E, so we will assume the nodal connectivity remains
constant within two subsequent time increments. Although this is known to be false,
in general, is a reasonable assumption for small time increments. It would be more
accurate to store and manipulate all the information regarding nodal connectivity for
past steps, but the possible gains do not compensate the computational costs in the
cases where that is even possible —closed codes could probably deny that possibility
at all. It can occur that some of the nodes neighbouring the integration point at time
t were not actually its neighbors at time t"~!, but this does not constitute a problem,
since the number of natural neighbours of a point is usually high (much more than
three), so the quality of the interpolation is thus guaranteed.

Regarding the search for =, we utilize a two-step iterative procedure. First we project
the integration point & backwards in time by

Ei = £ — 'Unil(Eifl)At, (352)

for the first iteration we interpolate the past velocities of the neighbouring nodes at ¢
to make the projection.

In the second step, we evaluate the velocity v"!(E;) calculate the projection in ¢"
of &;:

§ =E; + v (E)At (3.53)

Until £ ~ &,. Gonzdlez et al. (2007) reports convergence in two or three iterations
with an error of the order of 1078, see also Gonzalez (2004) .

When employing a second-order time discretization, the process will be performed
in a recursive way, solving for the t"~! and t"~2 time steps. In this case

E=E +v"(E)At (3.54)
E=E +v" (E)At +v"HE)At (3.55)

where ' = X (&, t";1"2).

If we employ some type of nodal integration, as in Chen et al. (2001) or Gonzélez
(2004), this procedures becomes unnecessary as we only need to store nodal velocities
at time steps t"~! and t" 2.

3.5 Numerical Examples

The first-order version of this formulation has been tested in Gonzalez (2004), Gonzalez
et al. (2007) and has shown a very good performance in the simulation of free surface
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Figure 3.4. Initial configuration for a 2-D sloshing problem.

flows. We refer the reader to these works for more details on the topic. However, it
has demonstrated problems, and very often lack of convergence in the characteristic
root finding, when applied to fluid-structure interaction problems. In this section we
will show the behavior of the higher-order time discretization in a situation where the
original formulation was unable to yield the appropriate results.

3.5.1 Sloshing

We will consider a two-dimensional sloshing problem with small deformations as pro-
posed by Ramaswamy (1990). The initial setting is shown in Fig. 3.4. In this problem
a stationary fluid in an unstable initial condition is set free to move under the gravity
influence alone. The fluid is contained in a 2-dimensional tank. The idea is to observe
the wave amplitude as the fluid motion stops. The initial surface elevation in given by

Mo = a cos ke(x +1/2) (3.56)

with
k, =nn/l (3.57)

where n represents the number of waves present in a tank of with [. a represents the

initial maximum amplitude measured from the mean level h.

An analytical solution was proposed by Prosperetti for certain parameters for which
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is possible to obtain a solution for the amplitude. In this case the solution is given by

4
olt) = g e (Vo) + 3 2 () capl (e - b e/,
0 i=1

T 82kt tw 22 — vk?
(3.58)
where ay is the initial amplitude, wy is the natural invicid frequency: w3 = gk + vk*;
the z; are the four roots of

22k 4R Pk i =0 (3.59)

and 7y = (23 — 2z1)(23 — 21)(24 — 21). Zo, Z3, Z, are obtained by a permutation of the

indices.

For the tank boundaries free-slip conditions were imposed along the walls. Note
there is no need to impose conditions on the free surface, nor to perform any special
boundary tracking of if.

For discretization purposes, a Sibson approximation was chosen for the velocity
field, whereas piece-wise constant (Thiessen) approximation was chosen for the pres-
sure. This kind of approximation is known not to fulfil the inf-sup condition associated
with the incompressibility condition, see Gonzélez et al. (2004), but nevertheless still
provides with stable results in the vast majority of cases, very rarely producing volu-
metric locking. This is the reason why an as much simple as possible approach has
been preferred.

In the shown case atime increment At = 0.005s was used and the Reynolds number
resulted to be of 3200. The gravity force had an acceleration of ¢ = 9.8m/s?. Fig.
3.5 shows the performance of the numerical solution (in red) compared against the
analytical solution (purple line), where a very good agreement can be appreciated.

In Fig. 3.6 both first-order and-second order schemes can be compared. itis possible
to see how the first order scheme was unable to replicate the diminishing amplitude.
At larger time increments the solution even diverges, while the second order scheme
was able to still give reliable results.

In Figs. 3.7 to 3.9 the velocity field for different time steps is shown. Vectors show
the direction of the velocity, while the colors show its magnitude. It can be appreciated
the deceleration as the fluid height on one side decreases until finally the velocity field
reverses.
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Figure 3.5. Evolution in time of the vertical displacement and velocities at both edges
of the free surface. The numerical solution is shown in red, in purple the analytic solu-

tion.
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Figure 3.6. Vertical displacement and velocities at both edges of the free surface. The
second-order solution is shown in blue, the first-order solution in red and the analytic
solution in a purple line.
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Figure 3.7. Velocity field at time ¢t = 0.005.
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Figure 3.8. Velocity field at time ¢t = 0.455.
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Figure 3.9. Velocity field at time ¢t = 1.205.
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3.6 Conclusions

In this chapter a second-order in time Natural Neighbour Lagrange-Galerkin scheme
has been introduced. The modified technique improves the quality of the obtained so-
lutions over the previous technique; even allowing to simulate problems that were not
previously possible. By incorporating more historical information about the previous
flow steps, it was possible to reduce error and reach better approximations. The im-
proved accuracy comes at a cost of increased resource requirements (CPU time, mem-
ory and storage) but nevertheless the increase is not in general excessive. The char-
acteristic root finding algorithm has shown to converge in a very reduced number of
iterations for the vast majority of cases tested. In the next chapters applications of the
recently developed scheme will be studied, with special emphasis in non-Newtonian
free-surface flows. But for the time being the free-surface detection algorithm is still to

be presented.
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Chapter 4

Free Surface Treatment

In this chapter we will introduce the concept of shape constructors and review their use.
Particular interest will be put in a-shape techniques for the simulation of free-surface
flow problems. These procedures, in conjunction with meshless methods, allow for the
simulation of such problems in an updated Lagrangian approach without the need for
an explicit description of the boundary of the domain. At each time step, the shape
of the domain is extracted automatically by the proposed method. However, it is well
know that standard a-shape techniques present some drawbacks. Thefirstis the choice
of the o parameter, related to the level of detail to which the domain is represented.
Also contact detection of free surfaces (auto-contact) or between the free surface and
a rigid boundary, for instance, is often detected with an error of the order O(h) —the
nodal spacing parameter—in the gap distance. A heuristic technique for the choice of
the o parameter is proposed and a novel methodology for an improved detection of
contact or merging flows is developed. The proposed technique is illustrated with the
help of some examples in solid and fluid mechanics.

One of the most cited capabilities of meshless methods is that of simulating large
deformation phenomena without degrading accuracy, as opposed to Finite Element
Methods, if no remeshing is performed. This opens the possibility of simulating free
surface flows, for instance, in an updated Lagrangian framework, and many works have
been devoted to this end in the last years. The interested reader can consult, for in-
stance, Martinez et al. (2004), Idelsohn et al. (2003), Idelsohn et al. (2004) or Gonzélez
et al. (2007), among others. These free surface problems are different in nature. The
reader may imagine readily waves breaking, but not only dynamical problems can be
solved with such a treatment. Many forming processes, for instance, can be also treated
in an updated Lagrangian setting advantageously, see Alfaro et al. (2006a) or Alfaro
et al. (2006b). Forging or casting and, obviously, mould filling, are among these pro-
cesses that present free or internal surfaces, like phase boundaries.
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In these problems, the obvious advantages of updated Lagrangian meshless meth-
ods over Eulerian or Arbitrary Lagrangian Eulerian (ALE) methods —in which an artifi-
cial velocity is added to the mesh—, for instance, are the absence of remeshing nor the
associated numerical diffusion, or the lack of convective terms in the formulations, that
consequently do not need for any stabilization. Note that connectivity between nodes
is computed by the different meshless methods in a process transparent to the user, as
the cloud of nodes evolves, convected by the material velocity.

A particularly elegant analysis of the difficulties associated to an Eulerian/Lagrangian
treatment of the equations arising from free surface flows can be found in Lewis et al.
(1997). Particularly noteworthy is the difficulty in the selection of mesh velocity in ALE
formulations, in which the mesh moves with a velocity different to the material one,
in order to minimize mesh distortion. Also, in Eulerian (fixed mesh) approaches, some
marking technique should be used in order to track the evolution of the free surface.
The Volume of Fluid (VoF) technique is an example of these techniques. In Lewis et al.
(1997) an interesting mixed Eulerian/updated Lagrangian technique is developed.

As stated before, meshless, or particle (those in which a mass is linked to each node)
methods have avoided the need to perform such complicated treatments. Neverthe-
less, new difficulties arise. For instance, the nodal connectivity in meshless methods
is not dictated by geometrical reasons (the best available triangle in terms of internal
angles, for instance, in FE mesh generation) but by algorithmic reasons. In the Element
Free Galerkin method (Belytschko et al., 1994), for instance, the connectivity is dictated
primarily by the need of a support (radius of the shape function) big enough to encom-
pass a sufficiently large number of nodes so as to make a matrix invertible. Remarkably,
this is not related to the geometry of domain. That reason precludes the nodal con-
nectivity to be used directly to determine the shape of the domain, as in FE methods.
Nothing similar to an isoparametric representation exists in meshless methods.

In addition, tracking the free surface with boundary markers can be implemented in
an elegant way in two dimensional problems —by employing a chain of markers and
checking self-intersections of the chain to detect merging flows—, as in Lewis et al.
(1997), for instance, but becomes much more intricate in tree dimensions.

If one tries to avoid any form of meshing, and only a set of nodes, with no connec-
tivity between them, is employed, it then becomes difficult to find the position of the
free surface. In other words, the geometry of the domain should be extracted in any
way from the current, updated, position of the nodes, that move, as stated before, with
the material velocity.
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To this end, various authors have employed Computational Geometry techniques.
In particular, Cueto et al. (2000) seems to have been the first in employing shape con-
structors —a-shapes in this case—techniques to extract the geometry of the domain.
Shape constructors are geometrical techniques that enable to find the shape of the do-
main at each time step. a-shapes (Edelsbrunner and Mucke, 1994) have been employed
in a number of previous works involving free surface flows, see for instance Idelsohn
et al. (2004), Idelsohn and Onate (2006), Martinez et al. (2004), Gonzalez et al. (2007) or
Birknes and Pedersen (2006), among others.

Also, different shape constructors have been proposed after a-shapes, see Cazals
et al. (2006), Amenta et al. (1998b), Amenta et al. (1998a), Giesen and John (2003) to
name a few. In order to extract the geometry of the domain, in general, these methods
propose a filtration of the Delaunay triangulation of the cloud of points. The Delaunay
triangulation is the base ingredient of these techniques, since it characterizes unequiv-
ocally the cloud of points —it is unique for each cloud. Different criteria are proposed
in order to select the triangles pertaining to the shape of the domain. The simplest one
is maybe the a-shape technique, that proposes to eliminate all triangles (or tetrahe-
dra) whose circumscribing radius (or, equivalently in finite element terminology, their
associated mesh size, h) is greater than a prescribed level of detail for the geometry,
a. a-shapes have generated a great interest on ““provable" shape reconstruction ar-
guments. We mean that, under certain, usually very weak, assumptions on the size of
the cloud of points, we obtain geometric and topologically accurate descriptions of the
domain under consideration.

One of the main drawbacks of the a-shape technique, as recognized in many works
(see, for instance, Cazals et al. (2006), Teichmann and Capps (1998)) is precisely the
choice of the a-value. In addition, a-shapes work well only for uniformly-distributed
cloud of points. This generally does not constitute a problem for stationary problems.
For initial-value problems, the choice of a uniform nodal sampling on the initial geom-
etry, in the absence of any information on the final geometry of the domain, seems to
be judicious.

The jump of the mentioned techniques to the field of Computational Mechanics has
posed additional difficulties. It is well-known that a-shapes are not able to detect holes
or cavities of size smaller than «, by definition. This implies that contact between differ-
ent surfaces is detected with an error O(«) =~ O(h), i.e., prior to the true expected con-
tact (Teichmann and Capps, 1998). Precisely in Teichmann and Capps (1998) a method
is proposed to alleviate this drawback, but it needs information on the normal of the
boundary at the sampling points. This is easy to achieve for three-dimensional scans
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of solids, for instance, but this kind of information is not readily available in the class of

simulations we are interested in.

In this chapter we present a technique, well suited for the numerical simulation of
free-surface flows, that avoids the before mentioned problems. The proposed tech-
niqueis based in performing an additional filtration to the Delaunay triangulation (tetra-
hedrization) of the cloud of points. After the a-filtration, we perform an additional fil-
tration based on the information provided by nodal velocities at the last converged
time step, and the gradient of velocities. The tests performed during this work have
provided excellent results over problems where traditional a-shapes have revealed de-
ficiencies.

4.1 Theory of a-shapes

As mentioned before, the idea of a-shapes in particular, and shape constructors in gen-
eral, is to extract the shape of a domain described only by a set of nodes. While an
easy task to the human eye, there is no formal definition of shape in the mathemati-
cal literature. a-shapes were first established by Edelsbrunner and co-workers Edels-
brunner et al. (1983) Edelsbrunner and Miicke (1994). Other shape constructors giving
homotopy-equivalent shapes have been recently proposed (Dey et al., 2003). Given a
finite set of points (that will be the nodes employed in the approximation of the prob-
lems described in the previous section), there exist a finite set of shapes described by
all the possible combination of points, edges, triangles and tetrahedra (if we consider
three-dimensional spaces) forming simplicial complexes.

A k-simplex o with 0 < k < 3 is defined as the convex hull of a subset 7" C N of
size | T' |= k + 1. A three-dimensional simplicial complex is a collection, C, of closed
k-simplexes (0 < k£ < 3) that satisfies:

(i) Ifor € Cthenop € CforeveryT' C T.

(i) The intersection of two simplexes in C is empty or is a face of both.

The particular complexes considered in the theory of a-shapes have vertices in the
node set and simplexes from the Delaunay triangulation of the set, which is unique,
as it is well known. The formal definition of the set of a-shapes of the cloud of nodes
follows.
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4.1.1 Definition of the family of a-shapes

a-shapes define a one-parameter family of shapes S,, (o being the parameter), ranging
from the ““coarsest" to the ““finest" level of detail. « can be seen, precisely, as a measure
of this level of detail.

Let IN be our finite set of points in 3 and « a real number, with 0 < a < oo. Let
b be an a-ball, that is, an open ball of radius «. A k-simplex o is said to be a-exposed
if there exist an empty a-ball b with T = 9b() N where 0 means the boundary of the
ball. In other words, a k-simplex is said to be a-exposed if an a-ball that passes through
its defining points contains no other point of the set /V.

Thus, we can define the family of sets F}, , as the sets of a-exposed k-simplices for
the given set V. This allows us to define an a-shape of the set V as the polytope whose
boundary consists on the triangles in F ., the edges in F} , and the vertices or nodes
in Fpq.

Each k-simplex o7 included in the Delaunay triangulation, D, defines an open ball
br whose bounding spherical surface (in the general case) 0by passes through the £+ 1
points of the simplex. Let o be the radius of that bounding sphere, then, the family
G'i.ar 1s formed by all the k-simplexes o € D whose ball by is empty and o7 < «.
The family Gy, , does not necessarily form simplicial complexes, so Edelsbrunner and
Micke (1994) defined the a-complex, C,, as the simplicial complex whose k-simplexes
are either in Gy ,, or else they bound (k + 1)-simplexes of C,, . If we define the un-
derlying space of C,, |C, |, as the union of all simplexes in C,, the following relationship
between a-shapes and a-complexes is found:

So=|Cs] VO0<a< (4.1)

a-shapes provide a means so as to eliminate from the triangulation those triangles
or tetrahedra whose size is bigger than the before-mentioned level of detail, «. Thus,
we make a filtration of the triangles.

In Fig. 4.1 an example of the previously presented theory is presented. It represents
some instances of the finite set of shapes for a cloud in a intermediate step of the sim-
ulation of a wave breaking at a beach.

4.1.2 How to choose the a-value

Many authors claim that the main difficulty with the a-shape technique is related to
the choice of the a-value (Mandal and Murthy, 1997). In this section we provide a prac-
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Figure 4.1. Evolution of the family of a-shapes of a cloud of points representing a wave
breaking on a beach. Shapes S, or cloud of points (a), Sy.5 (b), S1.0 (), S2.0 (d), S50 ()
and S, (f) are depicted.
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Figure 4.2. Medial axis of a two-dimensional curve.
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Figure 4.3. Computation of the LFS at a point p.

tical means to do so in the type problems we are dealing with. To this end, it will be

necessary to give some prior definitions.

The medial axis (see for instance Amenta et al. (1998b) and references therein) of a
d — 1 dimensional, twice-differentiable, surface I' = 9 in 1% is the closure of the set
of points which have two or more closest points in I'. An example of medial axis of a
curve is shown in figure 4.2.

The local feature size (Amenta et al., 1998b), LF'S(p), of a point p € I is defined
as the Euclidean distance from p to the closest point m on the medial axis. In Fig. 4.3
the computation of the LF'S at a point is shown. Observe the difference between this
concept and the radius of curvature of the curve at that point, which is different at
different directions.

In mesh generation, the medial axis of a surface has been used to account for a mea-
sure of the desired point density in a region (see Armstrong et al. (1995)). To this end,
it is useful to define a measure of the sampling density of the curve.

The surface I' is said to be e-sampled by a subset {n;}7, of the set of nodes IV if
every point p € I"is within a distance ¢ - LF'S(n;) of a sample pointn; € T.

In practical situations, it is common to have an explicit description of the boundary
of the domain at the initial time step, or reference configuration —this will not be the
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case for all the subsequent time steps, as mentioned before, since we try to avoid the
use of boundary markers or similar techniques. At this configuration, we proceed by
constructing an e-sampling of the boundary curve or surface. Note that it should be
twice differentiable in order to guarantee a non-vanishing LF'S. In other words, it will
not be possible to represent a sharp (concave) corner in the domain without the help
of a segment chain (in 2D) or boundary triangulation (in 3D).

It is therefore important to choose the level of detail up to which we represent the
initial configuration of the domain. Details of size lower than the chosen discrete LF'S
will not be represented by the method. In fact this is similar to the situation found
when meshing a mechanical part, forinstance. Many analysts choose to eliminate some
details of the geometry irrelevant for the results.

Once we chose the desired level of detail for representing the initial configuration of
the domain, we construct an e-sampling of the boundary (with £ < 1) and extend the
cloud of nodes to the interior of the domain, taking always the nodal distance measure,
h=~e¢e-LFS.

As dictated by the preceding definitions, the choice of a suchthat h < a < LF'S will
provide a good approximation of the initial domain. In this way, triangles pertaining to
the obtained shape of the domain will be bounded from above by the chosen LF'S
and from below by h. Thus, no triangle will overlap concave portions of the domain's
boundary, nor spurious holes will appear. There exist, in addition, theoretical proofs of
the convergence of the shape of the domain to the actual one with increasing nodal
distributions, see for instance Mandal and Murthy (1997).

As the domain evolves, no further explicit definition of the boundary will be avail-
able, and the resulting shapes will never reproduce details of LE'S lower than o, as is
obvious (those triangles will be eliminated from the triangulation). However, for nodal
discretizations fine enough, this technique provides very good results, with excellent
mass conservation properties, see Martinez et al. (2004), Gonzalez et al. (2007), Alfaro
et al. (2006a).

4.1.3 Problems with the a-shape technique

There remain, however, some important problems in the application of a-shape tech-
niques to updated Lagrangian simulations of flows with free surfaces. Maybe the most
important is that, when contact between two portions of the domain, or auto-contact
occurs, the LE'S of portions of the boundary —precisely those getting into contact—decreases,
and can be, during some time steps, below the threshold value «. This is precisely the
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x Medial axis

N4

Figure 4.4. Evolution of the LF'S at the neighbourhood of two surfaces getting into
contact. A portion of the medial axis of points in the neighbourhood of the contating
area is depicted. Remember that the LF'S is the distance between the boundary and
the medial axis. Thus, it vanishes rapidly in this situation.

Figure 4.5. Spurious detection of contact at the crest of the wave.

situation that will happen shortly after the time step depicted in Fig. 4.1, see Fig. 4.4. If
this happens, contact will be spuriously detected by the standard a-shape technique
once the LF'S is below «. In Fig. 4.5 an example is provided for the previous problem
of spurious detection of auto-contact between the breaking wave and the surface of
the sea. Note that contact is detected some time steps prior to its actual occurrence.

In the next section we propose two additional filtrations to be done after the a-
shape filtration in order to improve the behaviour of the method.

4.2 Proposed algorithm

The proposed algorithm makes use of the information provided by previous time steps
on the shape of the domain and, through the computed velocity field, on its future
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shape. Thus, we will make use of the essential variable fields to improve the behaviour
of the a-shape technique by performing a modified filtration processes over the Delau-
nay triangulation of the set of points.

In order to discern different parts of a body or different bodies getting into contact,
we assume that all particles belonging to the same body should behave in a some-
what similar way. In our case, they all should move roughly with the same velocity or,
more precisely, without jumps in the velocity nor steep gradients (this is true only for
moderate Reynolds numbers in the flow, thus the proposed technique is not valid for
turbulent flows). In this way, the k-simplexes found to be constituted by nodes that
exhibit highly dissimilar characteristics should be regarded as invalid and filtered out
of the a-shape.

For each k-simplex, a modified circumcircle criterion is employed. This modification
includes a deformation parameter based on the differences between the associated
nodal velocities. This parameter is used to alter the metric space. Elongating the Eu-
clidean distance measured proportionally to the velocity differences causes the invalid
simplexes to appear larger and therefore fail the circumcircle test.

To determine the deformation parameter in our case, a comparison is made be-
tween the different velocity vector directions. To this end, we first compute a princi-
pal direction d, which is found as the local normal direction at the considered k-simplex
(Teichmann and Capps, 1998)

k+1 k+1
d= E s;v; such that ||d|| = max I E $iv;l|, (4.2)
S;=
i=1 =1

where v; represents each of the nodal velocities associated to the k-simplex, and || - ||
denotes the norm associated to the metric space.

We define the angle 3 as the one formed by each velocity vector with the principal
direction d. A deformation factor f; is then obtained according to

|5max - ﬁmin| ‘

™

fa=1- (4.3)

This factor allows to filter those k-simplexes formed by nodes of opposing or divert-
ing velocities. Note that only if the simplex is ““large" (according with an user provided
measure, «) and its nodes move with very dissimilar velocities, it will be eliminated
from the triangulation. If the triangle is small enough it will be most likely representing
a recirculation in the flow, for instance, and will still be maintained in the model.

There are, however, cases in which only one of the bodies (or only some sub-region
of the model) is moving and the previous filter alone would still detect a spurious con-
tact. In that situation one or more nodes will not be taken into account by the above
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factor, yet those simplexes need to be filtered. The need arises to take into account the
gradient of those velocities, and calculate a deformation factor f,,0q as

Froog =1 — [[vil[max— [ v; [lmin (4.4)

H U5 Hmax
Once the deformation factors are obtained we proceed to alter the metric tensor,

assuming it constant at each simplex. The distance between two points X and Y, with
coordinates « and y respectively, can be defined as

d(@,y) =/ (x —y) Mz —y)T (4.5)

where M represents the metric tensor. We define a “"modified" metric tensor M with

(fu—lf,,) on the diagonal, where a and b are user defined parameters that allow adjusting
mod’ 38

the penalty owing to each factor depending on the nature of the simulation.

The newly deformed circumradius is used to check the a-shape test, usually making
the unwanted simplexes fail. This process is performed on a simplex by simplex basis.

4.2.1 Choosing a and b.

The selected values for the new parameters a and b will depend on the nature of the
problem under consideration. Two main factors will influence the selection: the ratio
of v to the original simplex size and the relative difference between the nodal property
values. Fig. 4.6 depicts in a simplified way the relationships between the mentioned
factors, graphing the deformed size ratio d’/« versus the percentage of property vari-
ation. In this chart, the element will fail the test when d’/« is greater than one.

For these charts a 1-dimensional element of unitary size was assumed and only one
property for each node —this property could represent the particle speed or the veloc-
ity direction—, so we only have to choose one parameter to calculate the deformation
factor f. In Fig. 4.6(a), it is shown the effect of varying f for a fixed a = 4, (so this
element would easily pass a standard filtration). Notice how raising the deformation
parameter (thus decreasing f) means that the percentage of difference in properties
will make the test fail sooner. Thus if small differences in values are expected, f should
be made accordingly small to be able to discern the invalid simplexes.

In Fig. 4.6(b), f was held constant at 2 and the o to element size ratio was varied
from 2 to 32, to show that when this ratio is large, a higher f needs to be chosen to
avoid making the test too strict.

While computing the Delaunay triangulation is necessary when dealing with Natu-
ral Element methods, it is not with the rest of meshless methods. It adds a little bit of
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Figure 4.6. Relationship between the modifying factors. Variation in any of the defor-
mation factors (a) and in alpha value (b).
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CPU time to the simulation, that in general is negligible. Very efficient algorithms exist
in the literature (see, for instance the Qhull software (Barber et al., 1996), which is free
and very efficient). Itis able to triangulate 1000 nodes in 0.016 CPU seconds on a laptop
equipped with a Centrino processor and 500 Mb of RAM memory. The proposed filtra-
tion adds some very little extra CPU time to this, since it can be implemented within
the Delaunay algorithm, or by adding a single do while loop to the code over all the
triangles.

4.3 Examples

There is a wide variety of problems involving the presence of free or internal surfaces.
Typically, Navier-Stokes equations in the presence of such boundary conditions are
maybe the most ubiquitous example. But we do not restrict ourselves to Navier-Stokes
equations. Even without the presence of inertia terms, many forming processes can be
formulated in the so-called flow formulation (Zienkiewicz et al., 1978), (Zienkiewicz and
Godbolet, 1974), if a rigid-(visco)plastic constitutive equation is assumed. Most of these
forming processes (extrusion, forging, ...) imply the presence of free-surfaces, and very
often the precise location of them, together with accurate determination of contact,
auto-contact, etc. is of utmost importance.

We refer ourselves mainly to these last two examples: Navier-Stokes equations, as
treated in Chapter 3 and the flow formulation of a rigid-plastic metal, briefly reviewed
hereafter. Other problems are also suitable for the formulation here proposed.

4.3.1 Benchmarking

In order to validate the proposed method, it was employed in two classes of idealized
cases of a 2D drop falling as a rigid body towards a wall, Fig 4.7. On the first class prob-
lems, see Fig. 4.7(a), the ball was dropped over a plane surface moving in the same
direction at less speed than the ball. On the second family of cases, Fig. 4.7(b) both
bodies move at the same speed but in different direction. The a parameter on all cases
was chosen deliberately larger than actually needed, so that the a-shape would be a
complete convex hull encompassing both bodies. That resulted in a triangulation that
included several invalid triangles, shown in Fig. 4.8(b). These triangles could constitute
an important error source due to the effects of a non-existing contact.

The first setting allows to test the effect of the gradient of velocities, taken into ac-
count by fio4- At the limit case, the speed of the plane is null, so the deformation factor
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Figure 4.7. Method validation. Cases studied of a 2D ball drop over a flat surface. (a),
0< vy <vland(b),vg = v, Ogﬂ §7T/2

goestoinfinite, therefore the size of « becomes unimportant as the triangles composed
by nodes from the two different surfaces will always fail the test. In this case « was set
to 5—thus taken deliberately large—, a to 10 and b to 0.

Less extreme cases where tested, on which the surface was not completely still, but
moving at less speed in the same direction of the ball. All cases resulted in successful
filtrations. Fig. 4.9 shows a detail of the area on which both surfaces nearly touch. Trian-
gles eliminated by the proposed filtration are shown in light grey. Specially noteworthy
is the difference between the element sizes between the drop and the plate. Without
an external filtration, there is no o which could manage to obtain a reasonable a-shape,
given that the plate element size is more than five times the element size of the drop
and the difference with the gap between both bodies is even more drastic. Density
based filtrations could be made to recognize both areas, yet the case would still prove
to be challenging if possible at all.

On the second family of cases the surface moves at the same speed but in different
direction, still usually towards the ball. This exercise allows to check the performance of
the filtration due to f5. The case in which both bodies approach directly to each other
is also an extreme situation where none of the offending triangles will ever pass the test
regardless of the chosen a. In this case, a, a and b were 5 —again deliberately large—,
0 and 1, respectively. The angle difference has been tested up to the case where the
bodies moved in a perpendicular way. In all the conditions both bodies could be recog-
nized by adjusting the b factor only. In this case the difference between element sizes
at the drop and the plate is also noteworthy.
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Figure 4.8. Drop approaching a surface. Both families of cases studied were tested on
the same set of nodes (a).The resultant geometry of the domain provided the standard
a-shape (b) and the modified method (c) are depicted.
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Figure 4.9. Drop approaching a still plate (detail of the contact zone). In light grey the
triangles filtrated by the proposed techniques are shown.
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Figure 4.10. Detail of the velocity field at the wave crest

4.3.2 2D wave breaking

A third type of test was performed with the wave problem shown in Figs. 4.1(a) to (f)
and 4.5 in which we could check the performance on a real 2D case. The velocity field on
the crest of the wave is shown in Fig. 4.10. It can be noticed how the vectors are roughly
aligned in the same direction, thus resembling the first family of cases in the preceding
section. Even though the velocity vectors seem to be very similar, the difference is so
that the filtration is successful at the crest. Again, a reasonable value for the parameters
a and b seems to be 10 and 1, respectively, and our experience dictates that this is so
for a general problem presenting this kind of difficulty.

The results of the proposed technique are shown in Fig. 4.11. In this case the pro-
posed method is able to discern between the crest and the trough of the wave. Again,
the « value was taken deliberately too high, to show that even a poor choice of o will
lead to a proper result.

Mass (volume) conservation is analyzed in Fig. 4.12. In this case, the predicted vol-
ume of the whole domain is analysed, taking into account that obtained by standard
a-shape techniques and the one obtained by the proposed method. A sudden rise in
volume implies spurious contacts. As can be noticed, the proposed method gives more
accurate results, with less than 1% error in volume. The gain in volume due to spurious
contact detection for the a-shape technique raises up to 5% for the final time steps,
even if the contact region in the model is concentrated near the wave crest.

In this test we applied the modified filtration to the velocity fields obtained in a sim-
ulation performed with the standard a-shape method. This implies that after the spu-
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Figure 4.11. Wave before breaking. Velocity vectors (a), a-shape without additional
filtration (b) and shape reconstructed with the new approach (c). In this cases the pa-

rameters used where o = 9,a = 10,b = 1.
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Figure 4.12. Volume conservation for the standard and the proposed technique.
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rious contacts occurred the velocities at the crest where already compromised. This,
however allowed us to test the capabilities of the proposed methodology to fix spuri-
ous shapes.

4.3.3 An extension to 3D problems. Aluminium extrusion

What follows is a short explanation of the extrusion problem, which was the last test
case for this method and a proof of applicability for the 3D extension.

Flow formulations of rigid-plastic solids

As mentioned before, many forming processes can be formulated as free-surface prob-
lems under very standard assumptions. Although, to some extent, an elastic recovery
exists at the end of many metal forming process, this is often neglected. In addition, the
Cauchy stress is usually related to the strain rate tensor. This leads to a formulation that
closely resembles that of non-Newtonian fluids, and hence the term flow formulation
(Zienkiewicz and Godbolet, 1974).

Thus, the equations governing the metal deformation can be expressed in terms of
velocities rather than displacements. Stresses produced in the forming process can be
setin a simple form as

oc=D(dT)-d, (4.6)

where d represents again the strain rate tensor (symmetric part of the velocity gradient)
and T the temperature. Depending of the particular constitutive equation chosen for
the metal, we thus obtain different formulations. In Alfaro et al. (2006b) and Alfaro et al.
(20064a) a Sellars-Tegart temperature-dependent constitutive model was implemented
in this framework.

Constitutive equations for aluminium

We considered a rigid-viscoplastic constitutive law for the aluminium, allowing for a

flow formulation for the problem (Zienkiewicz and Godbolet, 1974). In essence, we ne-

glect inertia terms in the Navier-Stokes equations and considered a non-linear consti-

tutive law for the aluminium in the form

nd + o,(d)
3d

s =2 d, (4.7)
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where s represents the deviatoric part of he strain rate tensor and o, represents the
yield stress. d represents the equivalent strain rate. Note that, depending on the 7
value, the return to the yield surface is done with different velocity. Since it is common
to describe aluminium behaviour as rigid-plastic (rather than viscoplastic) we employ
null viscosity, so as to enforce Y =& — 0, = 0, leading to

20

o (4.8)

Finally, the constitutive equation, accounting the incompressibility of plastic flow
results:
o =2ud — pI,with u = %' (4.9)

Linearized form of the variational problem
If we write the incremental variational equation at time ¢t + At we arrive to:
/ ( —(pt+ AP+ 2u(d! + Ad)(d + Ad)) L ddQ = 0. (4.10)
(t+At)

Domain updating is done in an explicit procedure, given the last converged velocity
field, but due to the non-linear character of the constitutive equations, an iterative ap-
proach has been applied to the conservation equations, using the Newton-Raphson
scheme, thus leading to

( t+At)

ou(d A
— AApT + 2 EEE ) AAG) LA +
Lroia, € (a1 224)

+2u(d§jm)AAd) L ddQ =
__ / (—pt AT 4 2,(dE 2 dE) - ddg, @.11)
Q(t+AD)

where the subscript k indicates the iteration within a time increment. The incremental
form of the incompressibility condition results

/ V - (AAv) p*dQ) = —/ V(v t+At)p dS). (4.12)
(t+At) (t+At)

If we approximate the velocities and pressures, as well as their variations, by em-
ploying a finite-dimensional set of basis functions, we arrive to a discrete form of the
previous equations (Bubnov-Galerkin method)

AAV"( Z ér(x) AAv, (4.13)

AAp" (x Z Wr(x)AApy, (4.14)
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where n represents the number of nodes considered in the approximation. Laplace in-
terpolations (Sukumar et al., 2001) are employed in this work to interpolate the velocity
field, while Thiessen interpolation (piece-wise constant on each Voronoi cell) is used for
pressures. Any other form of meshless approximations could also be employed as well.
More details on the derivation of the model can be found in Alfaro et al. (2006b) and
Alfaro et al. (2006a).

Performance of the proposed technique

We considered the simulation of the extrusion of a hollow cylinder. Tube extrusion is
especially difficult to simulate from the geometrical point of view, since the diverted
metal flow must converge before going through the last section of the extrusion die. A
schematic representation of the geometry of the die is shown in Fig. 4.13, where only a
quarter of the domain was represented. By invoking appropriate symmetry conditions,
this same quarter of the domain was employed for simulation. Some snapshots of the
flow of aluminium during this extrusion process are shown in Fig. 4.14, where post-
processing has been employed for clarity, in order to show the whole geometry of the
domain.

The domain is marked in red lines on Fig. 4.15. This figure also shows a particular
time step where using regular a-shapes results in spurious contact detection. This is
also notorious in Fig. 4.14(c). The invalid tetrahedra can be recognized by their size,
larger than the nodal spacing in that area, giving a jagged feel to the resulting solid.

The model is divided in sections of different nodal densities, being the sparsest part
at the top. Using the standard method special care is needed to avoid spurious contact.
It is possible to define different a-values for each region to address this problem. Still
a different problem arises when the last nodes of the model reach a section of small ¢,
because the nodal spacing is then too large and all the elements get filtered.

With the new approach, a single, deliberately big, a-value can be defined and still
obtain good results. In Fig. 4.15(b) a snapshot corresponding to the same time step on
which traditional a-shapes failed to avoid the spurious contact is shown. In this case
flow fronts are clearly kept apart from each other until actual contact occurs.

4.4 Conclusions

An improved a-shape technique for domain tracking in updated Lagrangian simula-
tions of free surface flows was introduced in this chapter. This improvement is based
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P B

Figure 4.13. Schematic geometry of the die for the extrusion of a hollow profile. Note
the special characteristics of the flow, that must divide to pass trough the green region
and then re-join to flow out of the die (red region).
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Figure 4.14. Sequence of aluminium flow at the early stages of the extrusion of a hol-
low cylindrical profile.
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Figure 4.15. Extrusion process. Instant before contact of the two metal flows. (a) Sim-

ulation domain (red lines) and snapshot showing spurious contact between flows at

an intermediate time step. (b) Spurious tetrahedra are removed from the triangulation

(=8 a=0.1,b=2).
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on the addition a new filtration to the standard a-shape technique. This new filtration
takes into account the velocity field of the flow, so as to predict in some sense its future
geometry. We have introduced a way to use non-geometric information inherent to
our model, as a tool to filter a-shapes and being able to obtain good surface definition,
avoiding traditional problems associated to this method, as spurious contacts. Even in
cases where there is large nodal density differences, the flow provides enough infor-
mation to recognize, even for rough tuning of a-values, different regions in the model
that pertain either to zones getting in contact or to different bodies in the simulation.

Despite the inclusion of two new user-defined parameters, the proposed methodol-
ogy is flexible enough to face the geometry changes that occur with moderate Reynolds
number flows, as covered by the presented formulation. The main conclusion is that it
is considerably easier to find the three parameters «, a and b, than to find the single «
value for some special, delicate cases —notably some time steps prior to contact—in
standard a-shape technique. We have shown how, even for a poor selection of «, the
proposed technique is able to correctly filtrate the actual geometry of the domain. Val-
ues of the parameters are much less sensible to modifications than « for standard a-
shapes, and thus the ease of use and good results of the proposed technique.
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Chapter 5

Applications to
Non-Newtonian fluid flows

As could be grasped by the reader during the explanation of the Newtonian fluid con-
stitutive equation in Chapter 3, not all fluids present a linear stress-deformation rela-
tionship. Those that do not are collectively named Non-Newtonian, and represent a
broad class of very important and interesting fluids both for the academic and indus-
trial worlds. Examples of these fluids can be found almost anywhere, from body fluids
as blood or mucus to man-made substances like paint, shampoo or molten plastics. Of
course not all non-Newtonian fluids behave in the same manner so many different con-
stitutive equations, with a wide range of complexity, have been developed to describe
their mechanical response.

In this thesis we have but scratched the surface of this broad topic while address-
ing the matter of simulating viscoelastic fluid flows. The great industrial importance
of these fluids has originated a great deal of interest in its numerical simulation from
a relatively long time. A great deal of success has been achieved, and nowadays we
count with tools to solve a huge deal of non-trivial flows. Abundant literature can be
found on the topic. The interested reader can be bothered to check Owens and Phillips
(2002) and Crochet and Walters (1983) as a primer for techniques introduced prior 1983.
Still the processes have been plagued with difficulties, many of which seem to come
from the so called high Weissenberg number problem (the Weissemberg number is a
non-dimensional measure of fluid elasticity). Regardless of the employed numerical
method or the viscoelastic constitutive equations used, either differential or integral,
when the elasticity of the fluid increased by a little measure, the simulation would suf-
fer from a huge loss in accuracy leading to convergence problems. This situation lim-
ited the application spectrum of cases, rendering the numerical tools ineffective to deal
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with industrial grade problems. The initial suspects of this situation were bifurcations
in numerical solutions, the possible 3-dimensional effects in 2-dimensional flows and
inability to cope with changes in the type of governing equations (Crochet et al., 1984).

At present, the most widely accepted causes for the high W e problem are numerical
approximation errors. In Owens and Phillips (2002), they are attributed mainly to three
sources: First, errors caused by inaccurate integration schemes employed on the cou-
pled non-linear elliptic-hyperbolic equations system governing viscoelastic flows. Sec-
ond, numerical oscillations caused by trying to solve an ill-posed problem due to the
badly chosen approximation spaces for the essential variables. This problem relates to
the LBB or inf-sup condition, and has been addressed in the solution scheme employed
in this thesis. Lastly, there is the issue of steep boundary layers not being solved in an
adequate fashion due to coarse spatial discretization or a misrepresentation of the do-
main near singularities. This problem should be mitigated by the meshless character
of the method here presented, as well as the possibility to easily add particles at critical
points. Given that our method addresses some of the suspected causes of the high We
problem, it would seem plausible to think that we could gain some ground in this field,
as an alternative to the upwinding techniques (Marchal and Crochet, 1987) or discon-
tinuous Galerkin methods (Lesaint and Raviart, 1974) currently employed to cope with
this problem.

Amounting the already discussed, the interesting free surface phenomena that oc-
cur in some viscoelastic flows creates an unmissable setting for the applications tryout
of the developed method. In all the developments that follow, the proposed second
order in time natural neighbor Lagrange-Galerkin method developed in this thesis has
been employed. As will be noticed, the methods shows excellent accuracy in problems
where traditional, state-of-the-art techniques fail in some sense.

5.1 Governing Equations: The Oldroyd-B Fluid
Model

In 1950, Oldroyd developed a constitutive equation that while simple, is useful in de-
scribing the general flow behavior of dilute polymeric solutions. This model can be
obtained as an empirical generalization of the linear viscoelastic equation. For this, the
constitutive relation is written in tensorial form and some admissibility conditions are
enforced. Another —and probably more popular—way to derive this model is to con-
sider a suspension of Hookean dumbbells in a Newtonian solvent and study it from a
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molecular point of view. These dumbbells represent the polymer chains suspended
in the Newtonian medium. They will react to the flow and to other dumbbells, and
will add some extra resistance to the viscous character of the solvent. When the fluid
stops the springs will remember their initial configuration, hence representing the elas-
tic component of the model. Probably the most interesting part about this approach,
is the way to obtain a —somewhat —accurate macroscopic model based on molecu-
lar assumptions. The Oldroyd-B model present a constant shear viscosity like that ob-
served on Bogger fluids, which are highly elastic non-shear thinning fluids. Other flu-
ids which exhibit non-shear thinning elastic properties are low molecular weight poly-
methysiloxanes (PDMS), polycarbonates and solutions of glass fibers in viscous New-
tonian fluids. Still, this model is useful only at low shear rates. In extensional flows,
the infinite extensibility of the hookean springs in the dumbbells yield an extensional
viscosity that tends to infinity at a finite extensional rate.

5.1.1 Model Derivation

The afore mentioned dumbbells idealize the behavior of a polymer chain and consist
of two beads connected by an ideal spring which obeys Hooke's Law (Figure 5.1).

Figure 5.1. A sample dumbbell.
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Now, following Owens and Phillips (2002), let us consider a single dumbbell im-
mersed in a moving Newtonian fluid. There are three effects acting on each bead: A
drag force, caused by the movement relative to the fluid around it; impact forces be-
tween beads, due to Brownian motion; and the spring force, representing the resis-
tance of the molecule to be perfectly stretched.

The beads masses are denoted by m; and both have a radius a. Each bead has a
position vector r; with i = 1, 2 relative to a fixed coordinate frame and » = Ar; the
dumbbell length. At this scale, the fluid flow field u around the beads is supposed to
be homogeneous so that the rate of strain 4 is constant. In this situation, 4 = (Vu)”
and we can write that

u = ug + (Vu)'r, (5.1)

at any point located at a position r and where ug is a constant vector.

For each bead, Newton's second law is written as

d*r; dr;
The term F; refers to the force that the coil exerts on each bead and F; = —Fy =

F = MAr;, where ) is the spring constant, and is obtained from polymer parameters
and thermal forces as

A= ?)f—zT. (5.3)
Here T' denotes the fluid temperature and & is a proportionality constant.

The drag force on the bead is proportional to the velocity difference between the
solvent (u) and the bead (dr;/dt). Atthis scale, any hydrodynamic effects on the solvent
caused by the presence of any other dumbbell in the vicinity are neglected. Gravity and
other inertial effects are also left aside so we can make use of the Stokes equations.

Under this conditions, the proportionality constant is (; = 67n;a;

The term B; refers to the impacts on the polymer chain due to Brownian motion

and is written as 5

ari
where 9 is a probability density function (pdf) which yields the probability that any

B, = —kT

In, (5.4)

given dumbbell length 7 is in the range r to » — dr at some time ¢. This probability is
independent of the position of the dumbbell and is given by (7, t)dr.

Now, returning to the movement Eq. (5.1), in a strongly damped system the average
particle velocity is almost constant so we can neglect the acceleration term on the left-
hand side. After dividing by (; and subtracting the two components of the system we
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get
d’l"1 d’I“Q T T kKT 0 kT 0 F2 F1
O=————F"+Vu) ro—(Vu)' ri+———Inp - ——Iny+-——— (55)
g~ a TV e (Ve e i e Y, T
It is possible to write that
KT 0 kT 0 kT 0 kT 0
——— Ny — ——Inyp = ———Iny — ——In
<1 87'1 w CQ 87“2 w Cl or w CQ or 1/}
1 1 0
=—kT'(—+— ] =In
(g Cz) or'"
o) J 5
r
T (Vu)'r — k?TCuElmﬁ — CioF, (5.6)
Here the relationship
1 1
= — —|— _—
LTIt G

was used.

The probability balance equation between ) and the probability flux vector J = 71

— +—-J=0. (5.7)

Multiplying Eq. (5.6) by v, differentiating with respect to  and using Eq. (5.7) we obtain
the so-called Smoluchowski equation:

oy 0 0
E + E ’ [(vu)Trqu) - ¢kTC12§ln¢ - ¢g12F:| = O’ (5.8)
oy 0 oY
= n + o {(VU)TND - k‘Tng - 7/’(12F} =0, (5.9)
since 9 Loy o
Yor™ = Viar ~or
Now,

g (707 r0) = g (T ) ve (07r) 5
= (- wp+ () r) - O

o
j— T " —
N ((Vu) r) or’

so we finally arrive at the diffusion equation for v, which is the already mentioned
Fokker-Plank equation (Owens and Phillips, 2002):

0 0 0? 0
a—qf + <(Vu)T "“) ' a_i) - kTCma—;f - <128_'r F(VF) = 0. (5.10)
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The ensemble average (-) for any function f of r is defined as
(f(r) = [ fr)e(r.t)dr, (511)
R3

and it is possible to express the extra-estress tensor T' ' to the ensemble average of the
dyadic product 7 F' via the Kramers expression:

T = —nkTI + nsy + n(rF), (5.12)

where n denotes the number density of dumbbells.

In order to reach the extra-stress constitutive equation, one must multiply the Fokker-
Plank Eq. (5.10) by rr, integrate over 2 and use the divergence theorem, noting also
that v — 0 as |r| tends to the maximum permissible polymer length. We get to

rr=2kTCod — 2C1o(rF), (5.13)

Where 7 is the upper-convected derivative of (rr), defined as

v D T
rr= E(r’r) — (Vu)' (rr) — (rr) (Vu). (5.14)

Using this expression into Eq. (5.12) we obtain the Giesekus expression for the stress

tensor:

n \V4
T=n~y— — . 5.15
Y50, T (5.15)

Since the model includes a Hookean spring, we have that
F =Hr, (5.16)

where H is a positive constant parameter. This means that Eq.(5.12) can be rewritten
as

T = —nkTI + ny + nH(rr). (5.17)
Taking the upper convected derivative, in Eq. (5.15) and noting that
v
I= -Vu— (Vu)' = —% (5.18)

is possible to eliminate (rr) from the stress expressions and arrive at

T —nkTvy —ns ]| . (5.19)

1This tensor is related to the total fluid stress o by 0;; = —p&;; + T

UniversidadZaragoza



Natural Element Simulation of Free Surface Flows 115

This expression can be written in terms of the following polymer physical parame-
ters: polymer viscosity (),), characteristic relaxation time for the fluid (\;) and charac-
teristic retardation time (\,); each defined as

_ T (5.20)
T 2HGy |
1

A = 5.21

1 2HC12 ) ( )

778 ’r}sAl

Ay = = : (5.22)

? 2(7717 +1s)H 1o (77p+775)

so that Eq. (5.19) now reads
v ) v

with ny = 7, + 7, as the total fluid viscosity. Eq. (5.23) is the Oldroyd constitutive
equation.

We now separate the stress in the solvent and polymeric components as
T=n~vy+T, (5.24)
and substitute into (5.23) to get
v :
T+ A T= 1, (5.25)

which is the constitutive equation for the elastic stress. It is possible to note from this
equation that there is no need to solve the Fokker-Plank equation in oder to find the
extra-stress. When . — 0, T = 7 and this model reduces to the Upper Convected
Maxwell Model.

5.1.2 Model Implementation

Let us recall the the Navier-Stokes problem as defined in Ch. 3

plvi+(v-V)v)=V-o+pb in Qx(0,7), (5.26)
V-v=0 1in Qx(0,7) (5.27)

v(x,t) =vp(x,t), xelp, te(0,7) (5.28)
n-o(x,t)=txt), xecly, te(0,7), (5.29)

and introduce the Oldroyd B constitutive equation. Equation (5.26) will change to

pvi+ (v-V)v) =V .0, + V7 + pb, (5.30)
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where o, denotes the Newtonian component of the stress: —pI + 7,7.

We expand now the upper convected derivative in Eq. (5.25) to get

D
T+M (Fz —(Vu)' 77 (VU)) =Y (5.31)
from which 5 _
T YT T
= 32
D N + (Vu)" 7+ 7 (Vu) (5.32)

and we will employ a first-order time discretization

Dr 4
= . 5.33
Dt At ( )

In the implementation here developed it is assumed that the extra-stress att = ¢, is

known, so when solving for u|,—, 1 all terms in Eq.(5.30) are known. After the velocity
field has been obtained, the velocity derivatives, which are known for the integration
points, are projected to the nodes (this intermediate step is by no menas necessary if
Stabilized Conforming Nodal Integration is used). This intermediate variable along with
T, is used to calculate 7, ; according to

Tn—i—l = 7"+ At (m/\—_T + (V'u,n)T i N (VU”)) . (5.34)
1

Notably, if the method here presented is compared to that of Tome et al. (2007),
or in general any based upon finite difference or finite volume schemes, it must be
highlighted that no special treatment is necessary to compute the stress tensor along
the boundaries.

5.1.3 Model Validation: Fully developed flow Inside a Pipe

Aiming at checking the accuracy of the proposed technique, a developed flow was sim-
ulated inside a completely full pipe of length L and radius R = 1. In this case we used
an axisymmetric representation of the problem with the symmetry axis set on x = 0.

On the Pipe walls (r = R) a no-slip boundary condition was applied (v, = v, = 0)
while no special outflow conditions are necessary. Any particle that crossed the bound-
ary seton z = L, was eliminated from the simulation. Similarly, the flow is forced by
entering a set of particles through the inflow boundary. At the entrance, velocity con-
ditions were those of a fully developed flow, that is,

v, =0 (5.35)
2U(R? — 1?)

72 (5.36)

V, =
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Figure 5.2. Flow schematics

where U is the average velocity.
Two non-dimensional numbers are widely used to characterize the flow of non-
Newtonian fluids. The first is the Reynolds number Re, defined as

Re = UL (5.37)
Ho
and 1
We = OT (5.38)

which is called the Weissenberg number. This dimensionless number is the ratio of the
relaxation time of the fluid and a specific process time and represents a non-dimensional
measure of the fluid's elasticity.

Since the non Newtonian behavior depends on the history of the flow and we as-
sume that the particles are already moving at ¢ < 0, it is necessary for each of them to
know its past extra-stress tensor. For this reason the initial velocity and stress condition
in all the domain were imposed in the same way as is done at the inflow boundary.

For a node cloud composed initially by 3999 nodes (remember that the simulation is
left until the steady-state is reached, while nodes enter and leave the domain through
the inflow and outflow boundaries), the solution was stable from the first step, and
after 500 time steps, the extra-stress field was as shown in Figs. 5.3 and 5.4. The 7.,
component is not shown here because it vanishes for the whole domain.

As can be noticed in Figs. 5.5 through 5.7, where the analytical solution for 7,,, 7,
and v, is shown by a red line; the agreement between the expected and behavior and
the results obtained is remarkable. The L£y-norm of the errors are Err,, = 6.3027 -
10796, Err,,, = 1.4730 - 1079 and Erry, = 2.3987 - 10797,
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Figure 5.3. Extra-stress field for a fully developed pipe flow: 7,
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Figure 5.4. Extra-stress field for a fully developed pipe flow: 7,
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Figure 5.5. Extra-stress field for a fully developed pipe flow: 7, aty = 1
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Figure 5.6. Extra-stress field for a fully developed pipe flow: 7., aty = 1
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Figure 5.7. Velocity profile for a fully developed pipe flow: V', aty = 1

5.2 Other, more complex, non-Newtonian Ex-

amples

In order to demonstrate the method's ability to reproduce the motion of non-Newtonian
flows we simulated an extrusion process which causes the die swelling effect, on one
hand, and the impact of a splashing drop on the other. Each problem has been stud-
ied by many authors and almost constitutes a benchmark for the simulation of non-
Newtonian flows in the presence of free surfaces.

5.2.1 Die Swelling

A visco-elastic fluid jet presents a characteristic behavior known as extrudate swell that
consist in the jet expansion in the direction perpendicular to the stream after leaving
the extrusion die. This phenomenon is also known as die swelling. It is a very impor-
tant effect in the polymer industry because many processes involve the extrusion of
viscoelastic fluids, for example plastic in their molten state. The phenomenon of die
swell may be explained by elastic recovery. The molecules are stretched by the shear
forces in the pipe and the average axial stress at the exit is a tension.

In this problem we simulated the exit of an Oldroyd-B fluid trough a circular extru-
sion die of radius R and length L. The swell ratio S,,, which is defined as the ratio of the
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maximum diameter of the jet and the diameter of the die, was measured as a way to
quantify the swelling effect.

The problem setup is similar to the pipe flow, a fully developed flow passes through
a pipe which imposes a no-slip condition to the particles in contact with it as in the
previous example. The only difference is that the pipe has a finite length, that in this
case causes all nodes reaching the end of the pipe to be free of any condition. Gravity
and inertial effects were neglected.

Following the steps of Tome et al. (2007), different flows were simulated with the
following parameters: R = 0.1m, U = 1m/s, yy = 0.0lm?s~* and \; = 0.01. The
scaling parameters were R, U, o and ;. Therefore Re = 1 and We = 1. The ratio
Ao/ A1 took values of 0 (Newtonian case), 0.1,0.5, 0.7 and 0.9. The effective Weissenberg
number, defined as

A
Wees = (1 - A_?) We, (5.39)

was therefore We.; = 0.9,0.5,0.3and 0.1.

The swelling ratios obtained were lower than those obtained by Tomé Tome et al.
(2007) , who reported values of S, = 2.13,1.88 and 1.37 for We.; = 0.9,0.5 and
0.1. Our model resulted in S, = 1.504,1.435, 1,236 and 1.133 for We.; = 0.9,0.5,0.3
and 0.1 respectively. Figure 5.8 presents the fluid contours at a point at which the die
swelling for each fluid has already stabilized. It is possible to notice the deviation from
the Newtonian behavior as W e increases.

In a later section of the same work, a comparison is made against the works of Cro-
chet and Keunings (1982) and the analytical solution to this problem by Tanner (2005).
These tests allow to check the proposed method in a more meaningful way. In his work,
Tanner used the recoverable shear which is a non-dimensional number defined as

7_ZZ

Sk = , (5.40)

2 <
2 |:TTZ + R€/\21 ’YTZ
evaluated at the pipe wall.

Since the flow is fully developed inside the pipe, we use Egs. (5.35) and (5.36) so the
relevant terms in equation (5.40) in their non-dimensional form are

v,
Toy = 2W6TMW’
Try = 1 <1 — &> 9v-
" Re A/ or’
. 10v,
Yrz = 5 or .
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Figure 5.8. Swelling comparison between fluids with different Weissenberg numbers
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thus
s 2Wer,,(0v,/0r)
R p—
TE(-2) 54 (2] %]
/\2 81}2
— 1—- 2=
We ( /\1) 87" ’
and since in this case
8’02 :4:>SR:4<1_&)W€
or r=+R )\1

The theoretic swelling ratio S, of an axisymmetric jet can be predicted in a simplified
manner via the equation (Tanner, 2005)

Doz S27%
5 =014+ [1 + 75’} (5.41)

Cases were run using the following parameters: R = 1m, U = 1m/s,vy = 4m?/s,
yielding Re = 0.25, We = ;. A fixed ratio \y/\; = 1/9 was used as in Crochet and
Keunings (1982) and Tome et al. (2007). Weissenberg numbers were varied from 0.125
to 1.125 with increments of 0.125. This represented a recoverable shear range between
0.44 and 4, both inclusive.
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O Proposed Method 4 C&K Tanner O Tome

Figure 5.9. Swelling ratio against We. Different numerical models compared against
an approximated theoretical solution by Tanner (2005).
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In Fig. 5.9 results obtained with the proposed technique are presented and com-
pared against the cited works. The yellow line represents the theoretical solution as
obtained by Tanner (2005). It is possible to observe that the presented technique (blue
line) yields results that very much agree with Tanners theory for a greater W e range.
Even though the results for near Newtonian ranges present a higher error, the swelling
ratios obtained are stillin the same order and the increased range of applicability amounts
to the merit of the approach here presented.

5.2.2 Drop Splashing. Worthington Jet

The third problem tackled was the simulation of a drop (both Newtonian and Oldroyd B
fluids) impacting the free surface of a reservoir of the same fluid. At certain velocity this
impact produces a crater around which a crown is usually formed. The crater is subse-
quently refilled and the filling fluid starts building up until a jet is formed. This splash
was fist studied by M.A. Worthington (1877), who photographed low-viscosities New-
tonian fluid splashes caused both by droplets and solid balls. Fig. 5.10 shows pictures
taken at different stages of the experiment. In these it is possible to observe the crater,
crown and satellite drops caused by the impact; and the jet formed shortly afterward.
In this case the resulting jet was discontinuous, forming a droplet.

Figure 5.10. Drop falling, example of a Worthington Jet formation. (Taken from Cheny
and Walters (1999))

When studying the drop of a ball, Worthington was able to identify two kind of
splashes, depending on whether the ball had a smooth surface or if it was rough. The
drop of a small polished dry ball would slip in the fluid without almost any disturbance,
this was denominated a "smooth splash". On the other hand, "rough splashes" would
appear when the ball was ground with a coarse sand paper or when it was left wet.
In this case the sphere would produce the aforementioned crater and and jet. He also
determined other factors which would govern the kind of splash formed. For instance,
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he showed that as the impact velocity increased a gradual transition from the smooth
to rough splash occurred.

In the case of falling drops, Worthington classified the resulting splash as rough.
However not all drops would produce a splash. Some drops simply produce vortex
rings in the reservoir but nothing else. In this case the size of the droplet along with
the impact velocity are the factor which determine the kind of behavior that would
take place.

In their work on the subject, Cheny and Walters (1999) addressed the question on
whether the surface tension influenced the splash by carrying on a series of experi-
ments on Newtonian fluids with different surface tension but being equal all other pa-
rameters. They were able to conclude that the maximum jet height did not depend on
the surface tension (Cheny and Walters, 1999). Another finding of this job was that a
small increase in polymer concentration (thus augmenting the elasticity of the solution)
reduced drastically the maximum jet height. It is precisely this behavior which consti-
tutes the objective of this section. They also determined the necessary conditions to
ensure that the splash experiment could be free of the influence of the reservoir walls
(Cheny and Walters, 1996).

The experiment setup included a drop of radius r;, = 0.5 cm falling on a circular
tank of radius 7, = 10 cm and height 2; = 10 cm. As can be seen on Cheny and Wal-
ters (1996), this tank dimension ensure that the non Newtonian drop will behave as if it
were falling on an infinite reservoir. For the Newtonian case the reservoir might create
some interference according to the data published, yet those experiments were per-
formed with solid spheres of a diameter 50 percent larger than our drop. This give us
confidence that this factor will not affect us. Still the height of the jet should be very
close to the maximum reachable even in the case of some wall interference.

The initial configuration can be seen in Fig. 5.11(a). The simulation starts one step
prior to the impact, at a time when the drop is traveling with a speed of 200cm /s. The
nodal density was increased in near the impact zone and inside de drop in order to
have enough particles to properly describe the crown and jet.

We performed a series of simulations to be able to appreciate the viscoelastic ef-
fects due to an increase in the Weissenberg number. This was an attempt to simulate
the different behavior observed in Cheny and Walters (1999) for fluids with the same
viscosity i.e., flows at the same Reynolds number, but containing polymers of different
stiffness. Following the steps of Tome et al. (2007), a kinematic viscosity vy = 0.2cm?/s
was considered which, after defining the Reynolds number as Re = Ur, /1y would yield
Re = 500. The cited work repeated the simulations at Re = 1000 and 2000 but showed
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Figure 5.11. Initial configuration for the falling drop (left) and detail in the vicinity of
the drop (right).

that the only real difference at this ranges was that the jet heights were higher as Re

increased.

Figure 5.12 shows the apex reached by each of the test fluids. In this case the non-
Newtoninan fluids had a We,; of 0.1 and 0.5 respectively. As expected, the lower ob-
tained jet heights corresponded to more non-Newtonian behaviors. Even though the
obtained jets are lower than those observed in the laboratory, the results still agree
qualitatively with the actual behavior. Figures 5.13 and 5.18 show the evolution of the
splash as well as allow us to contrast the process both for a Newtonian fluid and an
Olroyd B fluid.

5.3 Conclusions

The technique introduced in this chapter represents an alternative to simulate non
Newtonian flows in situations where a traditional Eulerian approach would call for the
meshing of empty spaces while trying to predict the flow pattern. Furthermore, since
the method follows fluid particles, it presents itself as an excellent option for keeping
the history of extra-stresses without the need to resource to interpolation techniques
or the need to calculate in points other than the nodes. In fact this might be the most
important facet of this experience. It has been shown that the NEM is totally able to
successfully work with nodal properties in situations where the cloud configuration
change is large.
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Figure 5.12. Maximum height reached by the Newtonian fluid and Oldroyd fluids of
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Figure 5.13. Comparision between Newtonian fluid (left) and Oldroyd-B fluid (right)
with We =0.5.t = 0.
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Figure 5.14. t=10 ms. The crown is visible at this point.

Figure 5.15. t=75 ms. The jet is already formed.

Figure 5.16. t=105 ms. Oldroyd fluid reaches its maximum height.
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Figure 5.17. t=110 ms. Newtonian fluid reaches its maximum height.

Figure 5.18. t=150 ms. Both jets are already decreasing.
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The proposed method is able to reproduce with great accuracy analytical solutions
where available. In addition, it works well for moderate We numbers, better than ex-
isting state-of-the-art techniques. However, it is still necessary to study the source of
the error observed for the Worthington jet problem. A possible solution could be im-
plement a more robust constitutive model, since the Olroyd-B is one of the simplest
for non-Newtonian behavior. At least in the splashing problem, where the extensional
characteristics of the flow play an important role, the model might have been an inad-
equate choice. Another area that presented special difficulty and a probable source or
error was the shape recognition algorithm. While the method introduced in the last
chapter certainly improved the situation, it is still an open field of study.

UniversidadZaragoza



Chapter 6

Ending Remarks

Developing a technique that could accurately simulate the intricate phenomena present
on free surface flows has been the main objective pursued by this work.

The work started with the examination of the theory regarding the Natural Element
Method, which was the main tool employed on this thesis. The information gathered
on this phase was summarized in Chapter 2. The natural element method was cho-
sen due to a combination of several reasons. Firstly, this thesis grew up in the context
of a national project devoted to the meshless simulation of free surface fluid-structure
interaction phenomena. To this end, it was assumed that the ability of the natural el-
ement method to exactly impose essential boundary conditions, very much like finite
elements, was of utmost importance for ulterior coupling with finite element meshes
of the solid under consideration. Secondly, the vast experience accumulated in the
Group of Structural Mechanics and Material Modeling of the University of Zaragoza
with respect to this particular method made it ideal for its application to this particular
problem. This thesis somewhat closes a period of more than ten years devoted in the
GEMM to the natural element method.

The following step was to give solution to problems found in the original form of the
updated-Lagrangian approach. To this end a second order in time numerical scheme
was introduced. The modified technique improved the quality of the obtained solu-
tions over the previous technique, developed in the doctoral thesis of David Gonzalez,
that showed deficiencies for some particular examples, the sloshing problem being the
most noteworthy example, and an excellent accuracy for others, apparently similar.
With the higher order approximation it was possible to accurately simulate problems
that were not feasible previously . Although incorporating more historic information
about the previous flow steps reduced error and yielded better approximations, the
improved accuracy came at the cost of increased resource requirements (CPU time,
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memory and storage). It is recommended that higher order approximations should be
reserved for times when a first order scheme proves to be inadequate or insufficient.

The updated Lagrangian scheme resulted very convenient for transient fluid simu-
lations by not having to deal with convective terms from the Navier-Stokes equations.
These terms are well-known due to their complexity and the need for a suitable stabi-
lization. In addition, being able to follow fluid particles allowed the simulation of free
surfaces without the need to track the liquid interphase. Yet the lack of explicit nodal
connectivity proper of meshless methods implies that the shape of the domain must
be extracted from the nodal set. With this in mind and knowing the difficulties in the
current used method, an improved a-shape technique specific for domain tracking in
updated Lagrangian simulations of free surface flows was developed. A new filtration
was incorporated into the standard a-shape technique. This new filtration takes into
account the velocity field of the flow as a region discriminator to help determine the
domain's future geometry. A way to use non-geometric information inherent to our
model was introduced, working as a tool to further filter a-shapes and to obtain a bet-
ter surface definition. Traditional problems associated to this method, such as spurious
contacts , were avoided thanks to the proposed improvement. Even in cases where
there is large nodal density differences, the flow provided enough information to rec-
ognize, even for rough tuning of a-values, different regions in the model that pertain
either to zones getting in contact or to different bodies in the simulation.

Despite the inclusion of two new user-defined parameters, the proposed methodol-
ogy resulted flexible enough to face the geometry changes that occur with moderate
Reynolds number flows, as covered by the presented formulation. The main conclu-
sion was that it is considerably easier to find the three parameters «, a and b, than to
find the single a value for some special, delicate cases—notably some time steps prior
to contact—in standard a-shape technique. We have shown how, even for a poor se-
lection of «, the proposed technique is able to correctly filtrate the actual geometry
of the domain. Values of the parameters are much less sensible to modifications than
« for standard a-shapes, and thus the ease of use and good results of the proposed
technique.

Being able to simulate in a satisfactory manner some Newtonian flows, the next step
was to extend the model's applicability range to the very interesting viscoelastic fluids.
These present some curious free surface features and a set of challenges that enticed
the author. The technique developed in this work represents an alternative to model
non-Newtonian flows in situations where a traditional Eulerian approach would call for
the meshing of empty spaces while trying to predict a flow pattern. Furthermore, since
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the required extra-stress information used in the Oldryd-B model is a quantity asso-
ciated to material particles moving along characteristic lines, the presented method
performs a fairly goo job at keeping the historic stress without the need to resource
to interpolation techniques or the need to calculate in points other than nodes. It has
been shown that the NEM is able to successfully work with nodal properties in situa-
tions where the particle configuration change is large.

Although we have been able to reproduce qualitative results, it is still necessary to
study the source of the error observed. A possible solution could be to implement a
more robust model, since the Olroyd-B is one of the simplest for non-Newtonian be-
havior. At least in the splashing problem, where the extensional characteristics of the
flow play an important role, the model might have been an inadequate choice. On the
other hand, since part of error can be attributed to the commonly observed (yet not
well understood) high We problem, we are satisfied as the proposed technique has
been able to provide consistent results for a W e range wider than previous (influential)
published works.

6.1 Original developments in this thesis

While there is still a huge amount of work to be performed on the simulation of free
surface flows, at the end of this work it has been ossible to contribute to the actual
state of the art at least on the following aspects points:

e An improvement on the Updated-Lagrangian approach developed by Gonzalez
(2004) has been made by formulating a second order in time approximation, which
allowed to solve problems whose solution would not converge under the original

schema.

e AnUpdated-Lagrangian model was developed animplemented for non-Newtonian
fluids following the Oldroyd-B formulation. This model yielded excellent approxi-
mations on the benchmark tests and its performance was sound on the other ap-
plications tested. It is plausible to say that through the application of this model,
some advance has been made on the high We problem compared with earlier
works on the field.

e A new geometric technique has been introduced to deal with the shape recogni-
tion problem from a cloud of nodes. This technique was designed to be used on
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data sets that include physical information (particularly, velocities) used to charac-
terize different regions, and specifically to be applied on the computational sim-
ulation of large deformation problems.

These developments have been published in a number of journal papers and con-
ference proceedings. Some of them are include in the Appendix section for complete-
ness:

e A. Galavis, D. Gonzalez, I. Alfaro, E. Cueto. Improved boundary tracking in meshless
simulations of free-surface flows. Computational Mechanics, 42, 467-479, 2008.

e A.Galavis, D. Gonzalez, E. Cueto, F. Chinesta, M. Doblare. A Natural Element updated
Lagrangian approach for modelling Fluid-Structure interactions. European Journal
of Computational Mechanics (2006) 16:323-336.

e A. Galavis, D. Gonzalez, E. Cueto, F. Chinesta, M. Doblare. A Natural Neighbour
characteristics-Galerkin method for Fluid-Structure interaction problems. Journées
AUM / Association Francaise de Mecanique. Groupe de Recherche Interaction
Fluide-Structure CNRS. La Rochelle, France, 2006.

e A. Galavis, D. Gonzalez, E. Cueto, F. Chinesta. Una aproximacion Lagrangiana para
problemas de Interaccion Fluido-Estructura basada en un metodo de Elementos Nat-
urales y Caracteristicas. Congreso Metodos Numericos en la Ingenieria (SEMNI-
APMTAC). Oporto, Portugal, 2007.

e A. Galavis, D. Gonzalez, E. Cueto, F. Chinesta. An Updated Lagrangian Approach for
Fluid-Structure Problems based on Natural Elements and the Method of Characteris-
tics. World Congress on Computational Mechanics, WCCM 08. Venice, Italy, 2008.

e A. Galavis, D. Gonzalez, E. Cueto. A natural element approach for non-newtonian,
free-surface flows at high W e numbers. International Journal for Numerical Meth-
ods in Fluids, submitted, 2010.

6.2 Future work

Future work to improve the already accomplished should be focused on improving
and developing better shape construction techniques. That has been an area that pre-
sented special difficulty and a probable source or error. While the method introduced
in the last chapter certainly improved the situation, it is still an open field of study.
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Also some attention should be paid on the computational efficiency improvements
that can be incorporated in to the NEM. It is clear that this method is more resource
consuming than the FEM or the Finite Volume Method and even though the nodal con-
nectivity is obtained in a process transparent to the end user, can be also demanding.
In addition, a large number of nodes must be used in order to accurately capture the
most interesting flow features, although this is a common issue of all meshless meth-
ods, and the price to pay to avoid to deal with a mesh. Thus if any future is going to
have this scheme for this application, the efficiency issue must be dealt with.

As a natural next step we also foresee the application of the proposed method to
fluid-structure simulation in scenarios other than the simple ones considered in this
work. The updated-Lagrangian NEM's ability to track free surfaces, along with the pos-
sibility to couple the nodal cloud to FEM structure models provides the setting to solve
a wide array of interesting problems. Wave breaking on mooring structures or sub-
mersed structures deformation are only two of a myriad of possible industrial applica-
tions. Some groundwork has been laid on this field by the author although it 's still vary
early for any useful results.

The application of the here developed technique to more sophisticated non-Newtonian
fluid is also the topic of current research in the GEMM. Particularly, models based upon
kinetic theory of fluids are under consideration and its application to Finitely Extensi-
ble Non-Linear Elastic dumbbells (FENE models) has rendered very promising results in
problems such as ink-jet printing.
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Abstract In this paper we review the use of shape
constructors, particularly a-shapes, for the simulation of
free-surface flow problems. This technique, in conjunction
with meshless methods, allows for the simulation of such
problems in an updated Lagrangian approach without the
need for an explicit description of the boundary of the domain.
At each time step, the shape of the domain is extracted auto-
matically. However, it is well know that «-shape techniques
present some drawbacks. The first is the choice of the « para-
meter, related to the level of detail to which the domain is
represented. Also contact detection of free surfaces (auto-
contact) or between the free surface and a rigid boundary, for
instance, is often detected with an error of the order O(h),
the nodal spacing parameter, in the gap distance. We pro-
pose an heuristic technique for the choice of the « parameter
and develop a novel methodology for an improved detec-
tion of contact or merging flows. The proposed technique is
illustrated with the help of some examples in solid and fluid
mechanics.

Keywords Free surface - Meshless - Updated Lagrangian -
Boundary tracking - Shape constructors

1 Introduction

Meshless methods [7,25] opened a very active decade of
research in the middle nineties. Today, more than ten years
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after, the area is still active, and has provided some very useful
techniques for the Computational Mechanics community.

One of the most cited capabilities of meshless methods
is that of simulating large deformations phenomena with-
out lack of accuracy, as opposed to Finite Element Methods,
if no remeshing is performed. This opens the possibility of
simulating free surface flows, for instance, in an updated
Lagrangian framework, and many works have been devoted
to this end in the last years. The interested reader can consult,
forinstance, [17,19,20,24], among others. These free surface
problems are different in nature. The reader may imagine
readily waves breaking, but not only dynamical problems can
be solved with such a treatment. Many forming processes, for
instance, can be also treated in an updated Lagrangian setting
advantageously, see [1,2]. Forging or casting and, obviously,
mould filling, are among these processes that present free or
internal surfaces (like phase boundaries).

The obvious advantages of updated Lagrangian meshless
methods for this class of problems, if compared to Eulerian
or Arbitrary Lagrangian Eulerian (ALE) methods—in which
an artificial velocity is added to the mesh—for instance, are
the absence of remeshing nor the associated numerical diffu-
sion, or the lack of convective terms in the formulations, that
consequently do not need of any stabilization. Note that con-
nectivity between nodes is computed by the different mesh-
less methods in a process transparent to the user, as the cloud
of nodes evolves, convected by the material velocity.

A particularly elegant analysis of the difficulties associ-
ated to an Eulerian/Lagrangian treatment of the equations
arising from free surface flows can be found in [21]. Par-
ticularly noteworthy is the difficulty in the selection of mesh
velocity in ALE formulations, in which the mesh moves with
a velocity different to the material one, in order to minimize
mesh distortion. Also, in Eulerian (fixed mesh) approaches,
some marking technique should be used in order to track
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the evolution of the free surface. The Volume of Fluid (VoF)
technique is an example of these techniques. In [21] a mixed
Eulerian/updated Lagrangian technique is developed.

As stated before, meshless, or particle (those in which
a mass is linked to each node) methods have avoided the
need to perform such complicated treatments. Nevertheless,
new difficulties arise. For instance, the nodal connectivity
in meshless methods is not dictated by geometrical reasons
(the best available triangle in terms of internal angles, for
instance, in FE mesh generation) but by algebraic reasons.
In the Element Free Galerkin method [7], for instance, the
connectivity is dictated primarily by the need of a support
(radius of the shape function) big enough to encompass a
sufficiently large number of nodes so as to make a matrix
invertible. Remarkably, this is not related to the geometry of
domain. That reason precludes the nodal connectivity to be
used directly to determine the shape of the domain, as in FE
methods. Nothing similar to an isoparametric representation
exists in meshless methods.

In addition, tracking the free surface with boundary mark-
ers can be implemented in an elegant way in two dimensional
problems—by employing a chain of markers and checking
self-intersections of the chain to detect merging flows—as in
[21], for instance, but becomes much more intricate in tree
dimensions.

If one then tries to avoid any form of meshing, and only a
setof nodes, with no connectivity between them, is employed,
it then becomes difficult to find the position of the free sur-
face. In other words, the geometry of the domain should be
extracted in any way from the current, updated, position of the
nodes, that move, as stated before, with the material velocity.

To this end, various authors have employed Computa-
tional Geometry techniques. In particular, [11] seems to have
been the first in employing shape constructors—o-shapes in
this case—techniques to extract the geometry of the domain.
Shape constructors are geometrical techniques that enable to
find the shape of the domain at each time step. -Shapes [13]
have been employed in a number of previous works involving
free surface flows, see for instance [9,17,18,20,24], among
others.

Also, different shape constructors have been proposed
after «-shapes, see [3,4,10,15] to name a few. In order to
extract the geometry of the domain, in general, these meth-
ods propose a filtration of the Delaunay triangulation of the
cloud of points. The Delaunay triangulation is the base ingre-
dient of these techniques, since it characterizes univocally the
cloud of points—it is unique for each cloud. Different cri-
teria are proposed in order to select the triangles pertaining
to the shape of the domain. The simplest one is maybe the
a-shape technique, that proposes to eliminate all triangles (or
tetrahedra) whose circumscribing radius (or, equivalently in
finite element terminology, their associated mesh size, k) is
greater than a prescribed level of detail for the geometry,
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o. w-Shapes have generated a great interest on “provable”
shape reconstruction arguments. We mean that, under cer-
tain, usually very weak, assumptions on the size of the cloud
of points, we obtain geometric- and topologically accurate
descriptions of the domain under consideration.

One of the main drawbacks of the «-shape technique, as
recognized in many works (see, for instance, [10,28]) is pre-
cisely the choice of the «-value. In addition, a-shapes work
well only for uniformly distributed cloud of points. This does
not constitute a problem, generally, for the problems being
considered. Since we deal with initial value problems, the
choice of a uniform nodal sampling on the initial geometry,
in the absence of any information on the final geometry of
the domain, seems to be judicious.

The jump of the before mentioned techniques to the field
of Computational Mechanics has posed additional difficul-
ties. It is well-known that a-shapes are not able to detect
holes or cavities of size smaller than «, by definition. This
implies that contact between different surfaces is detected
with an error O(a) =~ O(h), i.e., prior to the true expected
contact [28]. Precisely in [28] a method is proposed to allevi-
ate this drawback, but it needs information on the normal of
the boundary at the sampling points. This is easy to achieve
for three-dimensional scans of solids, for instance, but this
kind of information is not suitable from the class of simula-
tions we are interested in.

In this paper we propose a new technique, well suited for
the numerical simulation of free-surface flows, that avoids
the before mentioned problems. The proposed technique is
based in performing an additional filtration to the Delaunay
triangulation (tetrahedrization) of the cloud of points. After
the a-filtration, we perform an additional filtration based on
the information provided by nodal velocities at the last con-
verged time step, and the gradient of velocities. The tests
performed during this work have provided excellent results
over problems where traditional a-shapes have revealed defi-
ciencies.

The outline of the paper is as follows. First, we pose the
formulation of the problem, taking into account the wide
scope of “free-surface” phenomena, possibly involving
dynamic evolution. We then review the basics of «-shape the-
ory and show its inherent limitations. The proposed method is
described in Sect. 4. The paper is completed with some two-
and three-dimensional examples showing the performance
of the method in Sect. 5.

2 Problem settings
There is a wide variety of problems involving the presence of
free or internal surfaces. Typically, Navier—Stokes equations

in the presence of such boundary conditions are maybe the
most ubiquitous example. But we do not restrict ourselves to
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Navier—Stokes equations. Even without the presence of iner-
tia terms, many forming processes can be formulated in the
so-called flow formulation [29,30], if a rigid-(visco)plastic
constitutive equation is assumed. Most of these forming proc-
esses (extrusion, forging,...) imply the presence of free-surf-
aces, and very often the precise location of them, together
with accurate determination of contact, auto-contact, etc. is
of utmost importance.

We refer ourselves mainly to these last two examples:
Navier—Stokes equations and the flow formulation of a rigid-
plastic metal. Other problems are also suitable for the for-
mulation here proposed.

2.1 Updated Lagrangian formulation for Navier—Stokes
equations

We review here a formulation for the numerical solution of
Navier—Stokes equations previously presented in [17]. Other
formulations also exist and work properly (see, for instance,
the implicit three-step fractional method presented in [20]),
but we believe that this one exploits particularly well the
updated Lagrangian setting of the method.

Consider a fluid in a region £2 of the space R? or R3. The
fluid flow is governed by the following mass and momentum
conservation equations:

pv;+@W-V)v)y=V.0+pb in2x(0,7T), (1)
V-v=0 inf2 x(0,7T) )

where v represents the fluid velocity, o the stress tensor, p
represents fluid density and b the volumetric forces acting on
the fluid.

The constitutive equation for a Newtonian fluid is given
by:
o=—pl+t=—pl+2ud+ArV-0v)l, 3)
where d is the strain rate tensor, p the pressure, w is the
dynamic viscosity of the fluid and A the second coefficient
of viscosity. For incompressible fluids V - v = 0 and con-

sequently the before-mentioned Eq. (3), is reduced to the
so-called Stokes law

o=—-pl+2ud. “)
Substituting into Egs. (1)—(2) we arrive to

p(vi+ @-V)v) —2uV-d+Vp = pb. 5
It is usual to rewrite this last equation as:

p v+ @ Vo) — uViv — uV(V-v)+Vp =pb. (6)
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Under the incompressibility assumption (2), this last Eq. (6)
is transformed into

o v+ @ -V)v) =V + Vp = pb, in$2x(0,7).
@)

To solve the problem we must prescribe an initial state as
well as boundary conditions given by

v(x,t) =vp(x,t), xelp, te(0,T), ®)

o(x,t)-n=tx,t), xely, te€,T), ©)]

where I'p stands for the Dirichlet (essential) portion of the
boundary and Iy represents the Neumann or natural portion
of the boundary.

2.1.1 Time discretization

The motion equations can be grouped to

V-G—{-pb:pd—v:p(@-l—vv'v), (10)
dt Jat

V.v=0, (11)
o=—pl+2ud. (12)

The weak form of the problem associated to Eqs. (10), (11)
and (12) is:

/Zud:d*dﬂ—/plzd*d(z
2

2
=—/pb~v*d9+/p?-v*d.(2, (13)
o) 2 :
and
/V-vp*d.Q:O, (14)
2

where “:” denotes the tensor product twice contracted. d*
represents and admissible variation of the strain rate tensor,
whereas v* represents equivalently an admissible variation
of the velocity.

The second term in the right-hand side of Eq. (13) rep-
resents the inertia effects. Time discretization of this term
represents the discretization of the material derivative along
the nodal trajectories, which are precisely the characteris-
tic lines related to the advection operator. Thus, assuming
known the flow kinematics at time "1 = (n — 1)At, we
proceed as follows:

d g n _ yn—1 X
/pd—'t’v* a2 :/p%v* s, (15)
2 2
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v(E) (@)

Fig. 1 Determination of the position of quadrature points at time step
tn—l

where X represents the position at time "~ ! occupied by the
particle located at position x at present time ¢", i.e.:

x =X+ v 1(X)Ar. (16)
So we arrive at
. *
/Z,ud:d*d.Q—/pI:d*dQ—/vA'; a0
2 2 2
vnfl Lo*
2 2
and
(18)

/V~vp*d.Q=O,
7]

where we have dropped the superindex in all the variables
corresponding to the current time step.

2.1.2 Algorithmical issues

The most difficult term in Eq. (17) is the second term of
the right-hand side. The numerical integration of this term
depends on the particular quadrature scheme employed.

If we employ traditional Gauss-based quadrature on trian-
gles, it will be necessary to find the position at time #*~! of
the point occupying at time #”* the position of the integration
point &, (see Fig. 1):

vl VU EY v (E
= ie = R el CAN T 2 19
/p v > v Wk (19)

) k

where wj represent the weights associated to integration
points &, and = corresponds to the position occupied at
time #"~! by the quadrature point &, see Fig. 1.

If we employ some type of nodal integration, as in [16],
this procedure becomes straightforward, with the only need
to store nodal velocities at time step "~ !. We discuss here
the procedure to follow when employing Gauss quadratures
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on the Delaunay triangles. We proceed iteratively. Denoting
by i the current iteration, we apply

xp =X+ v XA withxe = XY i > 1

until X§ ~ x|

Since we are using an updated Lagrangian strategy, the
computation of the term v"~1(X };_l) requires a projection
from the stored nodal velocities at time 1~

The velocity and pressure variables of the problem can
now be approximated using any of the meshless techniques
of approximation, see, for instance, Moving Least Squares
methods [8,25], Reproducing Kernel Particle Methods [22]
or Natural Elements [17,26], to name a few. Of course, care
must be paid to the fulfilment of the LBB condition, but the
type of interpolation chosen is not relevant for the purposes
of the method here developed.

In the result present in this paper, we have employed nat-
ural neighbour approximation in a Galerkin framework. See
[2,17] for more details on the formulation.

2.2 Flow formulations of rigid-plastic solids

As mentioned before, many forming processes can be formu-
lated as free-surface problems under very standard assump-
tions. Although, to some extent, an elastic recovery exists at
the end of many metal forming process, this is often neglected.
In addition, the Cauchy stress is usually related to the strain
rate tensor. This leads to a formulation that closely resem-
bles that of non-Newtonian fluids, and hence the term flow
formulation [29].

Thus, the equations governing the metal deformation can
be expressed in terms of velocities rather than displacements.
Stresses produced in the forming process can be set in a
simple form as
o=Dd,T)-d, (20)
where d represents again the strain rate tensor (symmet-
ric part of the velocity gradient) and T the temperature.
Depending of the particular constitutive equation chosen for
the metal, we thus obtain different formulations. In [1,2]
a Sellars—Tegart temperature-dependent constitutive model
was implemented in this framework.

3 Theory of a-shapes

As mentioned in Sect. 1, the idea of «-shapes in particular,
and shape constructors in general, is to extract the shape of a
domain described by a set of nodes only. The human eye can
do this easily, but there is no formal definition of shape in
the mathematical literature. a-shapes were first established
by Edelsbrunner and Mcke [13] and Edelsbrunner et al. [14].
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Fig. 2 Evolution of the family
of «-shapes of a cloud of points
representing a wave breaking on [ —
a beach. Shapes Sy or cloud of

points (a), So.5 (b), S1.0 (¢), S2.0 (a)
(d), S3.0 (e) and Seo (f) are

depicted

(b)

(d)

(e)

Other shape constructors giving homotopy-equivalent shapes
have been recently proposed [12]. Given a finite set of points
(that will be the nodes employed in the approximation of
the problems described in the previous section), there exist
a finite set of shapes described by all the possible combina-
tion of points, edges, triangles and tetrahedra (if we consider
three-dimensional spaces) forming simplicial complexes.

A k-simplex or with 0 < k < 3 is defined as the convex
hull of a subset T < N of size | T |= k + 1. A three-
dimensional simplicial complex is a collection, C, of closed
k-simplices (0 < k < 3) that satisfies:

(i) Ifor € Cthenoyr € Cforevery T C T.
(ii) The intersection of two simplexes in C is empty or is
a face of both.

The particular complexes considered in the theory of «-
shapes have vertices in the node set and simplices from the
Delaunay triangulation of the set, which is unique, as it is
well known. The formal definition of the set of o-shapes of
the cloud of nodes follows.

3.1 Definition of the family of «-shapes

«a-Shapes define a one-parameter family of shapes S, («
being the parameter), ranging from the “coarsest” to the “fin-
est” level of detail. @ can be seen, precisely, as a measure of
this level of detail.

Let N be our finite set of points in R and o a real number,
with 0 < o < oo. Let b be an «-ball, that is, an open ball
of radius «. A k-simplex o7 is said to be a-exposed if there
exist an empty a-ball b with T = 9b (| N where 9 means
the boundary of the ball. In other words, a k-simplex is said

UniversidadZaragoza

to be or-exposed if an «-ball that passes through its defining
points contains no other point of the set N.

Thus, we can define the family of sets Fj , as the sets
of a-exposed k-simplices for the given set N. This allows
us to define an «-shape of the set N as the polytope whose
boundary consists on the triangles in F» 4, the edges in F] o
and the vertices or nodes in F q.

Each k-simplex o7 included in the Delaunay triangulation,
D, defines an open ball b7 whose bounding spherical surface
(in the general case) dbr passes through the k+1 points of the
simplex. Let o7 be the radius of that bounding sphere, then,
the family Gy o, is formed by all the k-simplexes o7 € D
whose ball b7 is empty and or < «. The family Gy o does
not necessarily form simplicial complexes, so Edelsbrunner
and Mcke [13] defined the «-complex, C,, as the simplicial
complex whose k-simplexes are either in Gy 4, or else they
bound (k + 1)-simplexes of Cy, . If we define the underlying
space of Cy, |Cy|, as the union of all simplexes in Cy, the
following relationship between «-shapes and «-complexes
is found:

Sy =1Cy| Y0 < a < oo. 21)

a-Shapes provide a means so as to eliminate from the tri-
angulation those triangles or tetrahedra whose size is bigger
than the before-mentioned level of detail, «. Thus, we make
a filtration of the triangles.

In Fig. 2 an example of the previously presented theory
is presented. It represents some instances of the finite set of
shapes for a cloud in a intermediate step of the simulation of
a wave breaking at a beach.
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Fig. 3 Medial axis of a two-dimensional curve

3.2 How to choose the a-value

Many authors claim that the main difficulty with the a-shape
technique is related to the choice of the a-value [23]. In this
section we provide a practical means to do so in the type
problems we are dealing with. To this end, it will be necessary
to give some prior definitions.

Definition 1 The medial axis (see for instance [4] and refer-
ences therein) of a d — 1 dimensional, twice-differentiable,
surface I' = 942 in R? is the closure of the set of points
which have two or more closest points in I”. An example of
medial axis of a curve is shown in Fig. 3.

Definition 2 The local feature size [4], LF S(p), of a point
p € I is defined as the Euclidean distance from p to the
closest point m on the medial axis. In Fig. 4 the computa-
tion of the L F'S at a point is shown. Observe the difference
between this concept and the radius of curvature of the curve
at that point, which is different at different directions.

In mesh generation, the medial axis of a surface has been
used to account for a measure of the desired point density in
aregion (see [5]). To this end, it is useful to define a measure
of the sampling density of the curve.

Definition 3 (¢-sampling) The surface I" is said to be &-
sampled by a subset {n;}"_, of the set of nodes N if every
point p € I is within a distance ¢ - LFS(n;) of a sample
pointny € I'.

In practical situations, it is common to have an explicit
description of the boundary of the domain at the initial time
step, or reference configuration—this will not be the case
for all the subsequent time steps, as mentioned before, since
we try to avoid the use of boundary markers or similar tech-
niques. At this configuration, we proceed by constructing an
g-sampling of the boundary curve or surface. Note that it
should be twice differentiable in order to guarantee a non-
vanishing LF'S. In other words, it will not be possible to
represent a sharp (concave) corner in the domain without the
help of a segment chain (in 2D) or boundary triangulation (in
3D).
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p

Fig. 4 Computation of the LFS at a point p

It is therefore important to choose the level of detail up to
which we represent the initial configuration of the domain.
Details of size lower than the chosen discrete LF'S will not
be represented by the method. In fact this is similar to the sit-
uation found when meshing a mechanical part, for instance.
Many analysts choose to eliminate some details of the geom-
etry irrelevant for the results.

Once we chose the desired level of detail for represent-
ing the initial configuration of the domain, we construct an
e-sampling of the boundary (with ¢ < 1) and extend the
cloud of nodes to the interior of the domain, taking always
the nodal distance measure, h ~ ¢ - LF'S.

As dictated by the preceding definitions, the choice of «
such that h < o < LFS will provide a good approximation
of the initial domain. In this way, triangles pertaining to the
obtained shape of the domain will be bounded from above
by the chosen L F'S and from below by /. Thus, no triangle
will overlap concave portions of the domain’s boundary, nor
spurious holes will appear. There exist, in addition, theoret-
ical proofs of the convergence of the shape of the domain
to the actual one with increasing nodal distributions, see for
instance [23].

As the domain evolves, no further explicit definition of
the boundary will be available, and the resulting shapes will
never reproduce details of LFS lower than «, as is obvi-
ous (those triangles will be eliminated from the triangula-
tion). However, for nodal discretizations fine enough, this
technique provides very good results, with excellent mass
conservation properties, see [1,17,24].

3.3 Problems with the «-shape technique

There remain, however, some important problems in the
application of «-shape techniques to updated Lagrangian
simulations of flows with free surfaces. Maybe the most
important is that, when contact between two portions of the
domain, or auto-contact occurs, the L F'S of portions of the
boundary—precisely those getting into contact—decreases,
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Medial axis

Fig. 5 Evolution of the LF S at the neighbourhood of two surfaces
getting into contact. A portion of the medial axis of points in the neigh-
bourhood of the contacting area is depicted. Remember that the L F'S is
the distance between the boundary and the medial axis. Thus, it vanishes
rapidly in this situation

Fig. 6 Spurious detection of contact between the breaking wave and
the still water

and can be, during some time steps, below the threshold value
«. This is precisely the situation that will happen shortly after
the time step depicted in Fig. 2, see Fig. 5. If this happens,
contact will be spuriously detected by the standard «-shape
technique once the L F'S is below «. In Fig. 6 an example is
provided for the previous problem of spurious detection of
auto-contact between the breaking wave and the surface of
the sea. Note that contact is detected some time steps prior
to its actual occurrence.

In the next section we propose two additional filtration to
be done after the a-shape filtration in order to improve the
behaviour of the method.

4 Proposed algorithm

The proposed algorithm makes use of the information pro-
vided by previous time steps on the shape of the domain and,
through the computed velocity field, on its future shape. Thus,
we will make use of the essential variable fields to amelio-
rate the behaviour of the a-shape technique by performing a
modified filtration processes over the Delaunay triangulation
of the set of points.

In order to discern different parts of a body or differ-
ent bodies getting into contact, we assume that all particles
belonging to the same body should behave in a somewhat
similar way. In our case, they all should move roughly with
the same velocity or, more precisely, without jumps in the
velocity nor steep gradients (this is true only for moderate
Reynolds numbers in the flow, but the proposed technique is
not valid for turbulent flows). In this way, the k-simplexes
found to be constituted by nodes that exhibit highly dissimi-
lar characteristics should be regarded as invalid and filtered
out of the a-shape.
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For each k-simplex, we employ a modified circumcircle
criteria which includes a deformation parameter based on
the differences between the associated nodal velocities. This
parameter is used to alter the metric space. Elongating the
Euclidean distance measured proportionally to the velocity
differences causes the invalid simplices to appear larger and
therefore fail the circumcircle test.

In order to determine the deformation parameter in our
case, we compare the different velocity vector directions. To
this end, we first compute a principal direction d, which is
found as the local normal direction at [28]

k+1

E SiVi
i=1

k+1
d= s;v; such that ||d|| = max
D sivi 4] = max

i=1

. (22)

where v; represent each of the nodal velocities associated to
the k-simplex, and || - || denotes the norm associated to the
metric space.

We define the angle 8 as the one formed by each velocity
vector with the principal direction d. A deformation factor
fp is then obtained according to

|ﬁmax - ﬁmin|

T

fp=1- (23)

This factor allows to filter those k-simplexes formed by
nodes of opposing or diverting velocities. Note that only if the
simplex is “large” (according with an user provided measure,
«) and their nodes move with very dissimilar velocities, it will
be eliminated from the triangulation. If the triangle is small
enough it will be most likely representing a recirculation
in the flow, for instance, and will still be maintained in the
model.

There are, however, cases in which only one of the bodies
(or only some sub-region of the model) is moving and the
previous filter alone would still detect a spurious contact. In
that situation one or more of the nodes will not be taken into
account by the above factor, yet those simplexes need to be
filtered. The need arises to take into account the gradient of
those velocities, and calculate a deformation factor fioq as

Il vi llmax —

| v j [l min
f mod = 1 — . (24)
| vi llmax
Once the deformation factors are obtained we proceed to
alter the metric tensor, assuming it constant at each simplex.
The distance between two points can be defined as

e, y) =/ — M - )T, 25)

where M represents the metric tensor. We define a “modified”
metric tensor M with 1 /(f2 , ff’;’ ) on the diagonal, where a
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and b are user defined factors that allow adjusting the method
depending on the nature of the simulation.

The new deformed circumradius is used to check the
a-shape test, usually making the unwanted simplexes fail.
This process is performed on a simplex by simplex basis.

While the Delaunay triangulation is necessary when deal-
ing with Natural Element methods, it is not with the rest of
meshless methods. It adds a little bit of CPU time to the simu-
lation, that in general is negligible. Very efficient algorithms
exist in the literature (see, for instance the Qhull software
[6], which is free and very efficient). It is able to triangulate
1000 nodes in 0.016 CPU seconds on a laptop equipped with
a Centrino processor and 500 Mb of RAM memory. The pro-
posed filtration adds some very little extra CPU time to this,
since it can be implemented within the Delaunay algorithm,
or by adding a single do while loop to the code over all
the triangles.

5 Examples
5.1 Benchmarking

In order to validate the proposed method, it was employed in
two classes of idealized cases of a 2D drop falling as a rigid
body towards a wall, Fig. 7. On the first class problems, see
Fig. 7a, the ball was dropped over a plane surface moving at
the same direction at less speed than the ball. On the second
family of cases, Fig. 7b both bodies move at the same speed
but in different direction. The « parameter on all cases was
chosen deliberately larger than actually needed, so that the
a-shape would be a complete convex hull encompassing both
bodies. That resulted in a triangulation that includes several
invalid triangles, shown in Fig. 8b. These triangles could
constitute an important error source due to the effects of a
non-existing contact.

The first setting allows to test the effect of the gradient of
velocities, taken into account by finod. At the limit case, the
speed of the plane is null, so the deformation factor goes to
infinite, therefore the size of o becomes unimportant as the
triangles composed by nodes from the two different surfaces
will always fail the test. In this case @ was 5—thus taken
deliberately large—a was 10 and b was 0.

Less extreme cases where tested, on which the surface
was not completely still, but moving at less speed in the
same direction of the ball. All cases resulted in successful
filtrations. Figure 9 shows a detail of the area on which both
surfaces nearly touch. Triangles eliminated by the proposed
filtration are shown in light grey. Specially noteworthy is the
difference between the element sizes between the drop and
the plate. Without an external filtration, there is no o which
could manage to obtain a reasonable «-shape, given that the
plate element size is more than five times the element size of
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‘ v2
(a) (b)

Fig. 7 Method validation. Cases studied of a 2D ball drop over a flat
surface.a0 < vy <vjandbvy =v;, 0< B <mw/2

Fig. 8 Drop approaching a
surface. Both families of cases
studied were tested on the same
set of nodes (a). The resultant
geometry of the domain
provided the standard «-shape
(b) and the modified method
(c) are depicted

(b)

()]

the drop and the difference with the gap between both bodies
is even more drastic. Density based filtrations could be made
to recognize both areas, yet the case would still prove to be
challenging if possible at all.

On the second family of cases the surface moves at the
same speed but in different direction, still usually towards
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Fig. 9 Drop approaching a still plate (detail of the contact zone). In
light grey the triangles filtrated by the proposed techniques are shown

Fig. 10 Detail of the velocity field at the wave crest

the ball. This exercise allows to check the performance of the
filtration due to fg. The case in which both bodies approach
directly to each other is also an extreme situation where none
of the offending triangles will ever pass the test regardless of

Fig. 11 Wave before breaking.
Velocity vectors (a), o-shape
without additional filtration (b)
and shape reconstructed with the
new approach (c¢). In this cases
the parameters used where
a=9a=10,b=1

the chosen «. In this case, «, a and b were 5—again deliber-
ately large—O0 and 1, respectively. The angle difference has
been tested up to the case where the bodies moved in a per-
pendicular way. In all the conditions both bodies could be
recognized by adjusting the b factor only. In this case the
difference between element sizes at the drop and the plate is
also noteworthy.

5.2 2D wave breaking

A third type of test was performed with the wave problem
shown in Figs. 2a—f and 6 in which we could check the per-
formance on a real 2D case. The velocity field on the crest of
the wave is shown in Fig. 10. It can be noticed how the vectors
are roughly aligned in the same direction, thus resembling the
first family of cases in the preceding section. Even though
the velocity vectors seem to be very similar, the difference is
so that the filtration is successful at the crest. Again, a rea-
sonable value for the parameters a and b seems to be 10 and
1, respectively, and our experience dictates that this is so for
a general problem presenting this kind of difficulty.

The results of the proposed technique are shown in Fig. 11.
In this case the proposed method is able to discern between
the crest and the trough of the wave. Again, the o value was
taken deliberately too high, to show that even a poor choice
of o will lead to a proper result.

Mass (volume) conservation is analysed in Fig. 12. In this
case, the predicted volume of the whole domain is analysed,
taking into account that obtained by standard «-shape tech-
niques and the one obtained by the proposed method. As can
be noticed, the proposed method gives more accurate results,
with less than 1% error in volume. The gain in volume due to
spurious contact detection for the a-shape technique raises
up to 5% for the final time steps, even if the contact region
in the model is concentrated near the wave crest.

(b)
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(c)
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Fig. 12 Volume conservation for the standard and the proposed
technique

5.3 An extension to 3D problems. Aluminium extrusion
5.3.1 Constitutive equations for aluminium

In this last example we considered a rigid-viscoplastic consti-
tutive law for the aluminium, allowing for a flow formulation
for the problem [29]. In essence, we neglect inertia terms in
Egs. (10)—(12) and considered a non-linear constitutive law
for the aluminium in the form

g =M@, (26)
3d

where s represents the deviatoric part of he strain rate tensor
and oy represents the yield stress. d represents the equivalent
strain rate. Note that, depending on the 1 value, the return to
the yield surface is done with different velocity. Since it is
common to describe aluminium behaviour as rigid-plastic
(rather than viscoplastic) we employ null viscosity, so as to
enforce ¥ =0 — oy = 0, leading to

20y
- 27

Finally, the constitutive equation, accounting the incompress-
ibility of plastic flow results:

Oy
o =2ud — pI, withp=—=. 28
ud —p iz 37 (28)
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Fig. 13 Schematic geometry of the die for the extrusion of a hollow
profile. Note the special characteristics of the flow, that must divide to
pass trough the green region and then re-join to flow out of the die (red
region)

5.3.2 Linearized form of the variational problem

If we write the incremental variational equation at time 7+ At
we arrive to:

(0" + AT +2u(d" + Ad)(d' + Ad))
2(t+At)
:d*d2 =0. (29)

Domain updating is done in an explicit procedure, given
the last converged velocity field, but due to the non-linear
character of the constitutive equations, an iterative approach
has been applied to the conservation equations, using the
Newton—Raphson scheme, thus leading to

a dt+At
/ (—AApI-I—Z;L(H(afi):AAd it

2(t+Atr)

+ 2M(d;jAf)AAd) - d*dQ

- _ / (_p]t(+AtI+2M(d5{+At)d;(+At) Zd*dQ,
(t+At)
(30)
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Fig. 14 Sequence of z z

aluminium flow at the early
stages of the extrusion of a
hollow cylindrical profile
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where the subscript k indicates the iteration within a time

increment. The incremental form of the incompressibility

condition results

V. (AAv) p*d2 = —
Q(t+Ar)

V- prde.
(t+At)
31

If we approximate the velocities and pressures, as well
as their variations, by employing a finite-dimensional set of
basis functions, we arrive to a discrete form of the previous
equations (Bubnov—Galerkin method)

AAY (x) = D" pr(x)AAvy, (32)
=1

n
AApt(x) =D i (x)AApy, 33)
=1
where n represents the number of nodes considered in the
approximation. Natural neighbour approximation (Laplace
interpolations [27]) is employed in this work to interpo-
late the velocity field, while Thiessen interpolation (piece-
wise constant on each Voronoi cell) is used for pressures.
Any other form of meshless approximations could also be
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employed as well. More details on the derivation of the model
can be found in [1,2].

5.3.3 Performance of the proposed technique

We considered the simulation of the extrusion of a hollow
cylinder. Tube extrusion is especially difficult to simulate
from the geometrical point of view, since the diverted metal
flow must converge before going through the last section of
the extrusion die. A schematic representation of the geometry
of the die is shown in Fig. 13, where only a quarter of the
domain was represented. By invoking appropriate symmetry
conditions, this same quarter of the domain was employed
for simulation. Some snapshots of the flow of aluminium
during this extrusion process are shown in Fig. 14, where
post-processing has been employed for clarity, in order to
show the whole geometry of the domain.

The domain is marked in red lines on Fig. 15. This fig-
ure also shows a particular time step where using regular
«-shapes results in spurious contact detection. This is also
notorious in Fig. 14c. The invalid tetrahedra can be recog-
nized by their size, larger than the nodal spacing in that area,
giving a jagged feel to the resulting solid.
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Fig. 15 Extrusion process. Simulation domain (red lines) and snapshot
showing spurious contact between flows at an intermediate time step

Fig. 16 Extrusion process. Instant before contact of the two metal
flows. Spurious tetrahedra are removed from the triangulation (o = 8,
a=0.1,b=2)

The model is divided in sections of different nodal den-
sities, being the sparsest part at the top. Using the standard
method special care is needed to avoid spurious contact. It
is possible to define different a-values for each region to
address this problem.

With the new approach, a single, deliberately big, «-value
can be defined and still obtain good results. In Fig. 16 a snap-
shot corresponding to the same time step on which traditional
a-shapes failed to avoid the spurious contact is shown. In this
case flow fronts are clearly kept apart from each other until
actual contact occurs.

6 Conclusions

An improved a-shape technique is introduced for domain
tracking in updated Lagrangian simulations of free surface
flows. This improvement is based on the addition a new fil-
tration to the standard «-shape technique. This new filtration
takes into account the velocity field of the flow, so as to

@ Springer

predict in some sense its future geometry. We have intro-
duced a way to use non-geometric information inherent to
our model, as a tool to filter «-shapes and being able to obtain
good surface definition, avoiding traditional problems asso-
ciated to this method, as spurious contacts. Even in cases
where there is large nodal density differences, the flow pro-
vides enough information to recognize, even for rough tun-
ing of «-values, different regions in the model that pertain
either to zones getting in contact or to different bodies in the
simulation. Despite the inclusion of two new user-defined
parameters, our methodology is flexible enough to face the
geometry changes that occur with moderate Reynolds num-
ber flows, as covered by the presented formulation. The main
conclusion is that it is considerably easier to find the three
parameters «, a and b, than to find the single o value for
some special, delicate cases—notably some time steps prior
to contact—in standard «-shape technique. We have shown
how, even for a poor selection of «, the proposed technique
is able to correctly filtrate the actual geometry of the domain.
Values of the parameters are much less sensible to modifica-
tions than « for standard «-shapes, and thus the ease of use
and good results of the proposed technique.
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ABSTRACT. In this paper we present a novel methodology for the numerical simulation of fluid-
structure interactions in the presence of free surfaces. It is based on the use of the Natural
Element Method (NEM) in an updated Lagrangian framework, together with the integration
of the Navier-Sokes equations by employing a Galerkin-characteristics formulation.
Tracking of the free-surface is made by employing shape constructors, in particular o-
shapes. A theoretical description of the method is made and also some examples of the
performance of the technique are included.

KEYWORDS: Fluid-structure interaction, Meshless methods, Natural Element Method, a-
shapes.

1. Introduction

The fact that meshless methods (Belytschko et al., 1994) (Liu et al., 1995) do
not suffer of mesh distortion opened a renewed interest in the last decade in
Lagrangian formulations for some problems, being free-surface flows a typical
example. Thus, it is possible to employ an updated Lagrangian strategy for the fluid
domain, while employing a total or updated Lagrangian strategy for the solid. This
approach is very convenient for some classes of problems, especially those
involving drastic changes in the fluid domain geometry. Both domains are then
formulated in similar frameworks and the coupling between them becomes more
direct than in ALE formulations (see (Donea, 1983) or (Donea and Huerta, 2003))

In this paper we describe mainly the fluid flow formulation proposed in the
context of an updated Lagrangian strategy. We employ the a-shape-based Natural
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Element Method (a-NEM) (Cueto et al., 2002) (Cueto et al., 2003) to this end. At
present the solid is assumed rigid, being prescribed its kinematics.

This formulation posses some advantages, that include an exact interpolation
along the boundary (Cueto et al., 2001), that allows for a standard, FE-like,
treatment of the fluid-solid interface conditions. We firstly describe the bases of the
o-NEM and then introduce the proposed numerical scheme for the integration of the
Navier-Stokes equations. Finally, we include some examples that demonstrate the
accuracy of the proposed scheme and also prove the potential of the technique.

2. The Natural Element Method
2.1. Standard formulation

The NEM (Sukumar et al., 1998) (Cueto et al., 2003) is a Galerkin procedure based
on the natural neighbor interpolation scheme, which in turn relies on the concepts of
Voronoi diagrams and Delaunay triangulations (see Figure 1), to build Galerkin trial
and test functions. These are defined as the Natural Neighbor coordinates of the
point under consideration, that is, with respect to Figure 2, the value in the point x
of the shape function associated with the node 1 is (Sibson, 1980) (Sibson, 1981)

fal

= 1
$ (%) A (1]

Figure 1. Delaunay triangulation and Voronoi diagram of a set of points.

In addition, the NEM has other interesting properties such as linear consistency and
smooth shape functions (C* everywhere except of the nodes). These functions are
dependent on the position and density of nodes, leading to standard FE constant
strain triangle shape functions, bilinear shape functions or rational quartic functions
in different situations (see Fig. 3 for a typical shape function). These properties
permit an exact reproduction of linear displacement fields on the boundary of
convex domains.
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Figure 2. Definition of natural neighbour coordinates.

Figure 3. Typical Shson shape function (courtesy N. Sukumar)

2.2. a-shape formulation

A slight modification of the way in which the Natural Neighbour interpolant is
built was proposed to achieve linear interpolation also over non-convex boundaries
(Cueto et al., 2001). This modification was based on the concept of a-shapes. These
are a generalization of the concept of the convex hull of a cloud of points and are
widely used in the field of scientific visualization and computational geometry to
give a shape to a set of points. Alpha-shapes give shape to a cloud of points and are
widely used in Computational Geometry despite having been developed quite
recently. They were first introduced in two-dimensions by Edelsbrunner in 1983,
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and not generalised in three-dimensions until (Edelsbrunner and Miicke, 1994) An
a-shape is a generalisation of the convex hull of a cloud of points. It is a polytope
that is not necessarily convex and that can be triangulated by a subset of the
Delaunay triangulation, thereby maintaining the empty circumcircle criterion.

In what follows, we introduce the formal definition of a complete family of -
shapes for a given set of points N, as in Edelsbrunner and Miicke, 1994. Let N be a
finite set of points in ) and o a real number with 0 < o < oo, A k-simplex o7 with 0
<k < 3, is defined as the convex hull of a subset T = N of size | T|=k+1. Let b be
an a-ball, that is, an open ball of radius o.. A k-simplex o1 for 0 <k < 2 is said to be
a-exposed if there exists an empty o-ball b with T = 6b(\N, where ¢ indicates the
boundary of the ball or, more properly, the sphere or plane bounding b. That is, a k-
simplex is a-exposed if an a-ball whose boundary passes through its defining points
contains no other point of the set N. In this way, we can define a family of sets Fy ,
as the sets of a-exposed k-simplices for the given set N, fixed oo and 0 < k< 2.

Based on these concepts, the a-shape of N, <5, is defined as the polytope whose
boundary consists of the triangles in F, ,, the edges in Fy , and the points or vertices
in Fo, As the a value decreases, the o-shape shrinks by the progressive
development of cavities or holes. For this to occur, one or more a-balls can occupy
the interior of a simplex. The o value clearly gives an intuitive measure of the
maximum curvature in a region of the domain. The a-shape concept is also a
generalisation of the convex hull since the a-shape for value o = 0 is identical to the
initial set of points, i.e., &, = N, and the a-shape for sufficiently high values of o is
the convex hull of the given set.

An example of some a-shapes of the complete family for a given set of points
distributed over the geometry of a human jaw can be seen in Figure 4.

Figure 4. Five elements of the complete family of a-shapes of a cloud of points
distributed over the geometry of a human jaw. Increasing values of « from O (top
line, l€eft) to infinity (bottom line, right)
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It has been demonstrated (Cueto et al., 2001) how the construction of the
interpolant over an appropriate a-shape of the domain gives rise to an exact
imposition of essential boundary conditions over any kind of domain (convex or
not.) In addition, it enables us to track the flow front position accurately.

3. A natural neighbour updated Lagrangian Strategy for the fluid domain.

In this section we review the time integration scheme developed in (Gonzalez et
al., 2006), that will be applied in the integration of the fluid flow equations. It is
based on a Galerkin-characteristics formulation of the Navier-Stokes equations.

3.1. Governing equations.

We consider here the problem of Fluid Dynamics at moderate Reynolds number.
Thus, the governing equations can be set as follows. Consider a fluid in a region Q
of the space R? or R%. The fluid flow is governed by the following momentum and
mass balance equations:

PV +(vV)V) = Vo + pb in Qx[0,t] [2]
Vv=0in Qx[0,t] [3]

where v represents the fluid velocity, o the stress tensor, p represents fluid density
and b the volumetric forces acting on the fluid. The constitutive equation for a
newtonian fluid is given by:

c=—pl+t=—pl+2uD (4]

where D is the strain rate tensor, p the pressure and x the dynamic viscosity of the
fluid. To solve the problem we must prescribe an initial state as well as boundary
conditions, as usual.

3.2. Time discretisation

The motion equations can be grouped to

V6+ pb= p% = p(% + (V'V)V) [5]
Vv=0 [6]
6=—pl+2uD [7]

The weak form of the problem associated to Egs. [5], [6] and [7] is:
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jzyD D'd0 - _[pl D'dQ - jpbv dQ+Ip—V do

(8]
IV-vp dQ =0
Q

The second term in the right-hand side of Eq. [8] represents the inertia effects.
Time discretization of this term represents the discretization of the material
derivative along the nodal trajectories, which are precisely the characteristic lines
related to the advection operator. Thus, assuming known the flow kinematics at time
t,1 = (n—1)At, we proceed as follows:

dv . V() -v"HX) .

where X represents the position at time t.; occupied by the particle located at
position x at present time t,, i.e.:

x = X + v H(X)At [10]
So we arrive to:

JZ,uD D'dQ - J'pl D'dQ - J'p [11]

where we have dropped the superscript in all the variables corresponding to the
current time step.

3.3. Algorithmical issues

The most difficult term in Eq. [11] is the second term of the right-hand side. The
numerical integration of this term depends on the quadrature scheme employed. If
we employ traditional Gauss-based quadratures on the Delaunay triangles, it will be
necessary to find the position at time t,, of the point occupying at time t, the position
of the integration point & :

j V V do = Z (h‘k) v (gk) [12]
Q

where @y represent the weight associated to integration point &, and Ey corresponds
to the position occupied at time t,, by the quadrature point &. If we employ some
type of nodal integration, as in (Chen et al., 2001) (Gonzalez et al., 2004a), this
procedure becomes straightforward, with the only need to store nodal velocities at
time step tp.1.
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We discuss here the procedure to follow when employing Gauss quadratures on
the Delaunay triangles. We proceed iteratively. Denoting by i the current iteration,
(i > 1), we apply

X = Xj + Vg (X AL with x, = X§ [13]

until X}, ~ X\ within a prescribed tolerance.

We have assumed that the number of natural neighbours of a given integration
point does not change during a time step, thus needing the storage of nodal
velocities at time t-1 only. It can occur that some of the nodes neighbouring the
integration point at time t were not actually its neighbours at time t-1, but this does
not constitute a problem, since the number of natural neighbours of a point is
usually high (much bigger than three), so the quality of the interpolation is thus
guaranteed. In fact, this procedure has shown to converge at a high speed, with no
more than 3 iterations, at least for reasonable time steps.

4. Numerical examples.
4.1. Broken dam problem

The broken dam problem is classic when testing the performance of integration
methods for free surface flows. We consider a rectangular column of water, initially
retained by a door that is instantaneously removed at time t=0 (see Fig. 5). When
the door is removed, water flows under the action of gravity, considered as 9.81
m/s?. Density of water is 10° kg/n?, and a viscosity of 0.1 Pa-s was assumed as in
other numerical simulations performed using different numerical strategies (see
Duchemin et al., 2002 and references therein, for instance). The discrete model was
composed of 3364 nodes. No remeshing, addition or deletion of nodes was
performed throughout the computation.

Removable door

Water tank

0.05715 m

0.05715 m

Figure 5. Geometry of the broken dam problem.
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Fig. 6 shows a comparison between numerical results and experimental ones,
obtained from the literature (Martin and Moyce, 1952). As can be noticed, an
excellent agreement was found between experimental and numerical results, despite
the distortion of the triangulation. In Fig. 7 the error in mass conservation is
depicted, which remained always below 3%. The influence of the relationship
between the parameter o and the nodal parameter h on this error was deeply
analyzed in (Martinez et al., 2004).

2.8F

24
2.21

1.8f

=0= g—-NEM Results
g  Experimental results | |

1.6 e R s

14

1.2

0 0.5 .?. 15 2

Figure 6. Front position (in non-dimensional form) in time. Numerical results
vs. experimental ones.
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Figure 7. Error in mass conservation.
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4.2. Water mill

In this example we study the flow generated by the movement of a water mill.
The geometry of the container and the dimensions of the mill are shown in Fig. 8(a).
The model is composed of 4698 nodes, distributed uniformly at the initial time in a
square domain of dimension 20x20 cm. The sail is 10 cm long, with unit thickness.
The sail rotates with constant angular speed of 0.5 rad/s.

(c) 200" time step. (d) 100™ time step.

Figure 8. (a) to (c) vector plot of the velocity field at three different time steps. (d)
Contour plot of the velocity field.

Stick boundary conditions were assumed on the reservoir walls, being the upper
water surface a free boundary which evolves slightly during the simulation as
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noticed in Fig. 8(c). Time increment was set to 0.005s. being the fluid viscosity of
0.01 Pass.

The ability of the proposed method for describing flows in the framework of
updated Lagrangian description is then fully proved.

4.3. Water mill partially submerged

The proposed method seems particularly well adapted for dealing with free-
surface flows. If the sail is only partially submerged, then large-amplitude waves are
expected, justifying the interest of the present simulation. For this purpose, we
consider the same geometry as in the previous example, but maintaining the sail
only partially submerged, as shown in Fig. 9.

Figure 9. Initial geometry of the mill problem for the partially submerged
configuration.

Material parameters were chosen as in the previous example. In this case the
time step was set to 0.03s. This test can be found in other references, see, for
instance (ldelsohn et al., 2004). Note the appearance of a large amplitude wave on
the free surface of the liquid. The geometry of the fluid and the eventual generation
of drop and jets can be accurately described by the a-shapes. A deep study on this
topic has been recently presented in (Martinez et al., 2004) and (Gonzalez et al.,
2006).
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(b) 200™ time step

(c) 300™ time step

(e) 500" time step (f) 600" time step

Figure 10. Sx snapshots of the generation of a wave during the rotation of the
mill.

5. Conclusions.

This paper proposes a Galerkin-characteristics updated-Lagrangian fluid flow
formulation for simulation of fluid-structure interaction problems. The fields
approximation is based on the use of the Natural Element Method which makes it
possible to work with the same cloud of nodes which moves with the material
velocity, avoiding remeshing stages. The use of Lagrangian descriptions in both the
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solid and fluid domains greatly simplifies the formulation and numerical resolution
of fluid-structure interaction problems, especially those involving free-surfaces.

The application of the proposed scheme to real FSI problems (i.e., those in
which the movement of the solid is coupled with the fluid one) is currently the aim
of our research.
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