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Natural Element simulation of free surface

øows

Abstract

Numerical simulation of free surface øows remains to be a problem of utmost difficulty

in the öeld of Computational Mechanics. The origin of these problems is twofold. On

one side, themost typical description of the øuid kinematics is the Eulerian description.

But this description is by no means the most adequate for describing the evolution of

the free surface, which would be most easily described in a Lagrangian approach.

On the other side, if a Lagrangian description of themovement is preferred, then the

most extendednumerical techniques for solving the resultingNavier-Stokes equations,

such as önite elements, önite differences or önite volumes, become extremely intricate.

In this thesis a different approach has been pursued. Meshless methods have been

chosen to approximate the Navier-Stokes equations, and particularly, the natural el-

ement method has been chosen due to its particular characteristics. Among these,

one can cite the exact imposition of essential boundary conditions, the ability for high-

order approximations, and its strong link with the geometrical structure of the descrip-

tion of the free surface that has been chosen.

In this thesis a second order in time natural neighbour Lagrange-Galerkin method

has been developed. This method has demonstrated excellent results in problems

where previous approaches failed. In addition, a shape constructor method has been

proposed for the automatic extraction of the geometry of the domain as it evolves in

time. It is based on the concept of α-shapes, but two additional α-öltrations are per-

formed on top of the traditional algorithm that make it much more powerful and less

sensitive on the choice of the parameters.

Finally, the developed method has been applied to a particularly challenging prob-

lem, which is that of the Worthington jet and, in general, free surface, non-Newtonian

øuid mechanics.
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Simulación de øujos con superöcie libre por el

método de los elementos naturales

Resumen

La simulación numérica de øujos con superöcie libre continúa siendo hoy día un prob-

lema de extrema diöcultad en el campo de la Mecánica Computacional. El origen de

estas diöcultades tiene dos vertientes. Por un lado, el hecho de que la cinemática de

los øuidos se describe habitualmente y demanera natural en unmarco euleriano. Pero

este tipo de descripción no es, en modo alguno, la más apropiada para describir el

movimiento de la superöcie libre, que aceptaría de un modo mucho más natural una

descripción lagrangiana.

Por otro lado, si se escoge una descripción lagrangiana, las técnicas numéricas más

extendidas (elementos önitos, diferencias önitas o volúmenes önitos, entre otros), se

vuelven extremadamente complejos en su aplicación a las ecuaciones resultantes de

Navier-Stokes.

En esta tesis de plantea una aproximación al problema de Navier-Stokes con su-

peröcie libre completamente diferente. Se han escogido los métodos sin malla, y más

concretamente, el método de los elementos naturales, para realizar la simulación. Éste

último se ha escogido por sus peculiares características, entre las cuales cabe citar la

imposición exacta de condiciones de contorno esenciales, su capacidad de desarrollar

aproximaciones de alto orden y su estrecho lazo con la estructura geométrica que se

ha escogido para la descripción del movimiento de la superöcie libre.

En esta tesis se ha desarrollado unmétodo de Lagrange-Galerkin de vecindad natu-

ral de segundo orden en el tiempo, que ha mostrado excelentes resultados en proble-

mas en los que intentos previos han fallado. Además se ha desarrollado un constructor

de formas para la extracción automática de la geometría del dominio conforme ésta

evoluciona en el tiempo. El método desarrollado se basa en la técnica de formas α,

pero se han añadido dos öltrados adicionales que hacen que método sea mucho más

robusto y menos sensible a la elección de los parámetros.

Finalmente, el método recién desarrollado se ha aplicado a un problema especial-

mente complicado como es el del jet de Worthington y, en general, a los øujos de øui-

dos no newtonianos con superöcie libre.
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Chapter 1

Introduction

The contemporary signiöcance of numerical methods in a wide range of öelds is a fact

already accepted. This is evidencedby the large number of such tools routinely applied

in the industrial sector. Additionally, the increased performance of computers, which

took place in the last twenty or thirty years, has allowed the numerical simulation of a

large number and variety of phenomena studied by various disciplines. Whether in the

öeldsofmathematics, engineering, physics ormedicine, computer simulations canpro-

vide quantitative results in highly complex processes. Problems such as the mechani-

cal response of solids, øuids, and even living tissues, have been successfully addressed

through the development of mathematical formulations of the laws that govern those

behaviors. However, we are far from providing a mathematical description for every

problem and evenmore from solving them—if that would be even possible—with the

techniques currently available.

This thesis originated in the framework of the project ``Meshless simulation of øuid-

structure interaction'', funded by the Spanish Ministry of Science and Innovation. One

of the most difficult problems we faced during the development of such project was

thedesignof anefficient computational techniquewhich could faceeffectively thebur-

denassociatedwith free-surfaceøuid-solid interaction. The complexity associatedwith

this phenomenon was mainly due to the complex nature of the free surface problem,

which, added to the inherent øuid-structure interaction difficulties, led to numerous

difficulties.

In the örst half of the decade of 1990 a new family of numerical methods arose that

were coined as meshless methods. These methods share one common characteristic,

despite the wide range of names and different techniques that they encompass. This

characteristic is that, either based upon Galerkin or collocation techniques, meshless

methods do not greatly suffer of mesh distortion, and hence their name. They thus

25



26 Andrés S. Galavís Borden

appeared as a natural choice for the problem at hand. Meshless methods allow for an

updatedLagrangiandescriptionof theøuidøow, thus avoiding remeshingnor complex

descriptions such as Arbitrary Lagrangian Eulerian methods (ALE).

This thesis proposesusing thenatural elementmethod to study certainøow features

in the presence of a free surface for both Newtonian and Viscoelastic øuids. To this

end it is necessary to improve the robustness of this technique, to implement the øuid

model focus of our study and to solve somealgorithmic aspectswhich are troublesome

for this method, as will be deeply described later on.

In this thesis we will move away from traditional models in at least two ways. On

the one hand, the øuid mechanics is usually treated from an Eulerian approach, which

assumes that there are öxed observation points from which sampled particles allow

to describe the state of øux at a given time instant. This way of studying øows is very

useful for stationary situations or for internal øows, where the shape of the volume oc-

cupied by the liquid does not change, or if it does, at least is possible to predict where

to place the observation points. However, the Eulerian point of view is not equally

suitable when we are in the presence of largely changing free surfaces. An arbitrary

Lagrangian Eulerian (ALE) approach has been developed and it is well established by

now, although it does not come free of problems. The approachwe adopt in this thesis

is the use of an updated Lagrangian scheme, in which each observation point moves

associated to amaterial particle. We consider that this strategy will be themost appro-

priate to track domains evolving in time, typical of the problems that concern us. This

scheme has been successfully used in González (2004) for the case of Newtonian øuids.

This method for øuid øow simulation will be fully explained on Chapter 3, where some

examples showing the technique capabilities will be presented as well.

The second relevant aspect regarding the way on which this work parts from the

norm is on the numerical solution of the øuid (Navier-Stokes) equations. The Finite Ele-

ment Method is the most widely used and developed numerical technique for the ap-

proximate solution of partial differential equations. Applying this method to problems

withheterogeneousmaterials, anisotropicornonlinearbehaviorhas yieldedhigh-qual-

ity results. It seems logical, therefore, that the örst choice for the approximate solution

of solid mechanics equations, would be precisely the FEM. This choice is not so clear in

the öeld of øuidmechanics. Its election presents not a few drawbacks to contendwith.

First, in order of construction, and perhaps also in order of difficulty, would be themak-

ing of amesh that accurately represents the domain under study. The resolution by the

önite element method involves a discretization of the domain. This is necessary both

for the requirednumerical integrationofGalerkinmethodand for the very construction
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of FEM shape functions.

While great strides on improving these procedures have beenmade and some func-

tionality has been achieved, computational mesh generation is still a very active re-

search öeld. It has a large number of groups dedicated to it, being far from a solved

problem or sufficiently automated (as an amused activity, the interested reader can be

bothered to perform a quick search for papers published on 2010 on this topic). On

this topic, three-dimensional domains represent additional and particular difficulties.

In fact, mesh generation is still one of the most time consuming parts in the process

creating amodel by the önite elementmethod, and to some extent could be perceived

almost as an art.

It is on the numericalmethod of solution, where themost important selection in the

direction of this thesiswasmade. On thismatter a road lesswell-traveled has been cho-

sen, so the Finite Volume Methods (very popular in commercial simulations of øuids)

and Finite Differences (more typical of academia) that are usually used with Eulerian

schemes where set aside. Also ignored has been themethod of Finite Elements, which

as alreadymentioned, despite being themost popular approaches used in Lagrangian

(both industry and academia), is not capable of withstanding large deformations do-

mains—at least not without modiöcations to the method. The employed technique in

this work has been the Natural Element Method, which belongs to the family of afore-

mentioned meshless methods. The characteristic of these is that they do not require

öxed information about the connectivity betweennodes,which iswhy there is noprob-

lem in followingmaterial particles even if they change their neighborhood at each time

step.

1.1 State-of-the-art for meshless methods

Several names have been proposed for these methods in an attempt to characterize

them: methods of particles, önite point, element-free methods, diffuse elements, etc.

each time putting emphasis on a characteristic of eachmethod. Still, the commonality

between them is that the nodal connectivity is obtained through a search algorithm in

a process transparent to the user, releasing the burden of generating a suitable mesh

for the domain at each stage of the simulation.

Most meshless methods continue to progress, even though the last two decades

produced great advances in their understanding. Just to cite an example, works like

(Babuška and Melenk, 1996) have provided some of the theoretical basis needed to
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identify the approximation spaces from which meshless shape functions can be con-

structed.

Manymethods have found their niche application, and have proven to be adequate

in problems of rapidly evolving topology, like crack propagation Krongauz (1996). The

örst meshless method was presented in 1977 by Lucy (1977) and Monaghan (1982).

It was called Smooth Particle Hydrodynamics and came from the öeld of theoretical

astrophysics. It has later been applied to a wide range of phenomena, including øuid

and solid mechanics. The method called Reproducing Kernel Particle Method (Liu and

Chen, 1995) (Liu et al., 1995) arose from the SPH as a generalization of the former in

which a correction function is added in order to provide linear consistency.

Coming from a different family, we önd all the methods that derive from the Mov-

ing Least Squares Method. The idea behind this method is to obtain approximating

functions around a given point from scattered nodal data which has been ötted via a

moving least squares formulation. This method is used in 3D surface construction as a

way to modify the sampling of a nodal cloud. Members of this family are the Diffuse

Element Method (Nayroles et al., 1992), the Element-Free Galerkin Method (Belytschko

et al., 1994) or its related counterparts (Atluri et al., 1999), (Atluri and Zhu, 2000), or the

Hp-Clouds Method (Duarte and Oden, 1996a)(Duarte and Oden, 1996b). It has been

independently developed by Duarte and Oden; and by Babuska and Menlek, that the

main issue with these methods resided in the need to construct a partition of unity.

The shape functions obtained by the general formulation of each of thesemethods are

not strictly interpolant, meaning that shape functions do not evaluate to one at the the

ascribed node and zero at any other (lack of fulöllment of the Kronecker delta prop-

erty). As a result the approximated solution will pass through the nodal values. This

situation constitutes a problem for the imposition of essential boundary conditions in

many meshless methods. This problem has been studied and is partially solved for

somemethods (Belytschko et al., 1994) (Krongauz, 1996). Also newmethods havebeen

developedwhich circumvent this situation. To namebut one, the approximationbased

upon maximum entropy schemes seems to be one of the most promising (Arroyo and

Ortiz, 2006), (Cyron et al., 2009).

Natural Elements were born in the late 1990s and has been Zaragoza University one

of the main research centers for the development of this method, see Cueto (2001),

González (2004), Alfaro et al. (2006b) to name a few of these university contributions.

An in-depth review of this method will be presented in Chapter 2 . Yet for now, suffice

it to say that it provides a convenient way to implement the aforementioned updated

Lagrangian approach for øuid simulation.
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One of the most cited capabilities of meshless methods is that of simulating large

deformation phenomena. With the possibility of simulating øows in an updated La-

grangian framework many works have been devoted to this end in the last years. The

interested reader can consult, for instance, Martínez et al. (2004), Idelsohn et al. (2003),

Idelsohn et al. (2004), González et al. (2007), among others. In these problems, we can

add to the obvious advantages of updated Lagrangianmeshless methods the absence

of numerical diffusion associated with remeshing and the lack of convective terms in

the formulations, that consequently do not need for any stabilization.

1.2 State-of-the-art in the simulation of free-

surface øows

Regarding the treatment of free surfaces, these have been traditionally dealt with by

either trackingmethods or by surface capturing techniques. The Volume of Fluid (VoF)

technique is an example of the later techniques, while the ALE formulation could be

seen as an instance of the former. With traditional approaches is particularly note-

worthy is the difficulty in the selection of mesh velocity in ALE formulations. In ad-

dition, tracking the free surface with boundary markers can be implemented in an ele-

gant way in two dimensional problems —by employing a chain of markers and check-

ing self-intersections of the chain to detect merging øows—, as in (Lewis et al., 1997),

(Duchemin et al., 2002), for instance, but becomesmuchmore intricate in three dimen-

sions.

If one tries to avoid any form of meshing and only a set of nodes without explicit

connectivity is employed, then önding the position of the free surface becomes a prob-

lem. In other words, the geometry of the domain must be extracted from the current,

updated, position of the nodes, that move with the material velocity. To this end, vari-

ous authors have employed Computational Geometry techniques. In particular, Cueto

et al. (2000) seem to have been the örst in employing shape constructors—α-shapes in

this case—techniques to extract the geometry of the domain. Shape constructors are

geometrical techniques that enable to önd the shape of a cloud of nodes at each time

step. α-shapes (Edelsbrunner et al., 1983), (Edelsbrunner and Mücke, 1994) have been

employed in a number of previous works involving free surface øows, see for instance

Idelsohn et al. (2004), Idelsohn and Oñate (2006), Martínez et al. (2004), González et al.

(2007) and Birknes and Pedersen (2006), among others.
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Different shape constructors have been proposed to extract the geometry of the

domain. The Delaunay triangulation (Delaunay, 1934) is the base ingredient of these

techniques, since it characterizes unequivocally the cloud of points —it is unique for

each cloud. Different criteria have been proposed in order to select the triangles per-

taining to the shape of the domain. The simplest one is maybe the α-shape technique,

that proposes to eliminate all triangles (or tetrahedra) whose circumscribing radius is

greater thanaprescribed levelofdetail. Oneof themaindrawbacksof theα-shape tech-

nique, as recognized inmanyworks (see, for instance, Cazals et al. (2006)Teichmannand

Capps (1998)) is precisely the choice of the α-value. In general, α-shapes work well for

uniformly-distributed clouds of points, which generally does not constitute a problem

for stationary problems. However, for our intended use it remains to be an issue that

deserves further insight.

The jump of the aforementioned techniques to the öeld of Computational Mechan-

ics has posed additional difficulties. By deönition α-shapes are not able to detect holes

or cavities of size smaller than α. This implies that contact between different surfaces

is detected with an error O(α) ≈ O(h), i.e., prior to the true expected contact (Te-

ichmann and Capps, 1998). Precisely in this last reference a method is proposed to

alleviate this drawback, but it needs information on the normal of the boundary at the

sampling points. This is easy to achieve for three-dimensional scans of solids, for in-

stance, but this kind of information is not readily available for the type of simulations

we are interested in.

1.3 Structure of the thesis

Alongwith this örst introductory chapter, this thesis is composedbyövemore chapters.

In Chapter 2 a detailed exposition of the natural element method, together with its

merits in the problem we face, will be addressed. Chapter 4 deals with the description

of the free-surface problem. In it, a proposed solution for the problem of on-the-øy

extraction of the shape (i.e., the boundary) of the domain will be described.

In Chapter 5 we will delve into the problem of simulating Non-Newtonian øuids,

that add additional difficulties to the before presented problem. Examples of these øu-

ids can be found almost anywhere, from body øuids as blood or mucus to man-made

substances like paint, shampooormoltenplastics. Of coursenot all non-Newtonianøu-

ids behave in the same manner so many different constitutive equations, with a wide

range of complexity, have been developed to describe their mechanical response. The
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great industrial importance of these øuids has originated a great deal of interest in its

numerical simulation from a relatively long time. A great deal of success has been

achieved, and we count with tools for solving a huge variety of complex øuids. Still

the processes has been plagued with difficulties, many of which seem to come from

the so called highWeissenberg number problem. Regardless of the employed numerical

method or the viscoelastic constitutive equations used, when the elasticity of the øuid

is increasedby in a givenmeasure, the simulationwould suffer fromahuge loss in accu-

racy leading to convergence problems. This situation limited the application spectrum

of cases, rendering the numerical tools ineffective to deal with industrial grade prob-

lems. Amounting to this problem, the interesting free-surface phenomena that occur

in some viscoelastic øows creates an unmissable setting for the applications tryout of

the developed method.

Finally, a summary of all the main results and conclusions will be presented along

with some remarks regarding the future lines that could be followed from this work.
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Chapter 2

The Natural Element Method

The Natural ElementMethod (NEM) is ameshless Galerkin procedure based on the nat-

ural neighbor interpolation scheme, which in turn relies on the concepts of Voronoi

diagrams and Delaunay triangulation to build Galerkin trial and test functions. All of

these will be deöned and explained in the following sections.

To explain the appeal of this method to our work, örst we have to establish our mo-

tivation. Traditionally the øuid models are built using an eulerian frame of reference

(Donea and Huerta, 2003). This framework is not particularly well suited for simulating

free-surface øows, forcing different authors to tackle the problemwith different meth-

ods. Several techniques have been developed to keep track of the evolving boundary

(Duchemin et al., 2002). Other researchers have decided to change the formulation in

order to work with pure or mixed lagrangian frames of reference. Our approach lies in

this camp as we have adopted an updated Lagrangian øuid model which will be de-

scribed thoroughly in chapter 3. We aim at simulating the øuid-structure interaction

from a Lagrangian-Lagrangian standpoint considering it to be the most natural way to

accomplish øuid-solid coupling.

Themost prevalentmethod for solving partial differential equations in a Lagrangian

approach is arguably the Finite ElementMethod. Yet this technique does not cope very

well with the high deformation of the mesh which may occur in transient øuid prob-

lems. In this way seems natural to use a meshless method One of the main drawbacks

of some of these methods is that the calculated variables do not correspond with the

essential variables. This implies that the imposition of boundary conditions needs sup-

plementary steps.

Thenatural elementmethodallowusbypass the aforementionedproblems. First, its

meshless character allows us to employ a Lagrangian formulation in situations where

we know there will be large deformation, yet the future position of the particles is not
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known beforehand. We avoid the need for a conscious, and usually very time consum-

ing, mesh generation. Second, by the properties of themethod, the inter-domain data

transfer can be accomplished without any extra load which also open the door to also

tackle øuid-structure interaction problems, but more on this topic will be discussed in

another section of this work

2.1 Natural neighbors

For the introductionof thegeometrical concepts related to theNatural ElementMethod

wewill refer to adomain inℜ2, explaining about ageneralization toℜn whennecessary.

2.1.1 Voronoi Tesellation

Given a set of points S = {x0,x1,x2, . . . ,xN}, there exists a unique division of the

plane such that every region Ti (called Thiessen or Voronoi polygon) is closer to a par-

ticular point xi than to any other xj . The union of these areas tessellate the whole

plane without gaps or overlapping. This division is called örst-order Voronoi diagram

(Voronoi, 1908), and is deöned as

Ti = {x ∈ ℜ2 : d(x,xi) < d(x,xj)∀j ̸= i}, (2.1)

where d(·, ·) denotes the euclidean distance between two points in ℜ2. Figure 2.1

shows the Voronoi diagram of a set composed of 9 nodes. The cells Ti and Tj are di-

vided by an hyperplane perpendicular to the line that passes through nodes i and j.

The intersection between three or more hyperplanes is called Voronoi node or vertex,

and is equidistant to all the nodes si to which the neighboring cells Ti are related. The

regions can be either closed or unbounded, but always convex.

A higher-order Voronoi tessellation can be deöned by including more nodes into

the deönition. In this manner, a second-order cell Tij is deöned as the locus of all the

points whose distance to xj is less than to any other xk but more than the distance to

xi. This can be written as

Tij = {x ∈ ℜ2 : d(x,xi) < d(x,xj < d(x,xk)∀k ̸= j, i} (2.2)

This set is non-empty only in the case where Ti borders with Tj . In this case, xi and

xj are neighbors
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Figure 2.1. Voronoi Tessellation of a set S of points.

2.1.2 Delaunay Triangulation

The straight-line dual structure of the Voronoi tessellation is called Delaunay triangula-

tion (Delaunay, 1934). It is constructed by connecting the nodes of S which are neigh-

bors. Of all the possible three-node tesselations, the Delaunay triangles are the ones

that maximize its minimal angle. This property make this graph very interesting for

mesh generation and as such has been well studied (see Sukumar et al. (1998) and ref-

erences therein). Figure 2.2 (b) depicts this triangulation. The Voronoi diagram of this

set is shown in dashed lines.

If a circle passing through the three nodes of a triangleDT (xi,xj,xk) (a circumcir-

cle) is drawn, noother nodeof the setSwill be enclosedby it. This property is called the

empty circumcircle criterion (Fig 2.2 (a)). The circumcenter for each triangle is located

at the Voronoi vertex where each node's cell converge. There exists a special case on

which two (or more) triangles comply with this condition. This occurs when a number

of nodes k ≥ d+ 2 are located on the same empty n-sphere, where n = d− 1. In two

dimensions this means that at least 4 points are located in the same circle (1-sphere).

Thus the Delaunay triangulation may not be unique for a given set of points (Fig 2.2

(c)).

The convex hull is the minimal external boundary of the set that contains all nodes

of S. This concept has applications in numerous öelds, ranging from image process-

ing to GIS (Edelsbrunner et al., 1983). It can be obtained by means of the Delaunay

triangulation as the union of all triangle segments that belong to only one triangle.

With the concepts of Voronoi tesselation and Delaunay triangulation, we can deöne
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Figure 2.2. Empty circumcircle. Delaunay triangulation. Degenerated triangulation

the natural neighbors (n.n.) of a point p as those nodes whose cells limit with Tp. As

an alternative, they can also be deöned as those nodes which share a triangle with p,

forming DT (p,xi,xj). The same deönition applies whether p is a node of the set or

an introduced point.

2.2 Natural Neighbour Interpolation

With the use of the second-order Voronoy diagram, the relation of neighborhood of an

introduced point with the nearby nodes can be quantiöed. This is the principle used

by Sibson (1980), when örstly proposing the natural neighbor interpolant, which is the

basis of the NEM.

Years later, Belikov et al. (1997) showed the non-uniqueness of the natural neighbor

interpolation schemes and introduced a new interpolant, known as non-Sibsonian (nS)

or Laplacian interpolator. More recently, González et al. (2008) introduced a new class

of interpolant constructed over a generalized de Boor algorithm. With this technique,

it is possible to generate high-order consistency natural neighbor approximations.

2.2.1 Sibson Interpolant

Let x be a point introduced in a set of nodes S = {x0,x1,x2, . . . ,xN}. And let ki(x)

and k(x) be the Lebesguemeasures of the second order cell Txi and the örst order cell

Tx respectively. Since the second order cell will be empty for every pair of nodes which

are not neighbors, we have that ki(x) = 0when i is not a natural neighbor of x. From

there we get that
N∑
i=0

ki(x) =
n∑

i=0

ki(x) = k(x)
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Figure 2.3. Modiöed Voronoi diagram by the inclusion of point x

where n is the number of natural neighbors of point x

The natural neighbor coordinate with respect to node i is deöned as the ratio of

ki(x) to k(x). In two dimensions, the Lebesgue measure k is the areaA of the cell.

ϕi(x) =
ki(x)

k(x)
=
ATxi

ATx

(2.3)

To illustrate the construction of the Sibson interpolant we will present an example.

Figure 2.3 shows a set of 7 nodes to which a point x has been added. The coordinate

respect to node 1 of this point is

ϕ1(x) =
Aabfe

Aabcd

(2.4)

With the natural neighbor coordinates we can interpolate the value of some vecto-

rial (or scalar) öeld u(x) : Ω ⊂ ℜ2 → ℜ2 as

uh(x) =
N∑
i=0

ϕi(x)u(i) =
n∑

i=0

ϕi(x)u(i) (2.5)

where n is the number of natural neighbors of x.

Given the interpolant character of the natural neighbor coordinates and some other

properties that will be treated next, they have been chosen as the shape functions in a

Galerkin method, thus originating the Natural Element Method. Figure 2.4 depicts the

Sibson shape function of a point centered in a four nodes square.
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Figure 2.4. Sibson shape function. (Courtesy N. Sukumar)

2.2.2 Non-Sibson Interpolant

As mentioned before, Belikov et al. (1997) proposed a different interpolation scheme

based on natural neighbors. This new interpolant required the calculation of Lebesgue

measures in one dimension less than the working dimension. With this approach, to

obtain the natural natural neighbor coordinates inℜ2 only distances have to be calcu-

lated instead of areas, as required by the Sibson shape function. Since both schemes

share most of their properties, the non-sibson interpolant presents itself as a very at-

tractive option due to its ease of implementation and lower computational cost.

To deöne this interpolant we will assume again a önite set S = {x1,x2, . . . ,xm}
in ℜn. Based on the Voronoi cell, Eq. (2.1), and its closure T̄i = Ti ∪ δTi, we deöne

tij = {x ∈ T̄i ∩ T̄j, i ̸= j}. With d(xi,xj) as the distance between points xi and xj ,

the non-Sibson interpolator is

ϕi(x) =

|txi|
d(xi,x)∑m
j=1

|txj |
d(x,xj)

(2.6)

where | · | denotes the Lebesgue measure in ℜn−1. As with the second order Voronoi

cell, tij is non-empty only for pairs of neighboring nodes.

Figure 2.5 shows a set comprised of four nodes in which a point x is inserted. The

Voronoi cell Tx is also depicted. In this setting, |tx4| is the Lebesgue measure of the

edge x4 and d(x, 4) is 2 · h4. In Belikov et al. (1997) the non-Sibson shape function is

deöned as

ϕi(x) =
αi(x)∑n
j=1 αj(x)

, αi(x) =
si(x)

hi(x)
(2.7)
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Figure 2.5. Laplace shape function construction.

In Fig. 2.6, a picture of the non-Sibson shape function is shown in the same situation

as was presented the Sibson shape function.

2.3 Natural Element Shape Function Proper-

ties

The NEM has interesting qualities which derive from the use of the interpolation func-

tions explained in the past sections. In this sections we will cover such properties in

some detail. Unless stated otherwise, the notation will be the same used before.

2.3.1 Meshless Character

It is a known fact (Babuška and Aziz, 1976) that the accuracy of many approximation

methods is dependent on thenodal distribution. As an example, the triangulationused

in the FEM must comply with a minimum angle criterion in order to guarantee a mini-

mum level of accuracy. However the NEM shape functions are not limited by such re-

quirement, being independent of the nodal distribution. While this condition has not

been formally demonstrated, studies in two (Sukumar, 1998) and in three (Cueto, 2001)

dimensions have not found any dependence between the angles of the Delaunay tri-

angles and the accuracy of the obtained results, hence implying a meshless character.
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Figure 2.6. Laplace shape function (Courtesy N.Sukumar)

Indeed, in Alfaro et al. (2007) numerical tests are performed that show the superior ac-

curacy of NEM over FEM when highly distorted meshes are employed.

2.3.2 Strictly Interpolant Character

Unlike most meshless methods, which are of approximate character, the NEM shape

functions are strictly interpolant. That is, the approximated surface contains the nodal

values. It satisöes the Kronecker delta condition at the nodes:

ϕi(xj) = δij (2.8)

Applying Eq. (2.5) to node i

uh(xi) =
n∑

j=1

ϕi(xj)uj =
n∑

j=1

δijuj = ui,

which shows that the nodal parameters are directly the nodal variables

As a consequence of this property, there is no need to use enforcing techniques

to impose essential conditions while solving PDEs. However, this property alone is

not sufficient to properly impose Dirichlet conditions, for the nodal satisfaction at the

boundary nodes does not imply full compliance within the boundary.

2.3.3 Approximation

Whereas inonedimensionSibson's shape functions equals thatof thenatural elements,

non-Sibsonian shape functions are undeöned (the Lebesguemeasure of a point equals
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Figure 2.7. Natural neighbor coordinates in 1D.

zero). To prove it, let us consider a line segment of length L discretized inN elements.

By deönition the Voronoi nodes in one dimension will be located in the middle points

of each element. The natural consequence of this is that each node will have only two

natural neighbors. By establishing a coordinate system (see Fig. 2.7)

ξ =
x− xi

xi+1 − xi

, (2.9)

with ξ ∈ [0, 1]. The shape functions for each element are written as

ϕi(ξ) =
Lξi

Lξ1 + Lξ2

, (2.10)

with

Lξ1 =
1− ξ

2
y Lξ2 =

ξ

2
,

from which we get to ϕ1(ξ) = 1− ξ and ϕ2(ξ) = ξ

In twodimensions the approximation depends on the number of natural neighbors.

If the point has three n.n. the natural coordinates are equivalent to the barycentric co-

ordinates that constitute the linear triangular FE shape functions (constant strain trian-

gles, see Sukumar et al. (1998)). To prove this, lets take a point x = (x, y) with only

three neighbors, numbered 1 to 3 with coordinates (xi, yi). Due to method's linear

consistency, it is possible to write the following system

D(x) =

 1 1 1

x1 x2 x3

y1 y2 y3


ϕ1(x)

ϕ2(x)

ϕ3(x)

 =

1

x

y

 (2.11)

which is solved by

ϕ1(x) =
D1(x)

D(x)
(2.12)

ϕ2(x) =
D2(x)

D(x)
(2.13)

ϕ3(x) =
D3(x)

D(x)
(2.14)
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being

D(x) =

∣∣∣∣∣∣∣
1 1 1

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣ = 2A123 (2.15)

and D1(x) = 2A1(x), D2(x) = 2A2(x) y D3(x) = 2A3(x), which are the FE shape

functions that we were looking for.

For four nodes in a regular grid a bilinear approximation is obtained. For any other

conöguration or in the case of more neighbors, the shape functions have a quartic ra-

tional expression—see Sukumar et al. (1998) for proof.

In higher dimensions the Sibson shape function is a generalization of the univari-

ate 1-D interpolation. The interpolant is built based on the appropriate dimension

Lebesgue measure, which gives it very sound mathematical and geometric base.

2.3.4 Partition of Unity and Positivity

Because the NEM shape functions are constructed—Eqs. (2.3) and (2.7)—as ratios of a

quantity related to each natural neighbor between the sum of all those quantities, it is

direct to see that
n∑

i=1

ϕi(x) = 1. (2.16)

That is, the shape functions constitute a partition of unity.

Since the mentioned quantities are areas or distances, it is also easy to show that

ϕi ≥ 0. Whichmeans that the Natural Element Interpolation constitutes a convex com-

bination of nodal coordinates (Arroyo and Ortiz, 2006).

2.3.5 Linear Consistency

As stated by Sibson (1980), the NEM shape functions satisfy the local coordinate prop-

erty

x =
n∑

i=1

ϕi(x)xi (2.17)

which along with the partition of unity condition imply that the method posses linear

consistency. Proof of this can be found on Sukumar (1998) for the Sibson interpolant

and in Sukumar et al. (2001) for the non-Sibsonian approximation. Being able to repro-

duce a linear öeld, means that this shape functions can be used to solve PDEs of degree

two, e.g., the elastostatic problem.
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2.3.6 Smoothness

According to Sibson, NEM shape functions are inönitely differentiable everywhere in-

side its domain except at the nodes, where they are only continuous. Various modi-

öcations have been proposed in order to raise the differentiability class of this shape

functions. Some of this approaches include the use a weighted least squares öt as a

modiöer in the original Sibson scheme (Sibson, 1981); embedding natural neighbor co-

ordinates in the surface representationof a Bernstein-Bézier cubic simplex (Farin, 1990);

or reformulating Sibson's interpolant to incorporate them into spline theory (Traver-

soni, 1994). Achieving to obtain a C1(Ω) class shape function allows tomake use of the

NEM in higher order problems.

2.4 Shape Function Construction

In this section we will discuss the two most extended methods for the shape function

calculation. The Bowyer-Watson is based on the calculation of the natural neighbor

coordinates by decomposing the Voronoi cells into triangles which are a subset of the

Delaunay triangulation. The second, Laserre's algorithm performs the task by calculat-

ing areas of convex polygons.

2.4.1 Useful formulas

These are some geometric formulas which are used on the implementation of the fol-

lowing algorithms (Sukumar et al., 1998). Wewill consider three two-dimensional non-

collinear points in global coordinates: A(a) = (a1, a2), B(b) = (b1, b2) and C(c) =

(c1, c2) forming a triangle t(A,B,C).

Area of a Triangle

The signed area of tabc is given by

A =
(a1 − c1)(b2 − c2)− (b1 − c1)(a2 − c2)

2
(2.18)

If a and b coordinates are dependent on x, the derivatives ofA is

A,i(x) =
(a1(x)− c1)b2,i(x) + (b2(x)− c2)a1,i(x)

2

− (b1(x)− c1)a2,i(x) + (a2(x)− c2)b1,i(x)

2
(2.19)
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where i = 1, 2, denotes the spatial coordinate and a comma denotes differentiation in

the corresponding direction. This deönition can be extrapolated to higher dimensions.

Circumcenter Coordinates

The circumcenter of t(A,B,C) denoted by v = (v1, v2) is obtained by:

v1 =
(a21 − c21 + a22 − c22)(b2 − c2)− (b21 − c21 + b22 − c22)(a2 − c2)

D
,

v2 =
(b21 − c21 + b22 − c22)(a1 − c1)− (a21 − c21 + a22 − c22)(b1 − c1)

D
(2.20)

whereD equals four times the area of t(A,B,C)—Eq. (2.18).

To calculate thederivativesof the circumcenter's coordinates,makec = x = (x1, x2).

Assume a and b are independent of x. Then

v1,1(x) =
(x1 − v1(x))C,1(x)

D(x)
,

v1,2(x) =
(α + x2D,1(x)− v1(x)D,2(x)

D(x)
,

v2,1(x) =
(−α + x1D,2(x)− v2(x)D,1(x))

D(x)
,

v2,2(x) =
(x2 − v2(x))D,2(x)

D(x)
(2.21)

with v given by Eqs. (2.20),D(x) equals four times the area of t(A,B,X) and

D,1(x) = 2(a2 − b2), (2.22)

D,2(x) = 2(b1 − a1) (2.23)

and

α = b21 − a21 + b22 − a22 (2.24)

Circumradius

The square of the circumradiusR2(x) is

R2(x) = (a1 − v1(x))
2 + (a2 − v2(x))

2 (2.25)

2.4.2 Bowyer-Watson Algorithm

The Bowyer-Watson algorithm (Watson, 1981) is originally an incremental insertion al-

gorithm to obtain the Delaunay triangulation of a set S. It starts with a super-triangle
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that encompasses all the set. One node is added, the algorithm is carried on and then

another node is added until all the set has been processed. Yet for obtaining the areas

of the second order Voronoi cells, we will assume that the starting point already is a

Delaunay triangulation.

At each step, a node x is inserted into the triangulation; a search is performed on

a triangle-by-triangle basis to determine the natural neighbors of x using the empty

circumcircle criterion.

For each of the n neighboring triangles t (with circumcenter v), a new set of trian-

gles {t1, t2, t3} converging at x is created. The circumcenters (c1(x), c2(x) and c3(x))

of the new sets are obtained and second subset of triangles is formed from the newly

calculated points and v. This triangles are: t(c2(x), c3(x),v) t(c3(x), c3(x),v) and

t(c1(x), c2(x),v). Theareasof this triangles and itsderivatives are calculatedbyEqs. (2.18)

and (2.19) respectively. This arepartial resultswhich canbewrittenasαit(x)andαit,m(x),

where i = 1, 2, . . . , n andm = 1, 2. Up to this point, care must be taken to maintain

the node numbering always counterclockwise in each triangle in order to obtain ar-

eas properly signed. Note that some areas must not contribute to the total result, and

those areas will be negative, but that is accounted for.

The partial results for each t are added on accumulator variables βi(x) and βi,m(x).

Finally the area of the second order Voronoi cell Ai(x) and its derivatives Ai,m(x) are

the values stored in the accumulator after the pass for all neighbor triangles.

The area of the örst order Voronoi cell and its derivative are obtained as

A(x) =
n∑

i=1

Ai(x), (2.26)

A,m(x) =
n∑

I=1

Ai,m(x) (2.27)

and the shape functions are obtained as per Eq. (2.4).

Regarding the non-sibsonian shape functions inℜ2, the steps involving the area cal-

culations can be skipped. Having the the circumcenters coordinates ci(x) it is possible

to obtain all the necessary distances to calculate the nS shape functions.

This algorithm fails if the inserted point falls on a Delaunay edge, as one of the tri-

angles formed will have a non-unique circumcenter. In any case, since we only insert

integration points —which are internal to the triangles—this problem will not appear.
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Figure 2.8. Starting point for the Bowyer-Watson algorithm.
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Figure 2.9. Natural neighbor search.
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Figure 2.10. Triangles ti and their circumcenters ci(x).
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Figure 2.11. Subset of triangles(t(ci(x), cj(x),v)) and their areas αit.
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Figure 2.12. The sumofαit over all tis yields the area of the second order Voronoi cells.
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2.4.3 Laserre's Algorithm

A different approach is to directly obtain the areas of the Voronoi cells without resort-

ing to the duality with the Delaunay triangulation. In their implementation, Braun and

Sambridge (1995)made use of the Lasserre algorithm (Lasserre, 1983) for obtaining the

convex polygon areas (polyhedra volumes in ℜ3) that deöne natural neighbor coordi-

nates. This algorithm works in a recursive way, presenting the polytope volume in ℜn

as a function of volumes of polytopes inℜn−1.

The main virtues of this method is that is deöned for ℜn and is independent on

the relative position between the nodes and the evaluation point. However, has been

found to be approximately twice as computationally expensive as the Bowyer-Watson

algorithm.

The algorithm starts by deöning the volume of a convex polytope as the inequality

{c|Ax ≤ b} (2.28)

where x represents a point in ℜn, A is a (m,n)matrix and b is a column vector of size

m. Here n is the dimension on which the polytope is deöned andm is the number of

non-redundant constraints that deöne the volume. This enclosed volume is denoted

as

V (n,A, b) (2.29)

The i-th face of the polytope is deöned as

{x|(ai · x) = bi,Ax ≤ b} (2.30)

with ai representing the i-th column ofA.

The polytope volume will be obtained as:

V (n,A, b) =
1

d

m∑
i=1

d(a,H i)× Vi(n− i,A, b) (2.31)

where a is the evaluation point, H i is the hyperplane deöned by the i-th constrain.

d(a,Hi) is the distance from a to the hyperplaneH i.

We now eliminate the t-th variable by solving aix = bi. The reduced matrix ob-

tained fromA after the elimination is denoted by Āi,t . Likewise, the reduced b vector

will be called b̄t and ait is the t-th term of ai. With this notation, the formula for the

volume calculation is

V (n,A, b) =
1

n

m∑
i=0

bi
|ait|

V
′

it(n− 1, Āi,t, b̄t) (2.32)
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where V ′
it is the volume of the polytope in the (n − 1)-dimenson. In ℜ3, V ′

it would be

the area of the facets of the polyhedron, and inℜ2 would be the length of the edges of

the polygon. In their work, Braun and Sambridge Braun and Sambridge (1995) chose t

such that |ait| is the maximum value of ai.

2.5 Imposition of Essential Boundary Condi-

tions

The NEM shape functions will present different approximation properties depending

on the type of boundaries present. Sukumar (1998), Sukumar et al. (2001) demon-

strated that Sibson and non-Sibsonian shape functions have a linear behavior on con-

vex boundaries, being able to reproduce a linear displacement öeld. This means that

in those contours the essential boundary conditions can be imposed exactly as in önite

elements.

In the case of non-convex boundaries, the Sibson interpolant does not comply with

this condition. The natural coordinates at the contour will have non-zero contributions

from the interior nodes. This contribution will cause the loss of the linear consistency.

According to Sukumar (1998) the error incurred by the use of this interpolantmay be of

the order of 2 per cent, and can bemitigated by a higher nodal density on that bound-

ary.

It was believed that this problem is not present when using the Laplace shape func-

tions (Sukumar et al., 2001). Thus by choosing non-Sibsonian interpolants, essential

boundary conditions could be imposed directly, in the same way as in the FEM. How-

ever, Cueto et al. (2003) demonstrated that this is not the case and proposed a differ-

ent approach, discussed in the next section, which allows the proper imposition of the

aforementioned conditions.

2.6 α-shape Based Natural Elements

A slight modiöcation of the way in which the Natural Neighbour interpolant is built

was proposed to achieve linear interpolation also over non-convex boundaries (Cueto,

2001)(Cueto et al., 2000). This modiöcation was based on the concept of α-shapes,

which will be exposed in more detail on Chapter 4. These are a generalization of the
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concept of the convex hull of a cloud of points and are widely used in the öeld of sci-

entiöc visualization and computational geometry to give a shape to a set of points.

It is apolytope that is notnecessarily convexand that canbe triangulatedbya subset

of the Delaunay triangulation, thereby maintaining the empty circumcircle criterion.

It has been demonstrated (Cueto, 2001) how the construction of the interpolant over

an appropriate α-shape of the domain gives rise to an exact imposition of essential

boundary conditions over any kind of domain (convex or not.) In addition, it enables

us to track the øow front position accurately.

This variant of theNEM is basedon the fact that if a pair of nodes are neighbors, thew

will share a Voronoi cell frontier an also will deöne the edge of a Delaunay triangle. The

α-shape restricts this condition to all nodes which are apart by a distance deöned by a

parameter α.

The shape functions are build based on a modiöed deönition of the Voronoi cell:

Ti = {x ∈ ℜ2/d(x, si) < d(x, sj) ∧ σT ∈ Cα(S) ∀j ̸= i} (2.33)

where σT is a k-simplex formed by nodes si,sj and any other node of the set S. Cα(S)

is the set of all triangles ofDT (S)whose circumradius is less than a givenα. The shape

functions are obtained in the traditionalway, eitherwith Eq. (2.3) or (2.7). This functions

will have linear consistency over all the contour, be it convex or not (Cueto et al., 2000).

2.7 High-Order NEM

Precisely the fact that the NEM possesses linear consistency and C0 continuity only is

perhaps on the basis of its limited popularity, if compared with other meshless meth-

ods, which easily achieve higher-order consistency and even C∞ continuity. Only one

attempt has been made to overcome this difficulty, up to our knowledge, by applying

a quadratic consistency and C1 interpolant based on natural neighbours that, however,

does not seem to posses any further generalization (Sukumar and Moran, 1999). This

interpolant can be used, for instance, for solving fourth-order partial differential equa-

tions such as those arising from the theory of Kirchhoff plate bending.

An attempt to overcome these NEM limitations was performed by González et al.

(2008), by going back to the foundations of B-splines and how by linear combinations

of linear interpolants, higher-order curves can be obtained. B-spline curves can be ob-

tained bymeans of the so-called de Boor's algorithm (Farin, 2002). For the surface case,
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tensor product B-spline surfaces were initially proposed in de Boor (1962). An exten-

sive review of this topic can be found in Farin (2002, Ch. 16). Tensor product B-spline

surfaces are, however, very rigid. For instance, no tensor product surface can have the

connectivity of a double torus. This algorithm is here generalized, without the use of

tensor products, to higher dimensions. This is done by employing different natural

neighbour interpolation schemes.

Recently, the use of NURBS or B-splines as basis functions for a Finite Element-like

simulation has been studied (Hughes et al., 2005). Themain objective is clear: B-splines

(or, more properly, NURBS) are the standard for CAD systems, and they reproduce the

geometry of the domain exactly, which is not the case in Finite Element models. The

use of the same approximation for both the construction of the geometry and the

approximation of the essential öeld of the problem obviously simpliöes the burden-

some mesh generation process. Other interesting properties of NURBS like the so-

called "variation diminishing" (Farin, 2002) property also apply. This means that, unlike

high-order polynomials, B-splines or NURBS do not show the well-known Gibbs effect

(Gibbs, 1898).

However, it remains unclear whether the use of B-splines-like önite elements leads

to remeshing problems when large distortions of the mesh occur. Tensor-product B-

splines, as mentioned before, are quite rigid. In addition, fulöllment of (inhomoge-

neous) essential (Dirichlet) boundary conditions should be done typically in an approx-

imate sense, or by imposing them weakly. This same problem is common for many

meshless methods.

Another aspect deserves some comments at this point. Stability restrictions im-

posed by the LBB condition (Babuška, 1973) when simulating incompressible media

makes it interesting to have at hand high-order approximations that could help in ver-

ifying the LBB condition. As it is well-known, the higher the approximation is for dis-

placements (or velocities) and lower it is for pressure, the more stable is the resulting

approximation. Thus, the development of high-order natural elements is interesting

also from the point of view of the problem here tackled, that of free-surface øow of

incompressible øuids.

2.7.1 Revisiting the de Boor's algorithm for B-splines

The de Casteljau algorithm for Bézier curves states that such curves can be obtained

by successive application of linear interpolation (Farin, 2002), i.e., given some points
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b0, b1, . . . , bn ∈ ℜ3 and t ∈ ℜ, the construction

bri (t) = (1− t)br−1
i (t) + tbr−1

i+1 (t)with

r = 1, . . . , n

i = 0, . . . , n− r
, (2.34)

where b0i = bi, gives the desired Bézier curve.

ThedeBoor's algorithmgeneralizes this algorithmby introducingaparametric space,

deöned by an arbitrary sequence of knots u0, u1, u2, u3. A quadratic Bézier curve can

thusbe seen as parametrizedby the series 0, 0, 1, 1, for instance. Thequadratic blossom

b[u, u] can then be written as (see Fig. 2.13)

b[u, u] =
u2 − u

u2 − u1
b[u1, u] +

u− u1
u2 − u1

b[u, u2]

=
u2 − u

u2 − u1

(
u2 − u

u2 − u0
b[u0, u1] +

u− u0
u2 − u0

b[u1, u2]

)
(2.35)

+
u− u1
u2 − u1

(
u3 − u

u3 − u1
b[u1, u2] +

u− u1
u3 − u1

b[u2, u3]

)

u0 u1 u u2
u3ss U1

1

U1

2

s

U1

3

b[   ,   ]u  u0 1

b[  ,   ]u u1

b[   ,   ]u  u1 2

b[  ,   ]u u
2

b[   ,   ]u  u2 3

b[  ,  ]u u

Figure 2.13. Schematic representation of the de Boor's algorithm.

The key aspect of the de Boor's algorithm is that it expressesu in terms of intervals of

growing size. B-spline curves consist of a union of polynomial curve segments. Follow-

ing the notation in Farin (2002), letU be an interval [uI , uI+1] in the sequence of knots.
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Then, there will be an ordered sequence of knots U r
i , each containing uI or uI+1, such

that U r
i consists of r + 1 successive knots and uI is the (r − i)-th element of U r

i .

A degree n curve segment corresponding to the interval U is then given by n + 1

control points di. Each intermediate control polygon leg dr
i ,d

r
i+1 can then be viewed

as an affine image of Un−r+1
i+1 . The point dr+1

i is the image of u under such an affine

map.

It is well-known (Farin, 2002) that a non-parametric B-spline function d(u) can be

written as a parametric curve with control points

di =

[
ξi

di

]
, with i = 0, . . . , L

and L = K − n+1, withK the number of knots and n the degree of the curve. In this

case, the points ξi are called Greville abscissae and can be determined as:

ξi =
1

n
(ui + . . .+ ui+n−1)

For n = 2 it is straightforward to prove that the Greville abscissae coincide with the

Voronoi vertices of the knot sequence.

Working in non-parametric form, and using the equivalence between Sibson and

linear interpolation in one dimension, this simple algorithm can alternatively be ob-

tainedbyapplyingNaturalNeighbour (Sibson) interpolationover segmentsU r
i inwhich

we eliminate r − 1 of the closest neighbours of the point u:

b[u, u] = ϕ1(u)b[u1, u] + ϕ2(u)b[u, u2]

= ϕ1(u)
(
φ2
0(u)b[u0, u1] + φ2

2(u)b[u1, u2]
)

(2.36)

+ ϕ2(u)
(
φ2
1(u)b[u1, u2] + φ2

3(u)b[u2, u3]
)

where ϕI(u) represent the natural neighbour coordinates of point u with respect to

knot I and φr
I(u) represent the natural neighbour coordinates of point u with respect

to knot I , but computedover an intervalU r
i , i.e., by eliminating r−1natural neighbours

of the interval. The notation used is shown in Fig. 2.14.

2.7.2 B-splinesurfaces constructedovernaturalneighbor interpo-

lation

The de Boor's algorithm thus presented can be extended to higher-dimensional cases

as follows. In the following development we employ Sibson coordinates, although
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Figure 2.14. Schematic representation of the de Boor's algorithm employing natural

neighbours. Between parentheses, the domain of each function.

the proposed algorithm can also be applied to Laplace interpolants, as will be shown

later. Consider again, for simplicity, a set of nodes N = {x1,x2, . . . ,xM} ⊂ ℜ2 and

a quadratic surface (the extension to three or higher dimensions and higher-order sur-

faces is straightforward). From now on, we will work in non-parametric form, since it is

extremely hard to önd the two-dimensional counterparts of the intervals U r
i for irreg-

ularly scattered sites. Then, we deöne a new class of surfaces constructed in the way:

s(x) =
n∑

I=1

nI∑
J=1

NIJ(x)dIJ , with dIJ = dJI (2.37)

where n represents the number of neighbors of the point x. In addition,

NIJ(x) = ϕI(x)φ
I
J(x) (2.38)
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Figure 2.15. Schematic representation of the proposed algorithm. (a) Set of sites

{I, . . . , N}. We consider an evaluation point x, whose neighbours are depicted as

ölled circles. The support of the function ϕI is highlighted. (b) After eliminating site

I , the support of function φI
J is highlighted. Note the new set of neighbouring sites,

{J,K,L,M}.

and dIJ represent the control points in B-spline terminology (i.e., the degrees of free-

dom). ϕI(x) represents the natural neighbor (Sibson) coordinate of the point x with

respect to site I . Functions φI
J(x) represent the natural neighbor coordinates of point

xwith respect to site J , in the original cloud of points, butwithout the I-th site (see Fig.

2.15), in the sensedescribedby theprevious section. Finally,nI is the number of natural

neighbors of the point x when we eliminate the site I , similarly to the de Boor's algo-

rithm. Note that the number of degrees of freedom of the proposed approximation is

much less thanM2/2, since the sums in Eq. (2.37) extend only over natural neighbors

of each node.

The typical shape of the functions NIJ described before is shown in Fig. 2.16 for a

general set of irregularly distributed sites.

Among the properties that can be cited about this type of approximation, we can

cite the following (see González et al. (2008) for more details):

• Positiveness.

• They form a partition of unity.

• They span the space of linear and quadratic polynomials (and, by recursive appli-

cation of the algorithm, polynomials of arbitrary degree).
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Figure 2.16. Shape of a typical functionNIJ for a set of irregularly distributed sites.

• Continuity is Cp−1, where p stands for the order of consistency, except at lines join-

ing neighboring nodes, where they are C0.

• Verymuch like B-splines, we canmake the surfaces to be interpolant by repeating

knots.

With this in mind, we face the challenge of simulating complex free-surface øows in

the following chapter. In it, a thoroughly description of the techniques employed will

be made, with particular emphasis in the development of a novel shape constructor

algorithm that öts very well into the needs of this particular problem.
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Chapter 3

An Updated Lagrangian
Approach to Fluid Dynamics

In this chapter we will present the øuid formulation introduced in González (2004) and

that will be subsequently enhanced in this thesis. We have adopted an updated La-

grangian øuid model which relies in turn on the method of characteristics to fully ex-

ploit themeshless characteristics of the Natural ElementMethod. We aim at simulating

øuid øowswithmoving free surfaceswhere the øuiddomain topologymight beheavily

altered along the time history of the process. This scenario posses two main obstacles

to the use of traditional simulation methods, namely: we need to know the position of

the boundaries at each time instant; and the øuid particles inside the domain move at

different speeds and in different directions, which makes it difficult to know how their

connectivity will evolve in time.

The way in which the øuid is represented by the computational method —be it by

particles or elements—is heavily determinedby the kinematic descriptionof themove-

ment adopted. This selectionmayeither hamper or enable the solutionof certain prob-

lems.

3.1 Kinematic Description of Fluid Flows

In continuummechanics, twocoordinate systemsareused todescribeaparticle'smove-

ment. The örst is thematerial frame, which is öxed to the particles place at all times and

is deöned by the basis vectors I1, . . . , In in a n-dimensional space. The second refer-

ence frame, deöned by vectors i1, . . . , in , is shifted and could be interpreted as a point

where an observer is located watching all the particles that go by. This is called the

spatial frame of reference (Donea and Huerta, 2003).
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Let us consider a travelling material particle P in ℜn. At the beginning of its move-

ment (initial conöguration), it can be localized by its position vector

X = X1In + . . .+XnIn (3.1)

At a later time, in the ``deformed conöguration'', the particle has moved to a new

position whose spatial coordinates could be deöned as

x = x1i1 + . . .+ xnin (3.2)

It is possible to deöne an application φ to map the reference conöguration RX to

the spatial conögurationRx such that

φ : RX × [t0, t] → Rx × [t0, t] (3.3)

(X, t) 7→ φ(X, t) = (x, t) (3.4)

and thus, the relationship between the material and spatial coordinates is

x = x(X, t), t = t (3.5)

According to the selected frame, themethods for describing themovementmay be

classiöed in Eulerian, Lagrangian and Arbitrary Lagrangian-Eulerian (ALE).

3.1.1 Eulerian Description

Probably themost common approach for the øuid simulation is the Eulerian approach.

In these methods a set of spatial nodes is used to ``observe'' the evolution of the øuid

domain. Since there is no mesh distortion, the problems related to particles moving

in a very heterogeneous way are easily overcome. These techniques are specially well

suited to address situations on which the boundaries are öxed, even if they are inøow

or outøow boundaries. Also, these formulations are able to cope with large distortions

in the øuid motion, indispensable quality in the treatment of turbulent øows. On the

otherhand, followingmoving surfaces canprove tobevery challenging, requiringextra

steps in order to be able locate the position of the fronts and adding difficulty to prop-

erly impose boundary conditions. One example of the ways to treat this problem are

theVolumeof øuid (VoF) techniques, seeDuchemin et al. (2002) and references therein,

which rely on the employ of an implicit function called presence of øuid function, that

evaluates to one in the øuid region and zero at the empty zones. This function is ad-

vected with the velocity of the øuid throughout the computation. Other techniques,
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Figure 3.1. Eulerian approach. ⃝ Numerical nodes. △Material particles.

known as trackingmethods (Crank, 1987) rely on the use of markers, whose position is

updated with the just computed øuid velocity öeld.

Another effect of the Eulerian kinematic approach is that because of the relative

motion between thematerial particles and the spatial nodes, convective terms will ap-

pear in the equations, leading some to numerical difficulties. Still, the wide use of this

method have spurred the development of techniques that addressed the mentioned

shortcomings as the Volume-of-Fluid or Level-set methods (Sethian, 1999) for follow-

ing of free surfaces or several upwinding techniques for convection problems (Donea

and Huerta, 2003).

3.1.2 Lagrangian Description

In Lagrangian methods, the computational domain follows the material particles, thus

the mesh or cloud of nodes moves and deforms accordingly to the øuid movement.

These techniques allow moving boundary tracking explicitly, not needing any inter-

polation technique to locate free surfaces or to impose boundary conditions. These

formulations are the standard in solid önite element models, where not-so-large de-

formations are common and these techniques are very efficient. In time-dependent

problems, as nodal position changes, the quality of the mesh might degrade, mak-

ing it necessary to regenerate the grid in order to maintain accuracy. Depending on

the application, remeshing can be performed automatically, but there are cases where

this is not a possibility and manual mesh creation is very time consuming. When large

deformations appear, this problem accentuates. The discussed problem has posed a
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Figure 3.2. Lagrangian approach. ⃝ Numerical nodes. △Material particles

limitation for the application of Lagrangian formulations in øuid øow simulations even

though it is not inherent to the approach but to the numerical method.

Asmeshlessmethods begun to appear, the interest in Lagrangian approaches resur-

faced. Some early examples of this methods can be found in Belytschko et al. (1994)

and Nayroles et al. (1992). More recent works on øuid simulations include for instance

an applicationof theMeshless-Local Petrov-Galerkinmethod (Atluri et al., 1999) to non-

linear water-wave problems or Idelsohn et al. (2004) for an application of the particle ö-

nite elementmethod to free-surface problems. As discussed in the last chapter, each of

this methods present problems of their own, but open the door to feasible Lagrangian

øuid simulations. In his thesis, González (2004) introduced a øuid model which tackles

some of the problems posed by the previous methods.

3.1.3 Arbitrary Lagrangian-Eulerian (ALE)

The Arbitrary Lagrangian-Eulerian approach appeared in the ranks of the önite volume

andönite differencesmethods as ameans to take advantageof the Eulerian capabilities

for treating large motions of the particles while at the same time being able to track

moving boundaries in a Lagrangian way. In these methods, the numerical grid is not

tied to thematerial particles nor is it öxed to any speciöc spatial point. Instead themesh

moves in a prescribed way in order to control its deformation in a new domain called

a referential conöguration. This allows us to follow the shape of the material domain

while maintaining the best possible mesh to perform the calculations. See Donea and

Huerta (2003) for a historical review of the development of these methods. These are
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Figure 3.3. ALE approach. ⃝ Numerical nodes. △Material particles

specially useful in modelling large deformation in solids, free surface øuid øows and

øuid-structure interaction.

Both Lagrangian and Eulerian approaches can be obtained as speciöc cases of the

ALE formulation. In one case, if the mesh motion equals the material domain motion,

the Lagrangian approach is obtained. If, on the opposite case, the referential conögu-

ration stays still, the kinematic description is Eulerian. The main drawback of the ALE

approach is the need todetermine a suitablemesh velocity. This canbedonemanually,

although is a very difficult process for any but the simplest cases of motion. To avoid

this, automaticmesh update strategies have been developed, likemesh regularization,

to avoid asmush as possible themesh distortion; ormesh adaptation, to focus on areas

of steep gradients.

3.1.4 Material and Spatial Time Derivatives

In order to describe the inøuence of the chosen frame of reference on time derivatives

wewill followDoneaandHuerta (2003) anddeöne twophysical scalar quantities f(x, t)

and f ∗∗(X, t) on the spatial and material domains respectively. In this case, the aster-

isks denote that both quantities are different. For a moving particle, they are related

by:

f ∗∗(X, t) = f(φ(X, t), t) or f ∗∗ = f ◦ φ.

The gradient of this expression can be obtained

∂f ∗∗

∂(X, t)
(X, t) =

∂f

∂(x, t)
(x, t)

∂φ

∂(X, t)
(X, t)

ComputationalMechanics



66 Andrés S. Galavís Borden

which in its matrix form is(
∂f ∗∗

∂X

∂f ∗∗

∂t

)
=

(
∂f

∂X

∂f

∂t

)( ∂x
∂X

v

0T 1

)
After matrix multiplication, we arrive at the following equations(

∂f ∗∗

∂X

)
=

(
∂f

∂x

)(
∂x

∂X

)
, (3.6)

∂f ∗∗

∂t
=
∂f

∂t
+
∂f

∂x
v. (3.7)

on which the relationship between the material and spatial derivatives is expressed.

This equations indicate that the physical quantity variation in time for a given material

particle equals its local variation plus some quantity related to the relative movement

between the material and spatial frames of reference, that is, a convection term. For

the sake of notation, we will write
∂f

∂t

∣∣∣∣
X

=
∂f

∂t

∣∣∣∣
x

+ v · ∇f or
df

dt
=
∂f

∂t
+ v · ∇f (3.8)

where
d·
dt

:=
∂·
∂t

∣∣∣∣
X

is called the material time derivative and
∂·
∂t

:=
∂·
∂t

∣∣∣∣
x

is the spatial time derivative.

Anotheruseful relationbetweenmaterial and spatial timederivatives is theReynolds

transport equation. Assuming the quantity f can be represented by a smooth motion

over an arbitrary control volume, we arrive at

d

dt

∫
Vt

f(x, t)dV =

∫
Vc≡Vt

∂f(x, t)

∂t
dV +

∫
Sc≡St

f(x, t)v · ndS (3.9)

Where Vc and Sc represent the control volume and its surface, and subscript t refer to

the domain conöguration at time t.

3.2 Governing Equations
In this section, the conservation equations are developed to arrive at the Navier-Stokes

equations. We consider here the øow of an incompressible viscous øuid. In this kind of

problems, the non linear convective terms mentioned in the last sections are usually a

source of numerical problems. Since a Lagrangian scheme is employed in our method,

these terms will not appear in the equations, bypassing those difficulties.
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3.2.1 Conservation Equations

For the development of the governing equations, we consider, following Donea and

Huerta (2003) closely, a øuid occupying a regionΩ inℜ2 orℜ3, although in general we

will say it occupies a volume V . The øuid presents a density ρ and a dynamic viscosity

µ.

Mass Conservation

The conservation of mass through time in a given volume, assuming no mass is added

or destroyed, is given by
dM

dt
=

d

dt

∫
Vt

ρdV = 0 (3.10)

By introducing Eq. (3.9), we obtain

dM

dt
=

∫
Vt

∂ρ

∂t
dV +

∫
St

ρv · ndS =

∫
Vt

(
∂ρ

∂t
+∇ · (ρv)

)
dV = 0. (3.11)

which holds for any Vt. This means that

∂ρ

∂t
+∇ · (ρv) = 0 (3.12)

for all øuid particles. This is called the continuity equation and can also be expressed

as
dρ

dt
+ ρ∇ · v = 0 (3.13)

Momentum Conservation

Now, let we assume that the øuid particles are subjected to tensional state σ and dis-

tributed body forces ρb. The linear momentum of the body is deöned as

P (t) =

∫
V

ρvdV (3.14)

The linear momentum conservation principle states that the time variance of linear

momentum equals the sum of all forces acting on the body, that is

d

dt

∫
V

ρvdV =

∫
V

ρ
dv

dt
dV =

∫
S

σ · ndS +

∫
V

ρbdV (3.15)

This integral relation holds for all material particles, and it is possible to write

ρ
dv

dt
= ρb+∇ · σ, (3.16)

The last equation is equivalent to

ρ
dv

dt
+ ρ(v · ∇)v = ρb+∇ · σ or

dρv

dt
= ρb+∇ · (σ + ρv ⊗ v). (3.17)
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3.2.2 Constitutive equations for a Newtonian øuid

Fluids are characterized for a continuous deformation under shear stresses and for as

long as the stresses act. As a by-product of this property, resting øuids cannot undergo

any shear stress at all. This is true for any arbitrary point in this øuid and also implies

that the stress vector on any surface is proportional to the normal at that point but

independent of its direction. We have then that

σijnj = −pni =⇒ σij = −pδij

where the proportionality constant p is called hydrostatic pressure. This shows that a

øuid at rest is compressive in every direction and that p is themean of the normal stress

σii/3.

For øuid in motion, the shear stresses are non zero and we get

σij = −pδij + τij (3.18)

where τij is the viscous stress tensor and appears only as long as the øuid is moving. In

this case the p is called thermodynamic pressure and is no longer one third of σii

For developing the øuid constitutive equation, we must satisfy both rest and mo-

tion conditions. The term τij must be a function of the deformation tensor, and in the

Newtonian case, this relation is linear. The expression for the viscous stress tensor is

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
(3.19)

which leads to the constitutive equation

σij = −pδij + µ

(
∂vi
∂xj

+
∂vj
∂xi

)
= −pδij + 2µv(i,j) (3.20)

or

σ = −pI + 2µ∇sv (3.21)

which is known as Stokes' law.

3.2.3 Navier-Stokes Equations

The laminar øow of øuids subject to external and body forces can be described by solv-

ing the conservation equations coupled with a given constitutive relationship. This

set of equations along with some boundary conditions are collectively known as the

Navier-Stokes equations and they describe the motion in terms of particle velocities

rather than displacements.
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To formally enunciate the Navier-Stokes problem we will consider a closed önite

øuid domain Ω in ℜn with n = 2 or 3 and a closed and sufficiently regular boundary

Γ = ∂Ω. The time-dependent øow of an incompressible viscous øuid must follow

ρ(v,t + (v · ∇)v) = ∇ · σ + ρb in Ω× (0, T ), (3.22)

∇ · v = 0 in Ω× (0, T ) (3.23)

v(x, t) = vD(x, t), x ∈ ΓD, t ∈ (0, T ) (3.24)

n · σ(x, t) = t(x, t), x ∈ ΓN , t ∈ (0, T ) (3.25)

Eq. (3.23) is the incompressibility condition and implies that the elements of the øuid

do not suffer any change in density when subjected to pressure changes.

3.3 TheMethod of Characteristics

The aforementioned equations deöne a convection problem that describe non-linear

momentum transport phenomena. This is the standard Eulerian formulation for øuid

mechanics. One of the methods for solving this equations is to convert them to an

equivalent system in a Lagrangian reference frame. This is accomplished with the use

of the characteristics lines concept which will be explained örst by the use of a simpler

linear hyperbolic PDE, following againDonea andHuerta (2003, Ch. 3). The strong form

of this problem is

ut +∇ · f(u) = s(x, t) in Ω×]0, T [, (3.26)

u(x, 0) = u0(x) on Ω|t=0, (3.27)

u = uD on ΓD×]0, T [, (3.28)

−f · n = h on ΓN×]0, T [. (3.29)

hereu (the solution) and s (a source term) are functions of t andx, and theDirichlet and

Neumann BCs are applied only in the inøow part of the boundary. The øux function is

deöned as

f(u) = au (3.30)

where a is the convection velocity. In this case, since the problem is linear, a is inde-

pendent of u and represents the velocity at which the solution is propagated in time

and space.
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3.3.1 Characteristic Lines

After rewriting the Eq. (3.26) by using the convection velocity, we get

ut + aux = s (3.31)

and from it, the total derivative of u in the direction of slope dx/dt = a equals s. This

direction is called characteristic direction or simply characteristic. To show the transport

of the solution along these lines, we follow the development explained in Donea and

Huerta (2003), and take the homogeneous form of the above equation. First let us per-

form the following change of variables

ξ = x− at, η = x+ at

and the transformation{
ux

ut

}
=

(
∂ξ
∂t

∂η
∂t

∂ξ
∂x

∂η
∂x

){
uξ

uη

}
=

(
−a a

1 1

){
uξ

uη

}
so we arrive at

2auη = 0

which is solved by any function such as

u = f(ξ) = f(x− at),

By evaluating f at t−∆t and x−a∆twe observe that the solution is the same than

when evaluating at t and x. This shows that the solution propagates the spatial proöle

of u along a line of slope a. Thus, we can backtrace the solution at any point to one

of known value at t0 or to the inøux boundary, where the value of the solution is also

known or can be determined via BC. Since the equation is linear, the characteristic lines

areöxed in the (x, t)plane, regardlessof thevalueofu(x, t). If theequation coefficients

are constant, the characteristics are straight lines. In case a depends on u, the equation

is non-linear.

3.3.2 Solution Strategies Based on Characteristic Lines

Asmentioned in the previous section, to resolve the transport problem, one can trans-

form the Eulerian equations to its Lagrangian equivalent by using the characteristic

lines concept. This is performed by replacing the material derivative in Eq. (3.26) with

a total time derivative in the Lagrangian sense.
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Let us saywe candetermine trajectory of amaterial particle traversing a spatial point

of coordinatesx at time τ . This trajectory is the characteristic lineX = X(x, τ ; τ) and

satisöes

dX

dt
(x, τ ; t) = a(X(x, τ ; t)), (3.32)

X(x,τ ; τ) = x. (3.33)

This equation is typically non-linear, but solving this problemallows to reduce the linear

unsteady convection equation to an ordinary differential equation.

Along the characteristicX the material derivative

du

dt
=
∂u

∂t
+ a · ∇u, (3.34)

reduces to a simple time derivative.

It is possible now to transform the original problem into its characteristic form. The

characteristic line that passes at space-time point (x, τ) will be denoted as X(t), the

value of the transported quantity (the solution) along the that line will be U(t) :=

u(X(x, τ ; t), t) and the source term S(t) = s(X(t), t). The problem is written now

as
dU

dt
= S(t), (3.35)

subject to the initial condition

U(tΓ) = uD(XΓ, tΓ) (3.36)

where tΓ is the time atwhich the characteristic lineX intersects theDirichlet boundary.

The intersection is denoted byXΓ = X(x, τ ; tΓ).

Solving this equation for time τ , we have two situations: if the characteristic line

intersects the Dirichlet boundary the solutions is

u(x, τ) = uD(XΓ, tΓ) +

∫ τ

tΓ

S(t)dt, (3.37)

or,

u(x, τ) = u0(X(0)) +

∫ τ

0

S(t)dt, (3.38)

if the characteristic line passed through a point of known solution at t = 0.

We will treat now convection problems with a variable convection öeld a(x, t). As

suggested before, in these problems the solution is constant along characteristic lines.

This fact is used either in semi-Lagrangian or in Lagrange-Galerkin approaches to solve

the transport equations.
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The semi-Lagrangian methods are very well suited to treat unsteady convection

problems. They are extensively used in the öeld of meteorological forecasting and in

environmental øows in non uniform cartesian meshes. This is due to the excellent ac-

curacy and efficiency yield in problems that exhibit a low to medium wave number. In

these methods, the characteristic lines—Eq. (3.32)—over the interval ]t, tn+1[ are ap-

proximated by a mid-point rule. Then, the characteristic form of Eq. (3.35) is solved

to obtain the values at tn+1 of the solution u. This method implies evaluating un(x)

and sn(x) at points different from the nodes, which is done by interpolating the nodal

values.

3.4 Lagrange-GalerkinMethodsBasedonChar-

acteristic Lines

The Lagrange-Galerkin methods are similar to the semi-Lagrangian but instead of dif-

ferentiating along the characteristic lines, these methods employ a spatial discretiza-

tion based on Galerkin projections.

Two different approaches fall in the Lagrange-Galerkin type of methods. The örst

consists in directly integrating along the characteristics. For this, and assuming the

convection velocitya(x, t) is known, the characteristic lines for all nodes are calculated

and then the integrals in Eqs. (3.37) and (3.38) are solved via a Galerkin method.

The second approach consists in the use of a variational formulation, which is the

method employed in this work. Brieøy put, the Navier-Stokes problem is recast into its

weak form and then solved by integrating in space and time along the characteristic

lines.

3.4.1 Weak Formulation

For the presentation of the weak formulation we will consider now the full problem

that is being solved instead of the simpler equations used until know. To recall, we are

treating with the dynamic response of incompressible viscous øuids described by

∇ · σ + ρb = ρ

(
∂v

∂t
+ v∇ · v

)
= ρ

dv

dt
, (3.39)

∇ · v = 0, (3.40)

σ = −pI + 2µ∇sv = −pI + s (3.41)
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After introducing the constitutive equation, Eq. ( 3.41), in themomentum conserva-

tion equation, Eq. (3.39), and multiplying for a suitable test function, we obtain∫
Ω

2µD : D∗dΩ−
∫
Ω

pI : D∗dΩ = −
∫
Ω

ρbv∗dΩ +

∫
Ω

ρ
dv

dt
v∗dΩ, (3.42)∫

Ω

∇ · vp∗dΩ = 0 (3.43)

where D = ∇sv represents the strain rate tensor and b are the body forces. The test

functions are v∗ and p∗ which correspond to the different essential variables, namely:

the velocity and pressure.

3.4.2 Time Discretization

The convective terms of Eq. (3.17) were replaced by a Lagrangian temporal derivative

term, which is a material derivative along the øuid particle trajectories. This term, the

second in the r.h.s. of Eq. (3.42) gathers the inertial effects of the øow. Using a standard

örst order temporal discretization, and knowing the solution at time tn−1 = (n− 1)∆t,

we can calculate the solution at tn = n∆t by means of∫
Ω

ρ
dv

dt
v∗dΩ =

∫
Ω

ρ
vn(x)− vn−1(X(tn−1))

∆t
v∗dΩ, (3.44)

In this equationX(t) represents the position at time t along the characteristic line that

passes through pointx at time tn, soX(tn−1) is the position thematerial particle occu-

pied during the last time step. For an even simpler notation, we will denote this point

asXn−1. Using this notation the particle position can be written as

x = Xn−1 + vn−1(Xn−1)∆t (3.45)

This was the temporal discretization employed in González (2004). With it, the weak

form of the Navier-Stokes equations is∫
Ω

2µD : D∗dΩ−
∫
Ω

pI : D∗dΩ−
∫
Ω

ρ
vv∗

∆t
= −

∫
Ω

ρbv∗dΩ−
∫
Ω

ρ
vn−1v∗

∆t
dΩ,

(3.46)∫
Ω

∇ · vp∗dΩ = 0 (3.47)

When a more accurate scheme is needed, it is possible to employ a second order

time discretization. In Boukir et al. (1997) it is shown that a higher order time discretiza-

tion not only increases accuracy but also relaxes the spatial-temporal restrictions im-

posed by the CFL conditions. This is also the experience obtained in the GEMM group
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with the usage of the örst-order in time characteristic method developed in González

et al. (2007). This örst-order scheme very often lead to numerical difficulties and lack of

convergence in önding the root of the characteristic line that made it non suitable for

øuid-structure interaction problems. In this thesis a second-order in time approach is

suggested instead:∫
Ω

ρ
dv

dt
v∗dΩ =

∫
Ω

ρ
3vn(x)− 4vn−1(X(tn−1)) + vn−2(X(tn−2))

2∆t
v∗dΩ, (3.48)

leaving the weak form of the problem as∫
Ω

2µD : D∗dΩ−
∫
Ω

pI : D∗dΩ− 3

2

∫
Ω

ρ
vv∗

∆t
=

−
∫
Ω

ρbv∗dΩ− 2

∫
Ω

ρ
vn−1v∗

∆t
dΩ +

1

2

∫
Ω

ρ
vn−2v∗

∆t
, (3.49)∫

Ω

∇ · vp∗dΩ = 0 (3.50)

Please note that in the weak form equations, the past velocities have been written as

vn−i but they are still evaluated at pointsXn−i.

3.4.3 Algorithmic Issues

The most difficult terms to evaluate in Eq. (3.46) or Eq. (3.49) are those which refer to

the particle position at past times. The numerical integration of this terms depends on

the quadrature scheme employed. If we employ traditional Gauss-based quadratures

on the Delaunay triangles, it will be necessary to önd the position at time tn−1 (and at

tn−2) of the material particle now (at time tn) occupying the position of the integration

point in question.

To explain this problem and the employed solutionmethod, wewill refer to the örst

order time discretization, Eq. (3.46). The integration of the term in question is per-

formed according to ∫
Ω

ρ
vn−1v∗

∆t
dΩ =

∑
k

ρ
vn−1(Ξk)v(ξk)

∆t
wk, (3.51)

where wk represent the weight associated to integration point k. That point occupies

the position ξk at the current time instant, and the characteristic lineX(ξk, t
n; t) takes

the valueΞk at tn−1.

Two main difficulties need to be addressed: önding Ξk and evaluating vn−1(Ξk).

The later may be performed by interpolation between neighbouring nodes, given that
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the past nodal velocities are stored, which is fairly easy to assure. It is also necessary

to know which nodes were near Ξ, so we will assume the nodal connectivity remains

constant within two subsequent time increments. Although this is known to be false,

in general, is a reasonable assumption for small time increments. It would be more

accurate to store and manipulate all the information regarding nodal connectivity for

past steps, but the possible gains do not compensate the computational costs in the

cases where that is even possible —closed codes could probably deny that possibility

at all. It can occur that some of the nodes neighbouring the integration point at time

t were not actually its neighbors at time tn−1, but this does not constitute a problem,

since the number of natural neighbours of a point is usually high (much more than

three), so the quality of the interpolation is thus guaranteed.

Regarding the search forΞ, weutilize a two-step iterativeprocedure. Firstweproject

the integration point ξ backwards in time by

Ξi = ξ − vn−1(Ξi−1)∆t, (3.52)

for the örst iteration we interpolate the past velocities of the neighbouring nodes at tn

to make the projection.

In the second step, we evaluate the velocity vn−1(Ξi) calculate the projection in tn

ofΞi:

ξi = Ξi + vn−1(Ξi)∆t (3.53)

Until ξ ≈ ξi. González et al. (2007) reports convergence in two or three iterations

with an error of the order of 10−8, see also González (2004) .

When employing a second-order time discretization, the process will be performed

in a recursive way, solving for the tn−1 and tn−2 time steps. In this case

Ξ = Ξ′ + vn−2(Ξ′)∆t (3.54)

ξ = Ξ′ + vn−2(Ξ′)∆t+ vn−1(Ξ)∆t (3.55)

whereΞ′ = X(ξ, tn; tn−2).

If we employ some type of nodal integration, as in Chen et al. (2001) or González

(2004), this procedures becomes unnecessary as we only need to store nodal velocities

at time steps tn−1 and tn−2.

3.5 Numerical Examples

The örst-order version of this formulation has been tested in González (2004), González

et al. (2007) and has shown a very good performance in the simulation of free surface
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Figure 3.4. Initial conöguration for a 2-D sloshing problem.

øows. We refer the reader to these works for more details on the topic. However, it

has demonstrated problems, and very often lack of convergence in the characteristic

root önding, when applied to øuid-structure interaction problems. In this section we

will show the behavior of the higher-order time discretization in a situation where the

original formulation was unable to yield the appropriate results.

3.5.1 Sloshing

We will consider a two-dimensional sloshing problem with small deformations as pro-

posed by Ramaswamy (1990). The initial setting is shown in Fig. 3.4. In this problem

a stationary øuid in an unstable initial condition is set free to move under the gravity

inøuence alone. The øuid is contained in a 2-dimensional tank. The idea is to observe

the wave amplitude as the øuid motion stops. The initial surface elevation in given by

ηo = a cos k2(x+ l/2) (3.56)

with

kn = nπ/l (3.57)

where n represents the number of waves present in a tank of with l. a represents the

initial maximum amplitude measured from the mean level h.

An analytical solution was proposed by Prosperetti for certain parameters for which
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is possible to obtain a solution for the amplitude. In this case the solution is given by

a(t) =
4v2k4

8v2k4 + w2
0

a0erfc
(√

vk2t
)
+

4∑
i=1

zi
Zi

(
w2

0a0
z2i − vk2

)
exp[(z2i − vk2)t]erfc(zi

√
t),

(3.58)

where a0 is the initial amplitude, w0 is the natural invicid frequency: w2
0 = gk + γk3;

the zi are the four roots of

z4 + 2k2vz2 + 4(k2v3)3/2 + v2k4 + w2
0 = 0 (3.59)

and Z1 = (z2 − z1)(z3 − z1)(z4 − z1). Z2, Z3, Z4 are obtained by a permutation of the

indices.

For the tank boundaries free-slip conditions were imposed along the walls. Note

there is no need to impose conditions on the free surface, nor to perform any special

boundary tracking of if.

For discretization purposes, a Sibson approximation was chosen for the velocity

öeld, whereas piece-wise constant (Thiessen) approximation was chosen for the pres-

sure. This kind of approximation is known not to fulöl the inf-sup condition associated

with the incompressibility condition, see González et al. (2004), but nevertheless still

provides with stable results in the vast majority of cases, very rarely producing volu-

metric locking. This is the reason why an as much simple as possible approach has

been preferred.

In the showncase a time increment∆t = 0.005swasusedand theReynoldsnumber

resulted to be of 3200. The gravity force had an acceleration of g = 9.8m/s2. Fig.

3.5 shows the performance of the numerical solution (in red) compared against the

analytical solution (purple line), where a very good agreement can be appreciated.

In Fig. 3.6 both örst-order and-secondorder schemes can be compared. it is possible

to see how the örst order scheme was unable to replicate the diminishing amplitude.

At larger time increments the solution even diverges, while the second order scheme

was able to still give reliable results.

In Figs. 3.7 to 3.9 the velocity öeld for different time steps is shown. Vectors show

the direction of the velocity, while the colors show itsmagnitude. It can be appreciated

the deceleration as the øuid height on one side decreases until önally the velocity öeld

reverses.
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Figure 3.5. Evolution in time of the vertical displacement and velocities at both edges

of the free surface. The numerical solution is shown in red, in purple the analytic solu-

tion.
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Figure 3.6. Vertical displacement and velocities at both edges of the free surface. The

second-order solution is shown in blue, the örst-order solution in red and the analytic

solution in a purple line.
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Figure 3.7. Velocity öeld at time t = 0.005.
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Figure 3.8. Velocity öeld at time t = 0.455.
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Figure 3.9. Velocity öeld at time t = 1.205.
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3.6 Conclusions

In this chapter a second-order in time Natural Neighbour Lagrange-Galerkin scheme

has been introduced. Themodiöed technique improves the quality of the obtained so-

lutions over the previous technique; even allowing to simulate problems that were not

previously possible. By incorporating more historical information about the previous

øow steps, it was possible to reduce error and reach better approximations. The im-

proved accuracy comes at a cost of increased resource requirements (CPU time, mem-

ory and storage) but nevertheless the increase is not in general excessive. The char-

acteristic root önding algorithm has shown to converge in a very reduced number of

iterations for the vast majority of cases tested. In the next chapters applications of the

recently developed scheme will be studied, with special emphasis in non-Newtonian

free-surface øows. But for the time being the free-surface detection algorithm is still to

be presented.
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Chapter 4

Free Surface Treatment

In this chapter wewill introduce the concept of shape constructors and review their use.

Particular interest will be put in α-shape techniques for the simulation of free-surface

øowproblems. These procedures, in conjunctionwithmeshlessmethods, allow for the

simulation of such problems in an updated Lagrangian approach without the need for

an explicit description of the boundary of the domain. At each time step, the shape

of the domain is extracted automatically by the proposed method. However, it is well

knowthat standardα-shape techniquespresent somedrawbacks. Theörst is the choice

of the α parameter, related to the level of detail to which the domain is represented.

Also contact detection of free surfaces (auto-contact) or between the free surface and

a rigid boundary, for instance, is often detected with an error of the order O(h) —the

nodal spacing parameter—in the gap distance. A heuristic technique for the choice of

the α parameter is proposed and a novel methodology for an improved detection of

contact or merging øows is developed. The proposed technique is illustrated with the

help of some examples in solid and øuid mechanics.

One of the most cited capabilities of meshless methods is that of simulating large

deformation phenomena without degrading accuracy, as opposed to Finite Element

Methods, if no remeshing is performed. This opens the possibility of simulating free

surface øows, for instance, in an updated Lagrangian framework, andmanyworks have

been devoted to this end in the last years. The interested reader can consult, for in-

stance, Martínez et al. (2004), Idelsohn et al. (2003), Idelsohn et al. (2004) or González

et al. (2007), among others. These free surface problems are different in nature. The

reader may imagine readily waves breaking, but not only dynamical problems can be

solvedwith such a treatment. Many formingprocesses, for instance, canbe also treated

in an updated Lagrangian setting advantageously, see Alfaro et al. (2006a) or Alfaro

et al. (2006b). Forging or casting and, obviously, mould ölling, are among these pro-

cesses that present free or internal surfaces, like phase boundaries.
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In these problems, the obvious advantages of updated Lagrangian meshless meth-

ods over Eulerian or Arbitrary Lagrangian Eulerian (ALE) methods —in which an artiö-

cial velocity is added to themesh—, for instance, are the absence of remeshing nor the

associated numerical diffusion, or the lack of convective terms in the formulations, that

consequently do not need for any stabilization. Note that connectivity between nodes

is computed by the different meshless methods in a process transparent to the user, as

the cloud of nodes evolves, convected by the material velocity.

Aparticularly elegant analysis of thedifficulties associated toanEulerian/Lagrangian

treatment of the equations arising from free surface øows can be found in Lewis et al.

(1997). Particularly noteworthy is the difficulty in the selection of mesh velocity in ALE

formulations, in which the mesh moves with a velocity different to the material one,

in order to minimize mesh distortion. Also, in Eulerian (öxed mesh) approaches, some

marking technique should be used in order to track the evolution of the free surface.

The Volume of Fluid (VoF) technique is an example of these techniques. In Lewis et al.

(1997) an interesting mixed Eulerian/updated Lagrangian technique is developed.

As stated before, meshless, or particle (those in which amass is linked to each node)

methods have avoided the need to perform such complicated treatments. Neverthe-

less, new difficulties arise. For instance, the nodal connectivity in meshless methods

is not dictated by geometrical reasons (the best available triangle in terms of internal

angles, for instance, in FEmesh generation) but by algorithmic reasons. In the Element

Free Galerkinmethod (Belytschko et al., 1994), for instance, the connectivity is dictated

primarily by the need of a support (radius of the shape function) big enough to encom-

pass a sufficiently large number of nodes so as tomake amatrix invertible. Remarkably,

this is not related to the geometry of domain. That reason precludes the nodal con-

nectivity to be used directly to determine the shape of the domain, as in FE methods.

Nothing similar to an isoparametric representation exists in meshless methods.

In addition, tracking the free surfacewith boundarymarkers can be implemented in

an elegant way in two dimensional problems —by employing a chain of markers and

checking self-intersections of the chain to detect merging øows—, as in Lewis et al.

(1997), for instance, but becomes much more intricate in tree dimensions.

If one tries to avoid any form of meshing, and only a set of nodes, with no connec-

tivity between them, is employed, it then becomes difficult to önd the position of the

free surface. In other words, the geometry of the domain should be extracted in any

way from the current, updated, position of the nodes, that move, as stated before, with

the material velocity.
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To this end, various authors have employed Computational Geometry techniques.

In particular, Cueto et al. (2000) seems to have been the örst in employing shape con-

structors —α-shapes in this case—techniques to extract the geometry of the domain.

Shape constructors are geometrical techniques that enable to önd the shape of the do-

main at each time step. α-shapes (Edelsbrunner andMücke, 1994) havebeenemployed

in a number of previous works involving free surface øows, see for instance Idelsohn

et al. (2004), Idelsohn and Oñate (2006), Martínez et al. (2004), González et al. (2007) or

Birknes and Pedersen (2006), among others.

Also, different shape constructors have been proposed after α-shapes, see Cazals

et al. (2006), Amenta et al. (1998b), Amenta et al. (1998a), Giesen and John (2003) to

name a few. In order to extract the geometry of the domain, in general, thesemethods

propose a öltration of the Delaunay triangulation of the cloud of points. The Delaunay

triangulation is the base ingredient of these techniques, since it characterizes unequiv-

ocally the cloud of points —it is unique for each cloud. Different criteria are proposed

in order to select the triangles pertaining to the shape of the domain. The simplest one

is maybe the α-shape technique, that proposes to eliminate all triangles (or tetrahe-

dra) whose circumscribing radius (or, equivalently in önite element terminology, their

associated mesh size, h) is greater than a prescribed level of detail for the geometry,

α. α-shapes have generated a great interest on ``provable'' shape reconstruction ar-

guments. We mean that, under certain, usually very weak, assumptions on the size of

the cloud of points, we obtain geometric and topologically accurate descriptions of the

domain under consideration.

One of the main drawbacks of the α-shape technique, as recognized in many works

(see, for instance, Cazals et al. (2006), Teichmann and Capps (1998)) is precisely the

choice of the α-value. In addition, α-shapes work well only for uniformly-distributed

cloud of points. This generally does not constitute a problem for stationary problems.

For initial-value problems, the choice of a uniform nodal sampling on the initial geom-

etry, in the absence of any information on the önal geometry of the domain, seems to

be judicious.

The jumpof thementioned techniques to the öeld of ComputationalMechanics has

posed additional difficulties. It is well-known thatα-shapes are not able to detect holes

or cavities of size smaller thanα, by deönition. This implies that contact betweendiffer-

ent surfaces is detectedwith an errorO(α) ≈ O(h), i.e., prior to the true expected con-

tact (Teichmann and Capps, 1998). Precisely in Teichmann and Capps (1998) a method

is proposed to alleviate this drawback, but it needs information on the normal of the

boundary at the sampling points. This is easy to achieve for three-dimensional scans
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of solids, for instance, but this kind of information is not readily available in the class of

simulations we are interested in.

In this chapter we present a technique, well suited for the numerical simulation of

free-surface øows, that avoids the before mentioned problems. The proposed tech-

nique isbased inperforminganadditional öltration to theDelaunay triangulation (tetra-

hedrization) of the cloud of points. After the α-öltration, we perform an additional öl-

tration based on the information provided by nodal velocities at the last converged

time step, and the gradient of velocities. The tests performed during this work have

provided excellent results over problemswhere traditionalα-shapes have revealed de-

öciencies.

4.1 Theory ofα-shapes

Asmentioned before, the idea ofα-shapes in particular, and shape constructors in gen-

eral, is to extract the shape of a domain described only by a set of nodes. While an

easy task to the human eye, there is no formal deönition of shape in the mathemati-

cal literature. α-shapes were örst established by Edelsbrunner and co-workers Edels-

brunner et al. (1983) Edelsbrunner and Mücke (1994). Other shape constructors giving

homotopy-equivalent shapes have been recently proposed (Dey et al., 2003). Given a

önite set of points (that will be the nodes employed in the approximation of the prob-

lems described in the previous section), there exist a önite set of shapes described by

all the possible combination of points, edges, triangles and tetrahedra (if we consider

three-dimensional spaces) forming simplicial complexes.

A k-simplex σT with 0 ≤ k ≤ 3 is deöned as the convex hull of a subset T ⊆ N of

size | T |= k + 1. A three-dimensional simplicial complex is a collection, C, of closed
k-simplexes (0 ≤ k ≤ 3) that satisöes:

(i) If σT ∈ C then σT ′ ∈ C for every T ′ ⊆ T .

(ii) The intersection of two simplexes in C is empty or is a face of both.

The particular complexes considered in the theory of α-shapes have vertices in the

node set and simplexes from the Delaunay triangulation of the set, which is unique,

as it is well known. The formal deönition of the set of α-shapes of the cloud of nodes

follows.
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4.1.1 Deönition of the family ofα-shapes

α-shapes deöne a one-parameter family of shapesSα (α being the parameter), ranging

from the ``coarsest'' to the ``önest'' level of detail. α can be seen, precisely, as ameasure

of this level of detail.

Let N be our önite set of points in ℜ3 and α a real number, with 0 ≤ α < ∞. Let

b be an α-ball, that is, an open ball of radius α. A k-simplex σT is said to be α-exposed

if there exist an empty α-ball b with T = ∂b
∩
N where ∂ means the boundary of the

ball. In other words, a k-simplex is said to beα-exposed if anα-ball that passes through

its deöning points contains no other point of the setN .

Thus, we can deöne the family of sets Fk,α as the sets of α-exposed k-simplices for

the given setN . This allows us to deöne anα-shape of the setN as the polytopewhose

boundary consists on the triangles in F2,α, the edges in F1,α and the vertices or nodes

in F0,α.

Each k-simplex σT included in the Delaunay triangulation, D, deönes an open ball

bT whose bounding spherical surface (in the general case) ∂bT passes through the k+1

points of the simplex. Let ϱT be the radius of that bounding sphere, then, the family

Gk,α, is formed by all the k-simplexes σT ∈ D whose ball bT is empty and ϱT < α .

The family Gk,α does not necessarily form simplicial complexes, so Edelsbrunner and

Mücke (1994) deöned the α-complex, Cα, as the simplicial complex whose k-simplexes

are either in Gk,α, or else they bound (k + 1)-simplexes of Cα . If we deöne the un-

derlying space of Cα, |Cα|, as the union of all simplexes in Cα, the following relationship

between α-shapes and α-complexes is found:

Sα = |Cα| ∀0 ≤ α <∞ (4.1)

α-shapes provide a means so as to eliminate from the triangulation those triangles

or tetrahedra whose size is bigger than the before-mentioned level of detail, α. Thus,

we make a öltration of the triangles.

In Fig. 4.1 an example of the previously presented theory is presented. It represents

some instances of the önite set of shapes for a cloud in a intermediate step of the sim-

ulation of a wave breaking at a beach.

4.1.2 How to choose theα-value

Many authors claim that the main difficulty with the α-shape technique is related to

the choice of theα-value (Mandal andMurthy, 1997). In this sectionwe provide a prac-
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Figure4.1. Evolution of the family ofα-shapes of a cloud of points representing awave

breaking on a beach. Shapes S0 or cloud of points (a), S0.5 (b), S1.0 (c), S2.0 (d), S3.0 (e)

and S∞ (f ) are depicted.
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Figure 4.2. Medial axis of a two-dimensional curve.

Figure 4.3. Computation of the LFS at a point p.

tical means to do so in the type problems we are dealing with. To this end, it will be

necessary to give some prior deönitions.

The medial axis (see for instance Amenta et al. (1998b) and references therein) of a

d − 1 dimensional, twice-differentiable, surface Γ = ∂Ω in ℜd is the closure of the set

of points which have two or more closest points in Γ. An example of medial axis of a

curve is shown in ögure 4.2.

The local feature size (Amenta et al., 1998b), LFS(p), of a point p ∈ Γ is deöned

as the Euclidean distance from p to the closest pointm on the medial axis. In Fig. 4.3

the computation of the LFS at a point is shown. Observe the difference between this

concept and the radius of curvature of the curve at that point, which is different at

different directions.

Inmesh generation, themedial axis of a surface has been used to account for amea-

sure of the desired point density in a region (see Armstrong et al. (1995)). To this end,

it is useful to deöne a measure of the sampling density of the curve.

The surface Γ is said to be ε-sampled by a subset {nI}mI=0 of the set of nodes N if

every point p ∈ Γ is within a distance ε · LFS(nI) of a sample point nI ∈ Γ.

In practical situations, it is common to have an explicit description of the boundary

of the domain at the initial time step, or reference conöguration —this will not be the
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case for all the subsequent time steps, as mentioned before, since we try to avoid the

use of boundary markers or similar techniques. At this conöguration, we proceed by

constructing an ε-sampling of the boundary curve or surface. Note that it should be

twice differentiable in order to guarantee a non-vanishing LFS. In other words, it will

not be possible to represent a sharp (concave) corner in the domain without the help

of a segment chain (in 2D) or boundary triangulation (in 3D).

It is therefore important to choose the level of detail up to which we represent the

initial conöguration of the domain. Details of size lower than the chosen discrete LFS

will not be represented by the method. In fact this is similar to the situation found

whenmeshingamechanical part, for instance. Manyanalysts choose toeliminate some

details of the geometry irrelevant for the results.

Oncewe chose the desired level of detail for representing the initial conöguration of

the domain, we construct an ε-sampling of the boundary (with ε < 1) and extend the

cloud of nodes to the interior of the domain, taking always the nodal distancemeasure,

h ≈ ε · LFS.
As dictatedby theprecedingdeönitions, the choiceofα such thath < α < LFSwill

provide a good approximation of the initial domain. In this way, triangles pertaining to

the obtained shape of the domain will be bounded from above by the chosen LFS

and from below by h. Thus, no triangle will overlap concave portions of the domain's

boundary, nor spurious holes will appear. There exist, in addition, theoretical proofs of

the convergence of the shape of the domain to the actual one with increasing nodal

distributions, see for instance Mandal and Murthy (1997).

As the domain evolves, no further explicit deönition of the boundary will be avail-

able, and the resulting shapes will never reproduce details of LFS lower than α, as is

obvious (those triangles will be eliminated from the triangulation). However, for nodal

discretizations öne enough, this technique provides very good results, with excellent

mass conservation properties, see Martínez et al. (2004), González et al. (2007), Alfaro

et al. (2006a).

4.1.3 Problems with theα-shape technique

There remain, however, some important problems in the application of α-shape tech-

niques to updated Lagrangian simulations of øows with free surfaces. Maybe themost

important is that, when contact between two portions of the domain, or auto-contact

occurs, theLFS ofportionsof theboundary—precisely thosegetting into contact—decreases,

and can be, during some time steps, below the threshold value α. This is precisely the
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Medial axisv

Figure 4.4. Evolution of the LFS at the neighbourhood of two surfaces getting into

contact. A portion of the medial axis of points in the neighbourhood of the contating

area is depicted. Remember that the LFS is the distance between the boundary and

the medial axis. Thus, it vanishes rapidly in this situation.

Figure 4.5. Spurious detection of contact at the crest of the wave.

situation that will happen shortly after the time step depicted in Fig. 4.1, see Fig. 4.4. If

this happens, contact will be spuriously detected by the standard α-shape technique

once the LFS is below α. In Fig. 4.5 an example is provided for the previous problem

of spurious detection of auto-contact between the breaking wave and the surface of

the sea. Note that contact is detected some time steps prior to its actual occurrence.

In the next section we propose two additional öltrations to be done after the α-

shape öltration in order to improve the behaviour of the method.

4.2 Proposed algorithm

The proposed algorithmmakes use of the information provided by previous time steps

on the shape of the domain and, through the computed velocity öeld, on its future
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shape. Thus, we will make use of the essential variable öelds to improve the behaviour

of theα-shape technique by performing amodiöed öltration processes over theDelau-

nay triangulation of the set of points.

In order to discern different parts of a body or different bodies getting into contact,

we assume that all particles belonging to the same body should behave in a some-

what similar way. In our case, they all should move roughly with the same velocity or,

more precisely, without jumps in the velocity nor steep gradients (this is true only for

moderate Reynolds numbers in the øow, thus the proposed technique is not valid for

turbulent øows). In this way, the k-simplexes found to be constituted by nodes that

exhibit highly dissimilar characteristics should be regarded as invalid and öltered out

of the α-shape.

For each k-simplex, amodiöed circumcircle criterion is employed. Thismodiöcation

includes a deformation parameter based on the differences between the associated

nodal velocities. This parameter is used to alter the metric space. Elongating the Eu-

clidean distancemeasured proportionally to the velocity differences causes the invalid

simplexes to appear larger and therefore fail the circumcircle test.

To determine the deformation parameter in our case, a comparison is made be-

tween the different velocity vector directions. To this end, we örst compute a princi-

pal directiond, which is found as the local normal direction at the considered k-simplex

(Teichmann and Capps, 1998)

d =
k+1∑
i=1

sivi such that ||d|| = max
si=±1

||
k+1∑
i=1

sivi||, (4.2)

where vi represents each of the nodal velocities associated to the k-simplex, and || · ||
denotes the norm associated to the metric space.

We deöne the angle β as the one formed by each velocity vector with the principal

direction d. A deformation factor fβ is then obtained according to

fβ = 1− |βmax − βmin|
π

. (4.3)

This factor allows to ölter those k-simplexes formed by nodes of opposing or divert-

ing velocities. Note that only if the simplex is ``large'' (according with an user provided

measure, α) and its nodes move with very dissimilar velocities, it will be eliminated

from the triangulation. If the triangle is small enough it will bemost likely representing

a recirculation in the øow, for instance, and will still be maintained in the model.

There are, however, cases in which only one of the bodies (or only some sub-region

of the model) is moving and the previous ölter alone would still detect a spurious con-

tact. In that situation one or more nodes will not be taken into account by the above
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factor, yet those simplexes need to be öltered. The need arises to take into account the

gradient of those velocities, and calculate a deformation factor fmod as

fmod = 1− ∥vi∥max− ∥ vj ∥min

∥ vi ∥max
(4.4)

Once the deformation factors are obtained we proceed to alter the metric tensor,

assuming it constant at each simplex. The distance between two points X and Y, with

coordinates x and y respectively, can be deöned as

d(x,y) =
√

(x− y)M (x− y)T (4.5)

whereM represents the metric tensor. We deöne a ``modiöed'' metric tensorM with
1

(fa
modf

b
β)

on the diagonal, where a and b are user deöned parameters that allow adjusting

the penalty owing to each factor depending on the nature of the simulation.

The newly deformed circumradius is used to check theα-shape test, usuallymaking

the unwanted simplexes fail. This process is performed on a simplex by simplex basis.

4.2.1 Choosing a and b.

The selected values for the new parameters a and b will depend on the nature of the

problem under consideration. Two main factors will inøuence the selection: the ratio

ofα to the original simplex size and the relative difference between the nodal property

values. Fig. 4.6 depicts in a simpliöed way the relationships between the mentioned

factors, graphing the deformed size ratio d′/α versus the percentage of property vari-

ation. In this chart, the element will fail the test when d′/α is greater than one.

For these charts a 1-dimensional element of unitary size was assumed and only one

property for each node—this property could represent the particle speed or the veloc-

ity direction—, so we only have to choose one parameter to calculate the deformation

factor f . In Fig. 4.6(a), it is shown the effect of varying f for a öxed α = 4, (so this

element would easily pass a standard öltration). Notice how raising the deformation

parameter (thus decreasing f ) means that the percentage of difference in properties

will make the test fail sooner. Thus if small differences in values are expected, f should

be made accordingly small to be able to discern the invalid simplexes.

In Fig. 4.6(b), f was held constant at 2 and the α to element size ratio was varied

from 2 to 32, to show that when this ratio is large, a higher f needs to be chosen to

avoid making the test too strict.

While computing the Delaunay triangulation is necessary when dealing with Natu-

ral Element methods, it is not with the rest of meshless methods. It adds a little bit of
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Figure 4.6. Relationship between the modifying factors. Variation in any of the defor-

mation factors (a) and in alpha value (b).
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CPU time to the simulation, that in general is negligible. Very efficient algorithms exist

in the literature (see, for instance the Qhull software (Barber et al., 1996), which is free

and very efficient). It is able to triangulate 1000 nodes in 0.016 CPU seconds on a laptop

equipped with a Centrino processor and 500 Mb of RAMmemory. The proposed öltra-

tion adds some very little extra CPU time to this, since it can be implemented within

the Delaunay algorithm, or by adding a single do while loop to the code over all the

triangles.

4.3 Examples

There is a wide variety of problems involving the presence of free or internal surfaces.

Typically, Navier-Stokes equations in the presence of such boundary conditions are

maybe themost ubiquitous example. But we do not restrict ourselves to Navier-Stokes

equations. Evenwithout the presence of inertia terms, many forming processes can be

formulated in the so-called øow formulation (Zienkiewicz et al., 1978), (Zienkiewicz and

Godbolet, 1974), if a rigid-(visco)plastic constitutive equation is assumed. Most of these

forming processes (extrusion, forging, ...) imply the presence of free-surfaces, and very

often the precise location of them, together with accurate determination of contact,

auto-contact, etc. is of utmost importance.

We refer ourselves mainly to these last two examples: Navier-Stokes equations, as

treated in Chapter 3 and the øow formulation of a rigid-plastic metal, brieøy reviewed

hereafter. Other problems are also suitable for the formulation here proposed.

4.3.1 Benchmarking

In order to validate the proposed method, it was employed in two classes of idealized

cases of a 2D drop falling as a rigid body towards a wall, Fig 4.7. On the örst class prob-

lems, see Fig. 4.7(a), the ball was dropped over a plane surface moving in the same

direction at less speed than the ball. On the second family of cases, Fig. 4.7(b) both

bodiesmove at the same speed but in different direction. The α parameter on all cases

was chosen deliberately larger than actually needed, so that the α-shape would be a

complete convex hull encompassing both bodies. That resulted in a triangulation that

included several invalid triangles, shown in Fig. 4.8(b). These triangles could constitute

an important error source due to the effects of a non-existing contact.

The örst setting allows to test the effect of the gradient of velocities, taken into ac-

count by fmod. At the limit case, the speed of the plane is null, so the deformation factor

ComputationalMechanics



96 Andrés S. Galavís Borden

v
1

v
2

v
1

v
2

 

Figure 4.7. Method validation. Cases studied of a 2D ball drop over a øat surface. (a),

0 ≤ v2 < v1 and (b), v2 = v1, 0 ≤ β ≤ π/2 .

goes to inönite, therefore the sizeofαbecomesunimportant as the triangles composed

by nodes from the two different surfaces will always fail the test. In this case α was set

to 5—thus taken deliberately large—, a to 10 and b to 0.

Less extreme cases where tested, on which the surface was not completely still, but

moving at less speed in the same direction of the ball. All cases resulted in successful

öltrations. Fig. 4.9 shows a detail of the area onwhich both surfaces nearly touch. Trian-

gles eliminatedby the proposed öltration are shown in light grey. Specially noteworthy

is the difference between the element sizes between the drop and the plate. Without

an external öltration, there is noαwhich couldmanage to obtain a reasonableα-shape,

given that the plate element size is more than öve times the element size of the drop

and the difference with the gap between both bodies is even more drastic. Density

based öltrations could be made to recognize both areas, yet the case would still prove

to be challenging if possible at all.

On the second family of cases the surface moves at the same speed but in different

direction, still usually towards the ball. This exercise allows to check the performance of

the öltration due to fβ . The case in which both bodies approach directly to each other

is also an extreme situationwhere noneof the offending triangleswill ever pass the test

regardless of the chosen α. In this case, α, a and bwere 5 —again deliberately large—,

0 and 1, respectively. The angle difference has been tested up to the case where the

bodiesmoved in a perpendicularway. In all the conditions both bodies could be recog-

nized by adjusting the b factor only. In this case the difference between element sizes

at the drop and the plate is also noteworthy.
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Figure 4.8. Drop approaching a surface. Both families of cases studied were tested on

the same set of nodes (a).The resultant geometry of the domain provided the standard

α-shape (b) and the modiöed method (c) are depicted.
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Figure 4.9. Drop approaching a still plate (detail of the contact zone). In light grey the

triangles öltrated by the proposed techniques are shown.
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Figure 4.10. Detail of the velocity öeld at the wave crest

4.3.2 2Dwave breaking

A third type of test was performed with the wave problem shown in Figs. 4.1(a) to (f )

and4.5 inwhichwecould check theperformanceona real 2Dcase. Thevelocity öeldon

the crest of thewave is shown in Fig. 4.10. It can be noticed how the vectors are roughly

aligned in the same direction, thus resembling the örst family of cases in the preceding

section. Even though the velocity vectors seem to be very similar, the difference is so

that the öltration is successful at the crest. Again, a reasonable value for the parameters

a and b seems to be 10 and 1, respectively, and our experience dictates that this is so

for a general problem presenting this kind of difficulty.

The results of the proposed technique are shown in Fig. 4.11. In this case the pro-

posed method is able to discern between the crest and the trough of the wave. Again,

the α value was taken deliberately too high, to show that even a poor choice of α will

lead to a proper result.

Mass (volume) conservation is analyzed in Fig. 4.12. In this case, the predicted vol-

ume of the whole domain is analysed, taking into account that obtained by standard

α-shape techniques and the one obtained by the proposed method. A sudden rise in

volume implies spurious contacts. As can be noticed, the proposedmethodgivesmore

accurate results, with less than 1%error in volume. The gain in volume due to spurious

contact detection for the α-shape technique raises up to 5% for the önal time steps,

even if the contact region in the model is concentrated near the wave crest.

In this test we applied themodiöed öltration to the velocity öelds obtained in a sim-

ulation performed with the standard α-shape method. This implies that after the spu-
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Figure 4.11. Wave before breaking. Velocity vectors (a), α-shape without additional

öltration (b) and shape reconstructed with the new approach (c). In this cases the pa-

rameters used where α = 9, a = 10, b = 1.
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Figure 4.12. Volume conservation for the standard and the proposed technique.
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rious contacts occurred the velocities at the crest where already compromised. This,

however allowed us to test the capabilities of the proposed methodology to öx spuri-

ous shapes.

4.3.3 An extension to 3D problems. Aluminium extrusion

What follows is a short explanation of the extrusion problem, which was the last test

case for this method and a proof of applicability for the 3D extension.

Flow formulations of rigid-plastic solids

Asmentioned before, many forming processes can be formulated as free-surface prob-

lems under very standard assumptions. Although, to some extent, an elastic recovery

exists at the endofmanymetal formingprocess, this is oftenneglected. In addition, the

Cauchy stress is usually related to the strain rate tensor. This leads to a formulation that

closely resembles that of non-Newtonian øuids, and hence the term øow formulation

(Zienkiewicz and Godbolet, 1974).

Thus, the equations governing the metal deformation can be expressed in terms of

velocities rather than displacements. Stresses produced in the forming process can be

set in a simple form as

σ = D(d, T ) · d, (4.6)

whered represents again the strain rate tensor (symmetric part of the velocity gradient)

and T the temperature. Depending of the particular constitutive equation chosen for

themetal, we thus obtain different formulations. In Alfaro et al. (2006b) and Alfaro et al.

(2006a) a Sellars-Tegart temperature-dependent constitutivemodel was implemented

in this framework.

Constitutive equations for aluminium

We considered a rigid-viscoplastic constitutive law for the aluminium, allowing for a

øow formulation for the problem (Zienkiewicz and Godbolet, 1974). In essence, we ne-

glect inertia terms in the Navier-Stokes equations and considered a non-linear consti-

tutive law for the aluminium in the form

s = 2
ηd+ σy(d)

3d
d, (4.7)
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where s represents the deviatoric part of he strain rate tensor and σy represents the

yield stress. d represents the equivalent strain rate. Note that, depending on the η

value, the return to the yield surface is done with different velocity. Since it is common

to describe aluminium behaviour as rigid-plastic (rather than viscoplastic) we employ

null viscosity, so as to enforce Y = σ − σy = 0, leading to

s =
2σy

3d
d. (4.8)

Finally, the constitutive equation, accounting the incompressibility of plastic øow

results:

σ = 2µd− pI , with µ =
σy

3d
. (4.9)

Linearized form of the variational problem

If we write the incremental variational equation at time t+∆twe arrive to:∫
Ω(t+∆t)

(
− (pt +∆p)I + 2µ(dt +∆d)(dt +∆d)

)
: d∗dΩ = 0. (4.10)

Domain updating is done in an explicit procedure, given the last converged velocity

öeld, but due to the non-linear character of the constitutive equations, an iterative ap-

proach has been applied to the conservation equations, using the Newton-Raphson

scheme, thus leading to∫
Ω(t+∆t)

(
−∆∆pI + 2µ

(∂µ(dt+∆t
k )

∂d
: ∆∆d

)
dt+∆t
k +

+2µ(dt+∆t
k )∆∆d

)
: d∗dΩ =

= −
∫
Ω(t+∆t)

(−pt+∆t
k I + 2µ(dt+∆t

k )dt+∆t
k ) : d∗dΩ, (4.11)

where the subscript k indicates the iteration within a time increment. The incremental

form of the incompressibility condition results∫
Ω(t+∆t)

∇ · (∆∆v) p∗dΩ = −
∫
Ω(t+∆t)

∇ · (vt+∆t
k )p∗dΩ. (4.12)

If we approximate the velocities and pressures, as well as their variations, by em-

ploying a önite-dimensional set of basis functions, we arrive to a discrete form of the

previous equations (Bubnov-Galerkin method)

∆∆vh(x) =
n∑

I=1

ϕI(x)∆∆vI (4.13)

∆∆ph(x) =
n∑

I=1

ψI(x)∆∆pI , (4.14)
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where n represents the number of nodes considered in the approximation. Laplace in-

terpolations (Sukumar et al., 2001) are employed in this work to interpolate the velocity

öeld, while Thiessen interpolation (piece-wise constant on each Voronoi cell) is used for

pressures. Any other form ofmeshless approximations could also be employed as well.

More details on the derivation of the model can be found in Alfaro et al. (2006b) and

Alfaro et al. (2006a).

Performance of the proposed technique

We considered the simulation of the extrusion of a hollow cylinder. Tube extrusion is

especially difficult to simulate from the geometrical point of view, since the diverted

metal øowmust converge before going through the last section of the extrusion die. A

schematic representation of the geometry of the die is shown in Fig. 4.13, where only a

quarter of the domainwas represented. By invoking appropriate symmetry conditions,

this same quarter of the domain was employed for simulation. Some snapshots of the

øow of aluminium during this extrusion process are shown in Fig. 4.14, where post-

processing has been employed for clarity, in order to show the whole geometry of the

domain.

The domain is marked in red lines on Fig. 4.15. This ögure also shows a particular

time step where using regular α-shapes results in spurious contact detection. This is

also notorious in Fig. 4.14(c). The invalid tetrahedra can be recognized by their size,

larger than the nodal spacing in that area, giving a jagged feel to the resulting solid.

Themodel is divided in sections of different nodal densities, being the sparsest part

at the top. Using the standardmethod special care is needed to avoid spurious contact.

It is possible to deöne different α-values for each region to address this problem. Still

a different problem arises when the last nodes of the model reach a section of small α,

because the nodal spacing is then too large and all the elements get öltered.

With the new approach, a single, deliberately big, α-value can be deöned and still

obtain good results. In Fig. 4.15(b) a snapshot corresponding to the same time step on

which traditional α-shapes failed to avoid the spurious contact is shown. In this case

øow fronts are clearly kept apart from each other until actual contact occurs.

4.4 Conclusions

An improved α-shape technique for domain tracking in updated Lagrangian simula-

tions of free surface øows was introduced in this chapter. This improvement is based
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Figure 4.13. Schematic geometry of the die for the extrusion of a hollow proöle. Note

the special characteristics of the øow, that must divide to pass trough the green region

and then re-join to øow out of the die (red region).
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Figure 4.14. Sequence of aluminium øow at the early stages of the extrusion of a hol-

low cylindrical proöle.
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Figure 4.15. Extrusion process. Instant before contact of the two metal øows. (a) Sim-

ulation domain (red lines) and snapshot showing spurious contact between øows at

an intermediate time step. (b) Spurious tetrahedra are removed from the triangulation

(α = 8, a = 0.1, b = 2).
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on the addition a new öltration to the standard α-shape technique. This new öltration

takes into account the velocity öeld of the øow, so as to predict in some sense its future

geometry. We have introduced a way to use non-geometric information inherent to

ourmodel, as a tool to ölterα-shapes and being able to obtain good surface deönition,

avoiding traditional problems associated to this method, as spurious contacts. Even in

cases where there is large nodal density differences, the øow provides enough infor-

mation to recognize, even for rough tuning of α-values, different regions in the model

that pertain either to zones getting in contact or to different bodies in the simulation.

Despite the inclusion of twonewuser-deönedparameters, the proposedmethodol-

ogy is øexible enough to face thegeometry changes thatoccurwithmoderateReynolds

number øows, as covered by the presented formulation. The main conclusion is that it

is considerably easier to önd the three parameters α, a and b, than to önd the single α

value for some special, delicate cases —notably some time steps prior to contact—in

standard α-shape technique. We have shown how, even for a poor selection of α, the

proposed technique is able to correctly öltrate the actual geometry of the domain. Val-

ues of the parameters are much less sensible to modiöcations than α for standard α-

shapes, and thus the ease of use and good results of the proposed technique.
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Chapter 5

Applications to
Non-Newtonian øuid øows

As could be grasped by the reader during the explanation of the Newtonian øuid con-

stitutive equation in Chapter 3, not all øuids present a linear stress-deformation rela-

tionship. Those that do not are collectively named Non-Newtonian, and represent a

broad class of very important and interesting øuids both for the academic and indus-

trial worlds. Examples of these øuids can be found almost anywhere, from body øuids

as blood or mucus toman-made substances like paint, shampoo or molten plastics. Of

course not all non-Newtonian øuids behave in the samemanner somany different con-

stitutive equations, with a wide range of complexity, have been developed to describe

their mechanical response.

In this thesis we have but scratched the surface of this broad topic while address-

ing the matter of simulating viscoelastic øuid øows. The great industrial importance

of these øuids has originated a great deal of interest in its numerical simulation from

a relatively long time. A great deal of success has been achieved, and nowadays we

count with tools to solve a huge deal of non-trivial øows. Abundant literature can be

found on the topic. The interested reader can be bothered to check Owens and Phillips

(2002) andCrochet andWalters (1983) as aprimer for techniques introducedprior 1983.

Still the processes have been plagued with difficulties, many of which seem to come

from the so called high Weissenberg number problem (the Weissemberg number is a

non-dimensional measure of øuid elasticity). Regardless of the employed numerical

method or the viscoelastic constitutive equations used, either differential or integral,

when the elasticity of the øuid increased by a little measure, the simulation would suf-

fer from a huge loss in accuracy leading to convergence problems. This situation lim-

ited the application spectrumof cases, rendering thenumerical tools ineffective todeal
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with industrial grade problems. The initial suspects of this situation were bifurcations

in numerical solutions, the possible 3-dimensional effects in 2-dimensional øows and

inability to copewith changes in the type of governing equations (Crochet et al., 1984).

At present, themostwidely accepted causes for the highWeproblemare numerical

approximation errors. In Owens and Phillips (2002), they are attributedmainly to three

sources: First, errors caused by inaccurate integration schemes employed on the cou-

pled non-linear elliptic-hyperbolic equations system governing viscoelastic øows. Sec-

ond, numerical oscillations caused by trying to solve an ill-posed problem due to the

badly chosen approximation spaces for the essential variables. This problem relates to

the LBB or inf-sup condition, and has been addressed in the solution scheme employed

in this thesis. Lastly, there is the issue of steep boundary layers not being solved in an

adequate fashion due to coarse spatial discretization or a misrepresentation of the do-

main near singularities. This problem should be mitigated by the meshless character

of themethod here presented, as well as the possibility to easily add particles at critical

points. Given that ourmethod addresses some of the suspected causes of the highWe

problem, it would seemplausible to think that we could gain some ground in this öeld,

as an alternative to the upwinding techniques (Marchal and Crochet, 1987) or discon-

tinuous Galerkin methods (Lesaint and Raviart, 1974) currently employed to cope with

this problem.

Amounting the already discussed, the interesting free surface phenomena that oc-

cur in some viscoelastic øows creates an unmissable setting for the applications tryout

of the developed method. In all the developments that follow, the proposed second

order in time natural neighbor Lagrange-Galerkin method developed in this thesis has

been employed. As will be noticed, themethods shows excellent accuracy in problems

where traditional, state-of-the-art techniques fail in some sense.

5.1 GoverningEquations: TheOldroyd-BFluid

Model

In 1950, Oldroyd developed a constitutive equation that while simple, is useful in de-

scribing the general øow behavior of dilute polymeric solutions. This model can be

obtained as an empirical generalization of the linear viscoelastic equation. For this, the

constitutive relation is written in tensorial form and some admissibility conditions are

enforced. Another —and probably more popular—way to derive this model is to con-

sider a suspension of Hookean dumbbells in a Newtonian solvent and study it from a
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molecular point of view. These dumbbells represent the polymer chains suspended

in the Newtonian medium. They will react to the øow and to other dumbbells, and

will add some extra resistance to the viscous character of the solvent. When the øuid

stops the springswill remember their initial conöguration, hence representing the elas-

tic component of the model. Probably the most interesting part about this approach,

is the way to obtain a —somewhat —accurate macroscopic model based on molecu-

lar assumptions. The Oldroyd-B model present a constant shear viscosity like that ob-

served on Bogger øuids, which are highly elastic non-shear thinning øuids. Other øu-

ids which exhibit non-shear thinning elastic properties are lowmolecular weight poly-

methysiloxanes (PDMS), polycarbonates and solutions of glass öbers in viscous New-

tonian øuids. Still, this model is useful only at low shear rates. In extensional øows,

the inönite extensibility of the hookean springs in the dumbbells yield an extensional

viscosity that tends to inönity at a önite extensional rate.

5.1.1 Model Derivation

The afore mentioned dumbbells idealize the behavior of a polymer chain and consist

of two beads connected by an ideal spring which obeys Hooke's Law (Figure 5.1).

r

m1

m2

r2r1

Figure 5.1. A sample dumbbell.
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Now, following Owens and Phillips (2002), let us consider a single dumbbell im-

mersed in a moving Newtonian øuid. There are three effects acting on each bead: A

drag force, caused by the movement relative to the øuid around it; impact forces be-

tween beads, due to Brownian motion; and the spring force, representing the resis-

tance of the molecule to be perfectly stretched.

The beads masses are denoted by mi and both have a radius a. Each bead has a

position vector ri with i = 1, 2 relative to a öxed coordinate frame and r = ∆ri the

dumbbell length. At this scale, the øuid øow öeld u around the beads is supposed to

be homogeneous so that the rate of strain γ̇ is constant. In this situation, γ̇ = (∇u)T

and we can write that

u = u0 + (∇u)Tr, (5.1)

at any point located at a position r and where u0 is a constant vector.

For each bead, Newton's second law is written as

mi
d2ri
dt2

= −ζi
(
dri
dt

− (u0 + (∇u)Tri)

)
+Bi + Fi, i = 1, 2 (5.2)

The term Fi refers to the force that the coil exerts on each bead and F 1 = −F 2 =

F = λ∆ri, where λ is the spring constant, and is obtained from polymer parameters

and thermal forces as

λ =
3kT

a2
. (5.3)

Here T denotes the øuid temperature and k is a proportionality constant.

The drag force on the bead is proportional to the velocity difference between the

solvent (u) and thebead (dri/dt). At this scale, anyhydrodynamic effects on the solvent

causedby thepresence of any other dumbbell in the vicinity are neglected. Gravity and

other inertial effects are also left aside so we can make use of the Stokes equations.

Under this conditions, the proportionality constant is ζi = 6πηsai

The term Bi refers to the impacts on the polymer chain due to Brownian motion

and is written as

Bi = −kT ∂

∂ri

lnψ, (5.4)

where ψ is a probability density function (pdf) which yields the probability that any

given dumbbell length r is in the range r to r − dr at some time t. This probability is

independent of the position of the dumbbell and is given by ψ(r, t)dr.

Now, returning to themovement Eq. (5.1), in a strongly damped system the average

particle velocity is almost constant so we can neglect the acceleration term on the left-

hand side. After dividing by ζi and subtracting the two components of the system we
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get

0 =
dr1

dt
− dr2

dt
+(∇u)Tr2− (∇u)Tr1+

kT

ζ1

∂

∂r1

lnψ− kT

ζ2

∂

∂r2

lnψ+
F 2

ζ2
− F 1

ζ1
(5.5)

It is possible to write that

kT

ζ1

∂

∂r1

lnψ − kT

ζ2

∂

∂r2

lnψ = −kT
ζ1

∂

∂r
lnψ − kT

ζ2

∂

∂r
lnψ

= −kT
(

1

ζ1
+

1

ζ2

)
∂

∂r
lnψ

so
dr

dt
= (∇u)Tr − kTζ12

∂

∂r
lnψ − ζ12F , (5.6)

Here the relationship

ζ12 =
1

ζ1
+

1

ζ2

was used.

The probability balance equation betweenψ and the probability øux vectorJ ≡ ṙψ

is
∂ψ

∂t
+

∂

∂r
· J = 0. (5.7)

Multiplying Eq. (5.6) byψ, differentiatingwith respect tor andusing Eq. (5.7)weobtain

the so-called Smoluchowski equation:

∂ψ

∂t
+

∂

∂r
·
[
(∇u)Trψ − ψkTζ12

∂

∂r
lnψ − ψζ12F

]
= 0, (5.8)

⇒ ∂ψ

∂t
+

∂

∂r
·
[
(∇u)Trψ − kTζ12

∂ψ

∂r
− ψζ12F

]
= 0, (5.9)

since

ψ
∂

∂r
lnψ = ψ

1

ψ

∂ψ

∂r
=
∂ψ

∂r
.

Now,

∂

∂r
·
(
(∇u)T rψ

)
=

∂

∂r
·
(
(∇u)T r

)
ψ +

(
(∇u)T r

)
· ∂ψ
∂r

,

= (∇ · u)ψ +
(
(∇u)T r

)
· ∂ψ
∂r

,

=
(
(∇u)T r

)
· ∂ψ
∂r

,

so we önally arrive at the diffusion equation for ψ, which is the already mentioned

Fokker-Plank equation (Owens and Phillips, 2002):

∂ψ

∂t
+
(
(∇u)T r

)
· ∂ψ
∂r

− kTζ12
∂2ψ

∂r2
− ζ12

∂

∂r
· (ψF ) = 0. (5.10)
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The ensemble average ⟨·⟩ for any function f of r is deöned as

⟨f (r)⟩ =
∫
ℜ3

f (r)ψ (r, t) dr, (5.11)

and it is possible to express the extra-estress tensorT 1 to the ensemble average of the

dyadic product rF via the Kramers expression:

T = −nkTI + ηsγ̇ + n⟨rF ⟩, (5.12)

where n denotes the number density of dumbbells.

Inorder to reach theextra-stress constitutiveequation, onemustmultiply theFokker-

Plank Eq. (5.10) by rr, integrate over ℜ3 and use the divergence theorem, noting also

that ψ → 0 as |r| tends to the maximum permissible polymer length. We get to

∇
rr= 2kTζ12I − 2ζ12⟨rF ⟩, (5.13)

Where
∇
rr is the upper-convected derivative of ⟨rr⟩, deöned as

∇
rr=

D

Dt
⟨rr⟩ − (∇u)T ⟨rr⟩ − ⟨rr⟩ (∇u) . (5.14)

Using this expression into Eq. (5.12) we obtain the Giesekus expression for the stress

tensor:

T = ηsγ̇ − n

2ζ12

∇
rr . (5.15)

Since the model includes a Hookean spring, we have that

F = Hr, (5.16)

where H is a positive constant parameter. This means that Eq.(5.12) can be rewritten

as

T = −nkTI + ηsγ̇ + nH⟨rr⟩. (5.17)

Taking the upper convected derivative, in Eq. (5.15) and noting that

∇
I= −∇u− (∇u)T = −γ̇ (5.18)

is possible to eliminate ⟨rr⟩ from the stress expressions and arrive at

T − ηsγ̇ = − 1

2Hζ12

[
∇
T −nkT γ̇ − ηs

∇
γ̇

]
. (5.19)

1This tensor is related to the total øuid stressσ by σij = −pδij + Tij
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This expression can be written in terms of the following polymer physical parame-

ters: polymer viscosity (ηp), characteristic relaxation time for the øuid (λ1) and charac-

teristic retardation time (λ2); each deöned as

ηp =
nkT

2Hζ12
, (5.20)

λ1 =
1

2Hζ12
, (5.21)

λ2 =
ηs

2(ηp + ηs)Hζ12
=

ηsλ1
(ηp + ηs)

; (5.22)

so that Eq. (5.19) now reads

T + λ1
∇
T= η0

(
γ̇ + λ2

∇
γ̇

)
, (5.23)

with η0 = ηs + ηp as the total øuid viscosity. Eq. (5.23) is the Oldroyd constitutive

equation.

We now separate the stress in the solvent and polymeric components as

T = ηsγ̇ + τ , (5.24)

and substitute into (5.23) to get

τ + λ1
∇
τ= ηpγ̇, (5.25)

which is the constitutive equation for the elastic stress. It is possible to note from this

equation that there is no need to solve the Fokker-Plank equation in oder to önd the

extra-stress. When ηe → 0, T ≡ τ and this model reduces to the Upper Convected

Maxwell Model.

5.1.2 Model Implementation

Let us recall the the Navier-Stokes problem as deöned in Ch. 3

ρ(v,t + (v · ∇)v) = ∇ · σ + ρb in Ω× (0, T ), (5.26)

∇ · v = 0 in Ω× (0, T ) (5.27)

v(x, t) = vD(x, t), x ∈ ΓD, t ∈ (0, T ) (5.28)

n · σ(x, t) = t(x, t), x ∈ ΓN , t ∈ (0, T ), (5.29)

and introduce the Oldroyd B constitutive equation. Equation (5.26) will change to

ρ(v,t + (v · ∇)v) = ∇ · σn +∇τ + ρb, (5.30)
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where σn denotes the Newtonian component of the stress: −pI + ηsγ̇ .

We expand now the upper convected derivative in Eq. (5.25) to get

τ + λ1

(
Dτ

Dt
− (∇u)T τ − τ (∇u)

)
= ηpγ̇, (5.31)

from which
Dτ

Dt
=
ηpγ̇ − τ

λ1
+ (∇u)T τ + τ (∇u) (5.32)

and we will employ a örst-order time discretization

Dτ

Dt
=

τ n+1 + τ n

∆t
. (5.33)

In the implementation here developed it is assumed that the extra-stress at t = tn is

known, so when solving for u|t=n+1 all terms in Eq.(5.30) are known. After the velocity

öeld has been obtained, the velocity derivatives, which are known for the integration

points, are projected to the nodes (this intermediate step is by no menas necessary if

StabilizedConformingNodal Integration is used). This intermediate variable alongwith

τ n is used to calculate τ n+1 according to

τ n+1 = τ n +∆t

(
ηpγ̇

n − τ n

λ1
+ (∇un)T τ n + τ n (∇un)

)
. (5.34)

Notably, if the method here presented is compared to that of Tome et al. (2007),

or in general any based upon önite difference or önite volume schemes, it must be

highlighted that no special treatment is necessary to compute the stress tensor along

the boundaries.

5.1.3 Model Validation: Fully developed øow Inside a Pipe

Aiming at checking the accuracy of the proposed technique, a developed øowwas sim-

ulated inside a completely full pipe of length L and radiusR = 1 . In this case we used

an axisymmetric representation of the problem with the symmetry axis set on x = 0.

On the Pipe walls (r = R) a no-slip boundary condition was applied (vr = vz = 0)

while no special outøowconditions are necessary. Anyparticle that crossed thebound-

ary set on z = L, was eliminated from the simulation. Similarly, the øow is forced by

entering a set of particles through the inøow boundary. At the entrance, velocity con-

ditions were those of a fully developed øow, that is,

vr = 0 (5.35)

vz =
2U(R2 − r2)

R2
(5.36)
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Figure 5.2. Flow schematics

where U is the average velocity.

Two non-dimensional numbers are widely used to characterize the øow of non-

Newtonian øuids. The örst is the Reynolds numberRe, deöned as

Re =
ρ0UL

µ0

, (5.37)

and

We =
λ0U

L
(5.38)

which is called theWeissenberg number. This dimensionless number is the ratio of the

relaxation timeof theøuidanda speciöcprocess timeand represents anon-dimensional

measure of the øuid's elasticity.

Since the non Newtonian behavior depends on the history of the øow and we as-

sume that the particles are already moving at t < 0, it is necessary for each of them to

know its past extra-stress tensor. For this reason the initial velocity and stress condition

in all the domain were imposed in the same way as is done at the inøow boundary.

For a node cloud composed initially by 3999 nodes (remember that the simulation is

left until the steady-state is reached, while nodes enter and leave the domain through

the inøow and outøow boundaries), the solution was stable from the örst step, and

after 500 time steps, the extra-stress öeld was as shown in Figs. 5.3 and 5.4. The τxx
component is not shown here because it vanishes for the whole domain.

As can be noticed in Figs. 5.5 through 5.7, where the analytical solution for τxy , τyy
and vy is shown by a red line; the agreement between the expected and behavior and

the results obtained is remarkable. The L2-norm of the errors are Errτxy = 6.3027 ·
10−06,Errτyy = 1.4730 · 10−06 andErrVy = 2.3987 · 10−07.
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Figure 5.3. Extra-stress öeld for a fully developed pipe øow: τyy
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Figure 5.4. Extra-stress öeld for a fully developed pipe øow: τxy
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Figure 5.5. Extra-stress öeld for a fully developed pipe øow: τyy at y = 1
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Figure 5.6. Extra-stress öeld for a fully developed pipe øow: τxy at y = 1

ComputationalMechanics



120 Andrés S. Galavís Borden

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

r

V
y

 

 

Analytic
Numeric

Figure 5.7. Velocity proöle for a fully developed pipe øow: V y at y = 1

5.2 Other,more complex, non-Newtonian Ex-

amples

In order todemonstrate themethod's ability to reproduce themotionofnon-Newtonian

øows we simulated an extrusion process which causes the die swelling effect, on one

hand, and the impact of a splashing drop on the other. Each problem has been stud-

ied by many authors and almost constitutes a benchmark for the simulation of non-

Newtonian øows in the presence of free surfaces.

5.2.1 Die Swelling

A visco-elastic øuid jet presents a characteristic behavior known as extrudate swell that

consist in the jet expansion in the direction perpendicular to the stream after leaving

the extrusion die. This phenomenon is also known as die swelling. It is a very impor-

tant effect in the polymer industry because many processes involve the extrusion of

viscoelastic øuids, for example plastic in their molten state. The phenomenon of die

swell may be explained by elastic recovery. The molecules are stretched by the shear

forces in the pipe and the average axial stress at the exit is a tension.

In this problem we simulated the exit of an Oldroyd-B øuid trough a circular extru-

sion die of radiusR and lengthL. The swell ratio Sr, which is deöned as the ratio of the
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maximum diameter of the jet and the diameter of the die, was measured as a way to

quantify the swelling effect.

The problem setup is similar to the pipe øow, a fully developed øow passes through

a pipe which imposes a no-slip condition to the particles in contact with it as in the

previous example. The only difference is that the pipe has a önite length, that in this

case causes all nodes reaching the end of the pipe to be free of any condition. Gravity

and inertial effects were neglected.

Following the steps of Tome et al. (2007), different øows were simulated with the

following parameters: R = 0.1m, U = 1m/s, µ0 = 0.01m2s−1 and λ1 = 0.01. The

scaling parameters were R, U , µ0 and λ1. Therefore Re = 1 and We = 1 . The ratio

λ2/λ1 took values of 0 (Newtonian case), 0.1, 0.5, 0.7 and 0.9. The effectiveWeissenberg

number, deöned as

Weef =

(
1− λ2

λ1

)
We, (5.39)

was thereforeWeef = 0.9, 0.5, 0.3 and 0.1.

The swelling ratios obtained were lower than those obtained by Tomé Tome et al.

(2007) , who reported values of Sr = 2.13, 1.88 and 1.37 for Weef = 0.9, 0.5 and

0.1. Our model resulted in Sr = 1.504, 1.435, 1, 236 and 1.133 forWeef = 0.9, 0.5, 0.3

and 0.1 respectively. Figure 5.8 presents the øuid contours at a point at which the die

swelling for each øuid has already stabilized. It is possible to notice the deviation from

the Newtonian behavior asWe increases.

In a later section of the same work, a comparison is made against the works of Cro-

chet and Keunings (1982) and the analytical solution to this problem by Tanner (2005).

These tests allow to check the proposedmethod in amoremeaningfulway. In hiswork,

Tanner used the recoverable shear which is a non-dimensional number deöned as

SR =
τzz

2
[
τrz +

2λ2

Reλ1
γ̇rz

] , (5.40)

evaluated at the pipe wall.

Since the øow is fully developed inside the pipe, we use Eqs. (5.35) and (5.36) so the

relevant terms in equation (5.40) in their non-dimensional form are

τzz = 2Weτrz
∂vz
∂r

,

τrz =
1

Re

(
1− λ2

λ1

)
∂vz
∂r

,

γ̇rz =
1

2

∂vz
∂r

.
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Figure 5.8. Swelling comparison between øuids with different Weissenberg numbers
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thus

SR =
2Weτrz(∂vz/∂r)

2
[

1
Re

(
1− λ2

λ1

)
∂vz
∂r

+ 1
Re

(
λ2

λ1

)
∂vz
∂r

]
=We

(
1− λ2

λ1

)
∂vz
∂r

,

and since in this case∣∣∣∣∂vz∂r
∣∣∣∣
r=±R

= 4 =⇒ SR = 4

(
1− λ2

λ1

)
We

The theoretic swelling ratioSr of an axisymmetric jet canbepredicted in a simpliöed

manner via the equation (Tanner, 2005)

Dmax

D
= 0.14 +

[
1 +

S2
R

2

] 1
6

(5.41)

Cases were run using the following parameters: R = 1m,U = 1m/s, v0 = 4m2/s,

yielding Re = 0.25,We = λ1. A öxed ratio λ2/λ1 = 1/9 was used as in Crochet and

Keunings (1982) and Tome et al. (2007). Weissenberg numbers were varied from 0.125

to 1.125with increments of 0.125. This represented a recoverable shear range between

0.44 and 4, both inclusive.

Figure 5.9. Swelling ratio againstWe. Different numerical models compared against

an approximated theoretical solution by Tanner (2005).
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In Fig. 5.9 results obtained with the proposed technique are presented and com-

pared against the cited works. The yellow line represents the theoretical solution as

obtained by Tanner (2005). It is possible to observe that the presented technique (blue

line) yields results that very much agree with Tanners theory for a greater We range.

Even though the results for near Newtonian ranges present a higher error, the swelling

ratiosobtainedare still in the sameorder and the increased rangeof applicability amounts

to the merit of the approach here presented.

5.2.2 Drop Splashing. Worthington Jet

The third problem tackledwas the simulation of a drop (bothNewtonian andOldroyd B

øuids) impacting the free surface of a reservoir of the same øuid. At certain velocity this

impact produces a crater around which a crown is usually formed. The crater is subse-

quently reölled and the ölling øuid starts building up until a jet is formed. This splash

was öst studied by M.A. Worthington (1877), who photographed low-viscosities New-

tonian øuid splashes caused both by droplets and solid balls. Fig. 5.10 shows pictures

taken at different stages of the experiment. In these it is possible to observe the crater,

crown and satellite drops caused by the impact; and the jet formed shortly afterward.

In this case the resulting jet was discontinuous, forming a droplet.

Figure 5.10. Drop falling, example of aWorthington Jet formation. (Taken from Cheny

and Walters (1999))

When studying the drop of a ball, Worthington was able to identify two kind of

splashes, depending on whether the ball had a smooth surface or if it was rough. The

drop of a small polished dry ball would slip in the øuidwithout almost any disturbance,

this was denominated a "smooth splash''. On the other hand, ''rough splashes" would

appear when the ball was ground with a coarse sand paper or when it was left wet.

In this case the sphere would produce the aforementioned crater and and jet. He also

determined other factors which would govern the kind of splash formed. For instance,
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he showed that as the impact velocity increased a gradual transition from the smooth

to rough splash occurred.

In the case of falling drops, Worthington classiöed the resulting splash as rough.

However not all drops would produce a splash. Some drops simply produce vortex

rings in the reservoir but nothing else. In this case the size of the droplet along with

the impact velocity are the factor which determine the kind of behavior that would

take place.

In their work on the subject, Cheny and Walters (1999) addressed the question on

whether the surface tension inøuenced the splash by carrying on a series of experi-

ments on Newtonian øuids with different surface tension but being equal all other pa-

rameters. They were able to conclude that themaximum jet height did not depend on

the surface tension (Cheny and Walters, 1999). Another önding of this job was that a

small increase inpolymer concentration (thus augmenting theelasticity of the solution)

reduced drastically the maximum jet height. It is precisely this behavior which consti-

tutes the objective of this section. They also determined the necessary conditions to

ensure that the splash experiment could be free of the inøuence of the reservoir walls

(Cheny and Walters, 1996).

The experiment setup included a drop of radius rd = 0.5 cm falling on a circular

tank of radius rt = 10 cm and height ht = 10 cm. As can be seen on Cheny and Wal-

ters (1996), this tank dimension ensure that the non Newtonian dropwill behave as if it

were falling on an inönite reservoir. For the Newtonian case the reservoir might create

some interference according to the data published, yet those experiments were per-

formed with solid spheres of a diameter 50 percent larger than our drop. This give us

conödence that this factor will not affect us. Still the height of the jet should be very

close to the maximum reachable even in the case of some wall interference.

The initial conöguration can be seen in Fig. 5.11(a). The simulation starts one step

prior to the impact, at a time when the drop is traveling with a speed of 200cm/s. The

nodal density was increased in near the impact zone and inside de drop in order to

have enough particles to properly describe the crown and jet.

We performed a series of simulations to be able to appreciate the viscoelastic ef-

fects due to an increase in the Weissenberg number. This was an attempt to simulate

the different behavior observed in Cheny and Walters (1999) for øuids with the same

viscosity i.e., øows at the same Reynolds number, but containing polymers of different

stiffness. Following the steps of Tome et al. (2007), a kinematic viscosity ν0 = 0.2cm2/s

was consideredwhich, after deöning the Reynolds number asRe = Urt/ν0 would yield

Re = 500. The citedwork repeated the simulations atRe = 1000 and 2000but showed
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Figure 5.11. Initial conöguration for the falling drop (left) and detail in the vicinity of

the drop (right).

that the only real difference at this ranges was that the jet heights were higher as Re

increased.

Figure 5.12 shows the apex reached by each of the test øuids. In this case the non-

Newtoninan øuids had aWeef of 0.1 and 0.5 respectively. As expected, the lower ob-

tained jet heights corresponded to more non-Newtonian behaviors. Even though the

obtained jets are lower than those observed in the laboratory, the results still agree

qualitatively with the actual behavior. Figures 5.13 and 5.18 show the evolution of the

splash as well as allow us to contrast the process both for a Newtonian øuid and an

Olroyd B øuid.

5.3 Conclusions

The technique introduced in this chapter represents an alternative to simulate non

Newtonian øows in situations where a traditional Eulerian approach would call for the

meshing of empty spaces while trying to predict the øow pattern. Furthermore, since

the method follows øuid particles, it presents itself as an excellent option for keeping

the history of extra-stresses without the need to resource to interpolation techniques

or the need to calculate in points other than the nodes. In fact this might be the most

important facet of this experience. It has been shown that the NEM is totally able to

successfully work with nodal properties in situations where the cloud conöguration

change is large.
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Figure 5.12. Maximum height reached by the Newtonian øuid and Oldroyd øuids of

Weef = 0.1 andWeef = 0.5
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Figure 5.13. Comparision between Newtonian øuid (left) and Oldroyd-B øuid (right)

withWe = 0.5. t = 0.
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Figure 5.14. t=10 ms. The crown is visible at this point.
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Figure 5.15. t=75 ms. The jet is already formed.
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Figure 5.16. t=105 ms. Oldroyd øuid reaches its maximum height.
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Figure 5.17. t=110 ms. Newtonian øuid reaches its maximum height.
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Figure 5.18. t=150 ms. Both jets are already decreasing.
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The proposed method is able to reproduce with great accuracy analytical solutions

where available. In addition, it works well for moderateWe numbers, better than ex-

isting state-of-the-art techniques. However, it is still necessary to study the source of

the error observed for the Worthington jet problem. A possible solution could be im-

plement a more robust constitutive model, since the Olroyd-B is one of the simplest

for non-Newtonian behavior. At least in the splashing problem, where the extensional

characteristics of the øow play an important role, the model might have been an inad-

equate choice. Another area that presented special difficulty and a probable source or

error was the shape recognition algorithm. While the method introduced in the last

chapter certainly improved the situation, it is still an open öeld of study.
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Chapter 6

Ending Remarks

Developinga technique that couldaccurately simulate the intricatephenomenapresent

on free surface øows has been the main objective pursued by this work.

The work started with the examination of the theory regarding the Natural Element

Method, which was the main tool employed on this thesis. The information gathered

on this phase was summarized in Chapter 2. The natural element method was cho-

sen due to a combination of several reasons. Firstly, this thesis grew up in the context

of a national project devoted to the meshless simulation of free surface øuid-structure

interaction phenomena. To this end, it was assumed that the ability of the natural el-

ement method to exactly impose essential boundary conditions, very much like önite

elements, was of utmost importance for ulterior coupling with önite element meshes

of the solid under consideration. Secondly, the vast experience accumulated in the

Group of Structural Mechanics and Material Modeling of the University of Zaragoza

with respect to this particular methodmade it ideal for its application to this particular

problem. This thesis somewhat closes a period of more than ten years devoted in the

GEMM to the natural element method.

The following stepwas to give solution to problems found in the original formof the

updated-Lagrangian approach. To this end a second order in time numerical scheme

was introduced. The modiöed technique improved the quality of the obtained solu-

tions over the previous technique, developed in the doctoral thesis of David González,

that showeddeöciencies for someparticular examples, the sloshing problembeing the

most noteworthy example, and an excellent accuracy for others, apparently similar.

With the higher order approximation it was possible to accurately simulate problems

that were not feasible previously . Although incorporating more historic information

about the previous øow steps reduced error and yielded better approximations, the

improved accuracy came at the cost of increased resource requirements (CPU time,
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memory and storage). It is recommended that higher order approximations should be

reserved for times when a örst order scheme proves to be inadequate or insufficient.

The updated Lagrangian scheme resulted very convenient for transient øuid simu-

lations by not having to deal with convective terms from the Navier-Stokes equations.

These terms are well-known due to their complexity and the need for a suitable stabi-

lization. In addition, being able to follow øuid particles allowed the simulation of free

surfaces without the need to track the liquid interphase. Yet the lack of explicit nodal

connectivity proper of meshless methods implies that the shape of the domain must

be extracted from the nodal set. With this in mind and knowing the difficulties in the

current used method, an improved α-shape technique speciöc for domain tracking in

updated Lagrangian simulations of free surface øows was developed. A new öltration

was incorporated into the standard α-shape technique. This new öltration takes into

account the velocity öeld of the øow as a region discriminator to help determine the

domain's future geometry. A way to use non-geometric information inherent to our

model was introduced, working as a tool to further ölter α-shapes and to obtain a bet-

ter surface deönition. Traditional problems associated to thismethod, such as spurious

contacts , were avoided thanks to the proposed improvement. Even in cases where

there is large nodal density differences, the øow provided enough information to rec-

ognize, even for rough tuning of α-values, different regions in the model that pertain

either to zones getting in contact or to different bodies in the simulation.

Despite the inclusion of twonewuser-deönedparameters, the proposedmethodol-

ogy resulted øexible enough to face the geometry changes that occur with moderate

Reynolds number øows, as covered by the presented formulation. The main conclu-

sion was that it is considerably easier to önd the three parameters α, a and b, than to

önd the single α value for some special, delicate cases—notably some time steps prior

to contact—in standard α-shape technique. We have shown how, even for a poor se-

lection of α, the proposed technique is able to correctly öltrate the actual geometry

of the domain. Values of the parameters are much less sensible to modiöcations than

α for standard α-shapes, and thus the ease of use and good results of the proposed

technique.

Being able to simulate in a satisfactorymanner someNewtonian øows, the next step

was to extend themodel's applicability range to the very interesting viscoelastic øuids.

These present some curious free surface features and a set of challenges that enticed

the author. The technique developed in this work represents an alternative to model

non-Newtonian øows in situations where a traditional Eulerian approachwould call for

themeshing of empty spaces while trying to predict a øowpattern. Furthermore, since
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the required extra-stress information used in the Oldryd-B model is a quantity asso-

ciated to material particles moving along characteristic lines, the presented method

performs a fairly goo job at keeping the historic stress without the need to resource

to interpolation techniques or the need to calculate in points other than nodes. It has

been shown that the NEM is able to successfully work with nodal properties in situa-

tions where the particle conöguration change is large.

Although we have been able to reproduce qualitative results, it is still necessary to

study the source of the error observed. A possible solution could be to implement a

more robust model, since the Olroyd-B is one of the simplest for non-Newtonian be-

havior. At least in the splashing problem, where the extensional characteristics of the

øow play an important role, the model might have been an inadequate choice. On the

other hand, since part of error can be attributed to the commonly observed (yet not

well understood) high We problem, we are satisöed as the proposed technique has

been able to provide consistent results for aWe rangewider than previous (inøuential)

published works.

6.1 Original developments in this thesis

While there is still a huge amount of work to be performed on the simulation of free

surface øows, at the end of this work it has been ossible to contribute to the actual

state of the art at least on the following aspects points:

• An improvement on the Updated-Lagrangian approach developed by González

(2004)hasbeenmadeby formulatinga secondorder in timeapproximation,which

allowed to solve problemswhose solution would not converge under the original

schema.

• AnUpdated-Lagrangianmodelwasdevelopedan implemented fornon-Newtonian

øuids following the Oldroyd-B formulation. This model yielded excellent approxi-

mations on the benchmark tests and its performance was sound on the other ap-

plications tested. It is plausible to say that through the application of this model,

some advance has been made on the high We problem compared with earlier

works on the öeld.

• A new geometric technique has been introduced to deal with the shape recogni-

tion problem from a cloud of nodes. This technique was designed to be used on
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data sets that include physical information (particularly, velocities) used to charac-

terize different regions, and speciöcally to be applied on the computational sim-

ulation of large deformation problems.

These developments have been published in a number of journal papers and con-

ference proceedings. Some of them are include in the Appendix section for complete-

ness:

• A. Galavis, D. Gonzalez, I. Alfaro, E. Cueto. Improved boundary tracking in meshless

simulations of free-surface øows. Computational Mechanics, 42, 467-479, 2008.

• A.Galavis, D.Gonzalez, E. Cueto, F. Chinesta,M.Doblare. ANatural Elementupdated

Lagrangian approach for modelling Fluid-Structure interactions. European Journal

of Computational Mechanics (2006) 16:323–336.

• A. Galavis, D. Gonzalez, E. Cueto, F. Chinesta, M. Doblare. A Natural Neighbour

characteristics-Galerkin method for Fluid-Structure interaction problems. Journées

AUM / Association Francaise de Mecanique. Groupe de Recherche Interaction

Fluide-Structure CNRS. La Rochelle, France, 2006.

• A. Galavis, D. Gonzalez, E. Cueto, F. Chinesta. Una aproximacion Lagrangiana para

problemas de Interaccion Fluido-Estructura basada en unmetodo de Elementos Nat-

urales y Caracteristicas. Congreso Metodos Numericos en la Ingenieria (SEMNI-

APMTAC). Oporto, Portugal, 2007.

• A. Galavis, D. Gonzalez, E. Cueto, F. Chinesta. An Updated Lagrangian Approach for

Fluid-Structure Problems based on Natural Elements and the Method of Characteris-

tics. World Congress on Computational Mechanics, WCCM 08. Venice, Italy, 2008.

• A. Galavis, D. Gonzalez, E. Cueto. A natural element approach for non-newtonian,

free-surface øows at highWe numbers. International Journal for Numerical Meth-

ods in Fluids, submitted, 2010.

6.2 Future work

Future work to improve the already accomplished should be focused on improving

and developing better shape construction techniques. That has been an area that pre-

sented special difficulty and a probable source or error. While the method introduced

in the last chapter certainly improved the situation, it is still an open öeld of study.
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Also some attention should be paid on the computational efficiency improvements

that can be incorporated in to the NEM. It is clear that this method is more resource

consuming than the FEMor the Finite VolumeMethod and even though the nodal con-

nectivity is obtained in a process transparent to the end user, can be also demanding.

In addition, a large number of nodes must be used in order to accurately capture the

most interesting øow features, although this is a common issue of all meshless meth-

ods, and the price to pay to avoid to deal with a mesh. Thus if any future is going to

have this scheme for this application, the efficiency issue must be dealt with.

As a natural next step we also foresee the application of the proposed method to

øuid-structure simulation in scenarios other than the simple ones considered in this

work. The updated-Lagrangian NEM's ability to track free surfaces, along with the pos-

sibility to couple the nodal cloud to FEM structuremodels provides the setting to solve

a wide array of interesting problems. Wave breaking on mooring structures or sub-

mersed structures deformation are only two of a myriad of possible industrial applica-

tions. Some groundwork has been laid on this öeld by the author although it 's still vary

early for any useful results.

Theapplicationof theheredeveloped technique tomore sophisticatednon-Newtonian

øuid is also the topic of current research in the GEMM. Particularly, models based upon

kinetic theory of øuids are under consideration and its application to Finitely Extensi-

ble Non-Linear Elastic dumbbells (FENEmodels) has rendered very promising results in

problems such as ink-jet printing.
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Abstract In this paper we review the use of shape
constructors, particularly α-shapes, for the simulation of
free-surface flow problems. This technique, in conjunction
with meshless methods, allows for the simulation of such
problems in an updated Lagrangian approach without the
need for an explicit description of the boundary of the domain.
At each time step, the shape of the domain is extracted auto-
matically. However, it is well know that α-shape techniques
present some drawbacks. The first is the choice of the α para-
meter, related to the level of detail to which the domain is
represented. Also contact detection of free surfaces (auto-
contact) or between the free surface and a rigid boundary, for
instance, is often detected with an error of the order O(h),
the nodal spacing parameter, in the gap distance. We pro-
pose an heuristic technique for the choice of the α parameter
and develop a novel methodology for an improved detec-
tion of contact or merging flows. The proposed technique is
illustrated with the help of some examples in solid and fluid
mechanics.

Keywords Free surface · Meshless · Updated Lagrangian ·
Boundary tracking · Shape constructors

1 Introduction

Meshless methods [7,25] opened a very active decade of
research in the middle nineties. Today, more than ten years
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after, the area is still active, and has provided some very useful
techniques for the Computational Mechanics community.

One of the most cited capabilities of meshless methods
is that of simulating large deformations phenomena with-
out lack of accuracy, as opposed to Finite Element Methods,
if no remeshing is performed. This opens the possibility of
simulating free surface flows, for instance, in an updated
Lagrangian framework, and many works have been devoted
to this end in the last years. The interested reader can consult,
for instance, [17,19,20,24], among others. These free surface
problems are different in nature. The reader may imagine
readily waves breaking, but not only dynamical problems can
be solved with such a treatment. Many forming processes, for
instance, can be also treated in an updated Lagrangian setting
advantageously, see [1,2]. Forging or casting and, obviously,
mould filling, are among these processes that present free or
internal surfaces (like phase boundaries).

The obvious advantages of updated Lagrangian meshless
methods for this class of problems, if compared to Eulerian
or Arbitrary Lagrangian Eulerian (ALE) methods—in which
an artificial velocity is added to the mesh—for instance, are
the absence of remeshing nor the associated numerical diffu-
sion, or the lack of convective terms in the formulations, that
consequently do not need of any stabilization. Note that con-
nectivity between nodes is computed by the different mesh-
less methods in a process transparent to the user, as the cloud
of nodes evolves, convected by the material velocity.

A particularly elegant analysis of the difficulties associ-
ated to an Eulerian/Lagrangian treatment of the equations
arising from free surface flows can be found in [21]. Par-
ticularly noteworthy is the difficulty in the selection of mesh
velocity in ALE formulations, in which the mesh moves with
a velocity different to the material one, in order to minimize
mesh distortion. Also, in Eulerian (fixed mesh) approaches,
some marking technique should be used in order to track
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the evolution of the free surface. The Volume of Fluid (VoF)
technique is an example of these techniques. In [21] a mixed
Eulerian/updated Lagrangian technique is developed.

As stated before, meshless, or particle (those in which
a mass is linked to each node) methods have avoided the
need to perform such complicated treatments. Nevertheless,
new difficulties arise. For instance, the nodal connectivity
in meshless methods is not dictated by geometrical reasons
(the best available triangle in terms of internal angles, for
instance, in FE mesh generation) but by algebraic reasons.
In the Element Free Galerkin method [7], for instance, the
connectivity is dictated primarily by the need of a support
(radius of the shape function) big enough to encompass a
sufficiently large number of nodes so as to make a matrix
invertible. Remarkably, this is not related to the geometry of
domain. That reason precludes the nodal connectivity to be
used directly to determine the shape of the domain, as in FE
methods. Nothing similar to an isoparametric representation
exists in meshless methods.

In addition, tracking the free surface with boundary mark-
ers can be implemented in an elegant way in two dimensional
problems—by employing a chain of markers and checking
self-intersections of the chain to detect merging flows—as in
[21], for instance, but becomes much more intricate in tree
dimensions.

If one then tries to avoid any form of meshing, and only a
set of nodes, with no connectivity between them, is employed,
it then becomes difficult to find the position of the free sur-
face. In other words, the geometry of the domain should be
extracted in any way from the current, updated, position of the
nodes, that move, as stated before, with the material velocity.

To this end, various authors have employed Computa-
tional Geometry techniques. In particular, [11] seems to have
been the first in employing shape constructors—α-shapes in
this case—techniques to extract the geometry of the domain.
Shape constructors are geometrical techniques that enable to
find the shape of the domain at each time step. α-Shapes [13]
have been employed in a number of previous works involving
free surface flows, see for instance [9,17,18,20,24], among
others.

Also, different shape constructors have been proposed
after α-shapes, see [3,4,10,15] to name a few. In order to
extract the geometry of the domain, in general, these meth-
ods propose a filtration of the Delaunay triangulation of the
cloud of points. The Delaunay triangulation is the base ingre-
dient of these techniques, since it characterizes univocally the
cloud of points—it is unique for each cloud. Different cri-
teria are proposed in order to select the triangles pertaining
to the shape of the domain. The simplest one is maybe the
α-shape technique, that proposes to eliminate all triangles (or
tetrahedra) whose circumscribing radius (or, equivalently in
finite element terminology, their associated mesh size, h) is
greater than a prescribed level of detail for the geometry,

α. α-Shapes have generated a great interest on “provable”
shape reconstruction arguments. We mean that, under cer-
tain, usually very weak, assumptions on the size of the cloud
of points, we obtain geometric- and topologically accurate
descriptions of the domain under consideration.

One of the main drawbacks of the α-shape technique, as
recognized in many works (see, for instance, [10,28]) is pre-
cisely the choice of the α-value. In addition, α-shapes work
well only for uniformly distributed cloud of points. This does
not constitute a problem, generally, for the problems being
considered. Since we deal with initial value problems, the
choice of a uniform nodal sampling on the initial geometry,
in the absence of any information on the final geometry of
the domain, seems to be judicious.

The jump of the before mentioned techniques to the field
of Computational Mechanics has posed additional difficul-
ties. It is well-known that α-shapes are not able to detect
holes or cavities of size smaller than α, by definition. This
implies that contact between different surfaces is detected
with an error O(α) ≈ O(h), i.e., prior to the true expected
contact [28]. Precisely in [28] a method is proposed to allevi-
ate this drawback, but it needs information on the normal of
the boundary at the sampling points. This is easy to achieve
for three-dimensional scans of solids, for instance, but this
kind of information is not suitable from the class of simula-
tions we are interested in.

In this paper we propose a new technique, well suited for
the numerical simulation of free-surface flows, that avoids
the before mentioned problems. The proposed technique is
based in performing an additional filtration to the Delaunay
triangulation (tetrahedrization) of the cloud of points. After
the α-filtration, we perform an additional filtration based on
the information provided by nodal velocities at the last con-
verged time step, and the gradient of velocities. The tests
performed during this work have provided excellent results
over problems where traditional α-shapes have revealed defi-
ciencies.

The outline of the paper is as follows. First, we pose the
formulation of the problem, taking into account the wide
scope of “free-surface” phenomena, possibly involving
dynamic evolution. We then review the basics ofα-shape the-
ory and show its inherent limitations. The proposed method is
described in Sect. 4. The paper is completed with some two-
and three-dimensional examples showing the performance
of the method in Sect. 5.

2 Problem settings

There is a wide variety of problems involving the presence of
free or internal surfaces. Typically, Navier–Stokes equations
in the presence of such boundary conditions are maybe the
most ubiquitous example. But we do not restrict ourselves to
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Navier–Stokes equations. Even without the presence of iner-
tia terms, many forming processes can be formulated in the
so-called flow formulation [29,30], if a rigid-(visco)plastic
constitutive equation is assumed. Most of these forming proc-
esses (extrusion, forging,…) imply the presence of free-surf-
aces, and very often the precise location of them, together
with accurate determination of contact, auto-contact, etc. is
of utmost importance.

We refer ourselves mainly to these last two examples:
Navier–Stokes equations and the flow formulation of a rigid-
plastic metal. Other problems are also suitable for the for-
mulation here proposed.

2.1 Updated Lagrangian formulation for Navier–Stokes
equations

We review here a formulation for the numerical solution of
Navier–Stokes equations previously presented in [17]. Other
formulations also exist and work properly (see, for instance,
the implicit three-step fractional method presented in [20]),
but we believe that this one exploits particularly well the
updated Lagrangian setting of the method.

Consider a fluid in a regionΩ of the space R
2 or R

3. The
fluid flow is governed by the following mass and momentum
conservation equations:

ρ(v,t + (v · ∇)v) = ∇ · σ + ρb in Ω × (0, T ), (1)

∇ · v = 0 in Ω × (0, T ) (2)

where v represents the fluid velocity, σ the stress tensor, ρ
represents fluid density and b the volumetric forces acting on
the fluid.

The constitutive equation for a Newtonian fluid is given
by:

σ = −p I + τ = −p I + 2µd + λ(∇ · v)I, (3)

where d is the strain rate tensor, p the pressure, µ is the
dynamic viscosity of the fluid and λ the second coefficient
of viscosity. For incompressible fluids ∇ · v = 0 and con-
sequently the before-mentioned Eq. (3), is reduced to the
so-called Stokes law

σ = −pI + 2µd. (4)

Substituting into Eqs. (1)–(2) we arrive to

ρ
(
v,t + (v · ∇)v) − 2µ∇ · d + ∇ p = ρb. (5)

It is usual to rewrite this last equation as:

ρ
(
v,t + (v · ∇)v) − µ∇2v − µ∇(∇ · v)+ ∇ p = ρb. (6)

Under the incompressibility assumption (2), this last Eq. (6)
is transformed into

ρ
(
v,t + (v · ∇)v)−µ∇2v + ∇ p = ρb, in Ω × (0, T ).

(7)

To solve the problem we must prescribe an initial state as
well as boundary conditions given by

v(x, t) = vD(x, t), x ∈ ΓD, t ∈ (0, T ), (8)

σ (x, t) · n = t(x, t), x ∈ ΓN , t ∈ (0, T ), (9)

where ΓD stands for the Dirichlet (essential) portion of the
boundary and ΓN represents the Neumann or natural portion
of the boundary.

2.1.1 Time discretization

The motion equations can be grouped to

∇ · σ + ρb = ρ
dv

dt
= ρ

(
∂v

∂t
+ v∇ · v

)
, (10)

∇ · v = 0, (11)

σ = −pI + 2µd. (12)

The weak form of the problem associated to Eqs. (10), (11)
and (12) is:
∫

Ω

2µd : d∗ dΩ −
∫

Ω

p I : d∗ dΩ

= −
∫

Ω

ρb · v∗ dΩ +
∫

Ω

ρ
dv

dt
· v∗ dΩ, (13)

and
∫

Ω

∇ · v p∗ dΩ = 0, (14)

where “:” denotes the tensor product twice contracted. d∗
represents and admissible variation of the strain rate tensor,
whereas v∗ represents equivalently an admissible variation
of the velocity.

The second term in the right-hand side of Eq. (13) rep-
resents the inertia effects. Time discretization of this term
represents the discretization of the material derivative along
the nodal trajectories, which are precisely the characteris-
tic lines related to the advection operator. Thus, assuming
known the flow kinematics at time tn−1 = (n − 1)∆t , we
proceed as follows:

∫

Ω

ρ
dv

dt
v∗ dΩ =

∫

Ω

ρ
vn(x)− vn−1(X)

∆t
v∗ dΩ, (15)
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vn-1(Ξ)v ( )n

Fig. 1 Determination of the position of quadrature points at time step
tn−1

where X represents the position at time tn−1 occupied by the
particle located at position x at present time tn , i.e.:

x = X + vn−1(X)∆t. (16)

So we arrive at
∫

Ω

2µd : d∗ dΩ −
∫

Ω

p I : d∗ dΩ −
∫

Ω

v · v∗

∆t
dΩ

= −
∫

Ω

ρb · v∗ dΩ −
∫

Ω

ρ
vn−1 · v∗

∆t
dΩ, (17)

and

∫

Ω

∇ · v p∗ dΩ = 0, (18)

where we have dropped the superindex in all the variables
corresponding to the current time step.

2.1.2 Algorithmical issues

The most difficult term in Eq. (17) is the second term of
the right-hand side. The numerical integration of this term
depends on the particular quadrature scheme employed.

If we employ traditional Gauss-based quadrature on trian-
gles, it will be necessary to find the position at time tn−1 of
the point occupying at time tn the position of the integration
point ξ k (see Fig. 1):

∫

Ω

ρ
vn−1 · v∗

∆t
dΩ =

∑

k

ρ
vn−1(Ξ k) · v∗(ξ k)

∆t
ωk, (19)

where ωk represent the weights associated to integration
points ξ k , and Ξ k corresponds to the position occupied at
time tn−1 by the quadrature point ξ k , see Fig. 1.

If we employ some type of nodal integration, as in [16],
this procedure becomes straightforward, with the only need
to store nodal velocities at time step tn−1. We discuss here
the procedure to follow when employing Gauss quadratures

on the Delaunay triangles. We proceed iteratively. Denoting
by i the current iteration, we apply

xk = X i
k + vn−1(X i−1

k )∆t, with xk = X0
k; i ≥ 1

until X i
k ≈ X i−1

k .
Since we are using an updated Lagrangian strategy, the

computation of the term vn−1(X i−1
k ) requires a projection

from the stored nodal velocities at time tn−1.
The velocity and pressure variables of the problem can

now be approximated using any of the meshless techniques
of approximation, see, for instance, Moving Least Squares
methods [8,25], Reproducing Kernel Particle Methods [22]
or Natural Elements [17,26], to name a few. Of course, care
must be paid to the fulfilment of the LBB condition, but the
type of interpolation chosen is not relevant for the purposes
of the method here developed.

In the result present in this paper, we have employed nat-
ural neighbour approximation in a Galerkin framework. See
[2,17] for more details on the formulation.

2.2 Flow formulations of rigid-plastic solids

As mentioned before, many forming processes can be formu-
lated as free-surface problems under very standard assump-
tions. Although, to some extent, an elastic recovery exists at
the end of many metal forming process, this is often neglected.
In addition, the Cauchy stress is usually related to the strain
rate tensor. This leads to a formulation that closely resem-
bles that of non-Newtonian fluids, and hence the term flow
formulation [29].

Thus, the equations governing the metal deformation can
be expressed in terms of velocities rather than displacements.
Stresses produced in the forming process can be set in a
simple form as

σ = D(d, T ) · d, (20)

where d represents again the strain rate tensor (symmet-
ric part of the velocity gradient) and T the temperature.
Depending of the particular constitutive equation chosen for
the metal, we thus obtain different formulations. In [1,2]
a Sellars–Tegart temperature-dependent constitutive model
was implemented in this framework.

3 Theory of α-shapes

As mentioned in Sect. 1, the idea of α-shapes in particular,
and shape constructors in general, is to extract the shape of a
domain described by a set of nodes only. The human eye can
do this easily, but there is no formal definition of shape in
the mathematical literature. α-shapes were first established
by Edelsbrunner and Mcke [13] and Edelsbrunner et al. [14].
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Fig. 2 Evolution of the family
of α-shapes of a cloud of points
representing a wave breaking on
a beach. Shapes S0 or cloud of
points (a), S0.5 (b), S1.0 (c), S2.0
(d), S3.0 (e) and S∞ (f) are
depicted

(a) (b)

(c)

(e)

(d)

(f)

Other shape constructors giving homotopy-equivalent shapes
have been recently proposed [12]. Given a finite set of points
(that will be the nodes employed in the approximation of
the problems described in the previous section), there exist
a finite set of shapes described by all the possible combina-
tion of points, edges, triangles and tetrahedra (if we consider
three-dimensional spaces) forming simplicial complexes.

A k-simplex σT with 0 ≤ k ≤ 3 is defined as the convex
hull of a subset T ⊆ N of size | T |= k + 1. A three-
dimensional simplicial complex is a collection, C, of closed
k-simplices (0 ≤ k ≤ 3) that satisfies:

(i) If σT ∈ C then σT ′ ∈ C for every T ′ ⊆ T .
(ii) The intersection of two simplexes in C is empty or is

a face of both.

The particular complexes considered in the theory of α-
shapes have vertices in the node set and simplices from the
Delaunay triangulation of the set, which is unique, as it is
well known. The formal definition of the set of α-shapes of
the cloud of nodes follows.

3.1 Definition of the family of α-shapes

α-Shapes define a one-parameter family of shapes Sα (α
being the parameter), ranging from the “coarsest” to the “fin-
est” level of detail. α can be seen, precisely, as a measure of
this level of detail.

Let N be our finite set of points in R
3 and α a real number,

with 0 ≤ α < ∞. Let b be an α-ball, that is, an open ball
of radius α. A k-simplex σT is said to be α-exposed if there
exist an empty α-ball b with T = ∂b

⋂
N where ∂ means

the boundary of the ball. In other words, a k-simplex is said

to be α-exposed if an α-ball that passes through its defining
points contains no other point of the set N .

Thus, we can define the family of sets Fk,α as the sets
of α-exposed k-simplices for the given set N . This allows
us to define an α-shape of the set N as the polytope whose
boundary consists on the triangles in F2,α , the edges in F1,α

and the vertices or nodes in F0,α .
Each k-simplexσT included in the Delaunay triangulation,

D, defines an open ball bT whose bounding spherical surface
(in the general case) ∂bT passes through the k+1 points of the
simplex. Let 
T be the radius of that bounding sphere, then,
the family Gk,α , is formed by all the k-simplexes σT ∈ D
whose ball bT is empty and 
T < α. The family Gk,α does
not necessarily form simplicial complexes, so Edelsbrunner
and Mcke [13] defined the α-complex, Cα , as the simplicial
complex whose k-simplexes are either in Gk,α , or else they
bound (k + 1)-simplexes of Cα . If we define the underlying
space of Cα , |Cα|, as the union of all simplexes in Cα , the
following relationship between α-shapes and α-complexes
is found:

Sα = |Cα| ∀0 ≤ α < ∞. (21)

α-Shapes provide a means so as to eliminate from the tri-
angulation those triangles or tetrahedra whose size is bigger
than the before-mentioned level of detail, α. Thus, we make
a filtration of the triangles.

In Fig. 2 an example of the previously presented theory
is presented. It represents some instances of the finite set of
shapes for a cloud in a intermediate step of the simulation of
a wave breaking at a beach.
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Fig. 3 Medial axis of a two-dimensional curve

3.2 How to choose the α-value

Many authors claim that the main difficulty with the α-shape
technique is related to the choice of the α-value [23]. In this
section we provide a practical means to do so in the type
problems we are dealing with. To this end, it will be necessary
to give some prior definitions.

Definition 1 The medial axis (see for instance [4] and refer-
ences therein) of a d − 1 dimensional, twice-differentiable,
surface Γ = ∂Ω in R

d is the closure of the set of points
which have two or more closest points in Γ . An example of
medial axis of a curve is shown in Fig. 3.

Definition 2 The local feature size [4], L F S(p), of a point
p ∈ Γ is defined as the Euclidean distance from p to the
closest point m on the medial axis. In Fig. 4 the computa-
tion of the L F S at a point is shown. Observe the difference
between this concept and the radius of curvature of the curve
at that point, which is different at different directions.

In mesh generation, the medial axis of a surface has been
used to account for a measure of the desired point density in
a region (see [5]). To this end, it is useful to define a measure
of the sampling density of the curve.

Definition 3 (ε-sampling) The surface Γ is said to be ε-
sampled by a subset {nI }m

I=0 of the set of nodes N if every
point p ∈ Γ is within a distance ε · L F S(nI ) of a sample
point nI ∈ Γ .

In practical situations, it is common to have an explicit
description of the boundary of the domain at the initial time
step, or reference configuration—this will not be the case
for all the subsequent time steps, as mentioned before, since
we try to avoid the use of boundary markers or similar tech-
niques. At this configuration, we proceed by constructing an
ε-sampling of the boundary curve or surface. Note that it
should be twice differentiable in order to guarantee a non-
vanishing L F S. In other words, it will not be possible to
represent a sharp (concave) corner in the domain without the
help of a segment chain (in 2D) or boundary triangulation (in
3D).

Fig. 4 Computation of the LFS at a point p

It is therefore important to choose the level of detail up to
which we represent the initial configuration of the domain.
Details of size lower than the chosen discrete L F S will not
be represented by the method. In fact this is similar to the sit-
uation found when meshing a mechanical part, for instance.
Many analysts choose to eliminate some details of the geom-
etry irrelevant for the results.

Once we chose the desired level of detail for represent-
ing the initial configuration of the domain, we construct an
ε-sampling of the boundary (with ε < 1) and extend the
cloud of nodes to the interior of the domain, taking always
the nodal distance measure, h ≈ ε · L F S.

As dictated by the preceding definitions, the choice of α
such that h < α < L F S will provide a good approximation
of the initial domain. In this way, triangles pertaining to the
obtained shape of the domain will be bounded from above
by the chosen L F S and from below by h. Thus, no triangle
will overlap concave portions of the domain’s boundary, nor
spurious holes will appear. There exist, in addition, theoret-
ical proofs of the convergence of the shape of the domain
to the actual one with increasing nodal distributions, see for
instance [23].

As the domain evolves, no further explicit definition of
the boundary will be available, and the resulting shapes will
never reproduce details of L F S lower than α, as is obvi-
ous (those triangles will be eliminated from the triangula-
tion). However, for nodal discretizations fine enough, this
technique provides very good results, with excellent mass
conservation properties, see [1,17,24].

3.3 Problems with the α-shape technique

There remain, however, some important problems in the
application of α-shape techniques to updated Lagrangian
simulations of flows with free surfaces. Maybe the most
important is that, when contact between two portions of the
domain, or auto-contact occurs, the L F S of portions of the
boundary—precisely those getting into contact—decreases,
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v

Fig. 5 Evolution of the L F S at the neighbourhood of two surfaces
getting into contact. A portion of the medial axis of points in the neigh-
bourhood of the contacting area is depicted. Remember that the L F S is
the distance between the boundary and the medial axis. Thus, it vanishes
rapidly in this situation

Fig. 6 Spurious detection of contact between the breaking wave and
the still water

and can be, during some time steps, below the threshold value
α. This is precisely the situation that will happen shortly after
the time step depicted in Fig. 2, see Fig. 5. If this happens,
contact will be spuriously detected by the standard α-shape
technique once the L F S is below α. In Fig. 6 an example is
provided for the previous problem of spurious detection of
auto-contact between the breaking wave and the surface of
the sea. Note that contact is detected some time steps prior
to its actual occurrence.

In the next section we propose two additional filtration to
be done after the α-shape filtration in order to improve the
behaviour of the method.

4 Proposed algorithm

The proposed algorithm makes use of the information pro-
vided by previous time steps on the shape of the domain and,
through the computed velocity field, on its future shape. Thus,
we will make use of the essential variable fields to amelio-
rate the behaviour of the α-shape technique by performing a
modified filtration processes over the Delaunay triangulation
of the set of points.

In order to discern different parts of a body or differ-
ent bodies getting into contact, we assume that all particles
belonging to the same body should behave in a somewhat
similar way. In our case, they all should move roughly with
the same velocity or, more precisely, without jumps in the
velocity nor steep gradients (this is true only for moderate
Reynolds numbers in the flow, but the proposed technique is
not valid for turbulent flows). In this way, the k-simplexes
found to be constituted by nodes that exhibit highly dissimi-
lar characteristics should be regarded as invalid and filtered
out of the α-shape.

For each k-simplex, we employ a modified circumcircle
criteria which includes a deformation parameter based on
the differences between the associated nodal velocities. This
parameter is used to alter the metric space. Elongating the
Euclidean distance measured proportionally to the velocity
differences causes the invalid simplices to appear larger and
therefore fail the circumcircle test.

In order to determine the deformation parameter in our
case, we compare the different velocity vector directions. To
this end, we first compute a principal direction d, which is
found as the local normal direction at [28]

d =
k+1∑

i=1

sivi such that ||d|| = max
si =±1

∥∥∥∥

k+1∑

i=1

sivi

∥∥∥∥, (22)

where vi represent each of the nodal velocities associated to
the k-simplex, and || · || denotes the norm associated to the
metric space.

We define the angle β as the one formed by each velocity
vector with the principal direction d. A deformation factor
fβ is then obtained according to

fβ = 1 − |βmax − βmin|
π

. (23)

This factor allows to filter those k-simplexes formed by
nodes of opposing or diverting velocities. Note that only if the
simplex is “large” (according with an user provided measure,
α) and their nodes move with very dissimilar velocities, it will
be eliminated from the triangulation. If the triangle is small
enough it will be most likely representing a recirculation
in the flow, for instance, and will still be maintained in the
model.

There are, however, cases in which only one of the bodies
(or only some sub-region of the model) is moving and the
previous filter alone would still detect a spurious contact. In
that situation one or more of the nodes will not be taken into
account by the above factor, yet those simplexes need to be
filtered. The need arises to take into account the gradient of
those velocities, and calculate a deformation factor fmod as

fmod = 1 − ‖ vi ‖max − ‖ v j ‖min

‖ vi ‖max
. (24)

Once the deformation factors are obtained we proceed to
alter the metric tensor, assuming it constant at each simplex.
The distance between two points can be defined as

d(x, y) =
√
(x − y)M(x − y)T , (25)

where M represents the metric tensor. We define a “modified”
metric tensor M with 1�( f a

mod f b
β ) on the diagonal, where a
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and b are user defined factors that allow adjusting the method
depending on the nature of the simulation.

The new deformed circumradius is used to check the
α-shape test, usually making the unwanted simplexes fail.
This process is performed on a simplex by simplex basis.

While the Delaunay triangulation is necessary when deal-
ing with Natural Element methods, it is not with the rest of
meshless methods. It adds a little bit of CPU time to the simu-
lation, that in general is negligible. Very efficient algorithms
exist in the literature (see, for instance the Qhull software
[6], which is free and very efficient). It is able to triangulate
1000 nodes in 0.016 CPU seconds on a laptop equipped with
a Centrino processor and 500 Mb of RAM memory. The pro-
posed filtration adds some very little extra CPU time to this,
since it can be implemented within the Delaunay algorithm,
or by adding a single do while loop to the code over all
the triangles.

5 Examples

5.1 Benchmarking

In order to validate the proposed method, it was employed in
two classes of idealized cases of a 2D drop falling as a rigid
body towards a wall, Fig. 7. On the first class problems, see
Fig. 7a, the ball was dropped over a plane surface moving at
the same direction at less speed than the ball. On the second
family of cases, Fig. 7b both bodies move at the same speed
but in different direction. The α parameter on all cases was
chosen deliberately larger than actually needed, so that the
α-shape would be a complete convex hull encompassing both
bodies. That resulted in a triangulation that includes several
invalid triangles, shown in Fig. 8b. These triangles could
constitute an important error source due to the effects of a
non-existing contact.

The first setting allows to test the effect of the gradient of
velocities, taken into account by fmod. At the limit case, the
speed of the plane is null, so the deformation factor goes to
infinite, therefore the size of α becomes unimportant as the
triangles composed by nodes from the two different surfaces
will always fail the test. In this case α was 5—thus taken
deliberately large—a was 10 and b was 0.

Less extreme cases where tested, on which the surface
was not completely still, but moving at less speed in the
same direction of the ball. All cases resulted in successful
filtrations. Figure 9 shows a detail of the area on which both
surfaces nearly touch. Triangles eliminated by the proposed
filtration are shown in light grey. Specially noteworthy is the
difference between the element sizes between the drop and
the plate. Without an external filtration, there is no α which
could manage to obtain a reasonable α-shape, given that the
plate element size is more than five times the element size of

Fig. 7 Method validation. Cases studied of a 2D ball drop over a flat
surface. a 0 ≤ v2 < v1 and b v2 = v1, 0 ≤ β ≤ π/2

Fig. 8 Drop approaching a
surface. Both families of cases
studied were tested on the same
set of nodes (a). The resultant
geometry of the domain
provided the standard α-shape
(b) and the modified method
(c) are depicted

(a)

(b)

(c)

the drop and the difference with the gap between both bodies
is even more drastic. Density based filtrations could be made
to recognize both areas, yet the case would still prove to be
challenging if possible at all.

On the second family of cases the surface moves at the
same speed but in different direction, still usually towards
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Fig. 9 Drop approaching a still plate (detail of the contact zone). In
light grey the triangles filtrated by the proposed techniques are shown

Fig. 10 Detail of the velocity field at the wave crest

the ball. This exercise allows to check the performance of the
filtration due to fβ . The case in which both bodies approach
directly to each other is also an extreme situation where none
of the offending triangles will ever pass the test regardless of

the chosen α. In this case, α, a and b were 5—again deliber-
ately large—0 and 1, respectively. The angle difference has
been tested up to the case where the bodies moved in a per-
pendicular way. In all the conditions both bodies could be
recognized by adjusting the b factor only. In this case the
difference between element sizes at the drop and the plate is
also noteworthy.

5.2 2D wave breaking

A third type of test was performed with the wave problem
shown in Figs. 2a–f and 6 in which we could check the per-
formance on a real 2D case. The velocity field on the crest of
the wave is shown in Fig. 10. It can be noticed how the vectors
are roughly aligned in the same direction, thus resembling the
first family of cases in the preceding section. Even though
the velocity vectors seem to be very similar, the difference is
so that the filtration is successful at the crest. Again, a rea-
sonable value for the parameters a and b seems to be 10 and
1, respectively, and our experience dictates that this is so for
a general problem presenting this kind of difficulty.

The results of the proposed technique are shown in Fig. 11.
In this case the proposed method is able to discern between
the crest and the trough of the wave. Again, the α value was
taken deliberately too high, to show that even a poor choice
of α will lead to a proper result.

Mass (volume) conservation is analysed in Fig. 12. In this
case, the predicted volume of the whole domain is analysed,
taking into account that obtained by standard α-shape tech-
niques and the one obtained by the proposed method. As can
be noticed, the proposed method gives more accurate results,
with less than 1% error in volume. The gain in volume due to
spurious contact detection for the α-shape technique raises
up to 5% for the final time steps, even if the contact region
in the model is concentrated near the wave crest.

Fig. 11 Wave before breaking.
Velocity vectors (a), α-shape
without additional filtration (b)
and shape reconstructed with the
new approach (c). In this cases
the parameters used where
α = 9, a = 10, b = 1

(a)

(b)

(c)
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Fig. 12 Volume conservation for the standard and the proposed
technique

5.3 An extension to 3D problems. Aluminium extrusion

5.3.1 Constitutive equations for aluminium

In this last example we considered a rigid-viscoplastic consti-
tutive law for the aluminium, allowing for a flow formulation
for the problem [29]. In essence, we neglect inertia terms in
Eqs. (10)–(12) and considered a non-linear constitutive law
for the aluminium in the form

s = 2
ηd + σy(d)

3d
d, (26)

where s represents the deviatoric part of he strain rate tensor
and σy represents the yield stress. d represents the equivalent
strain rate. Note that, depending on the η value, the return to
the yield surface is done with different velocity. Since it is
common to describe aluminium behaviour as rigid-plastic
(rather than viscoplastic) we employ null viscosity, so as to
enforce Y = σ − σy = 0, leading to

s = 2σy

3d
d. (27)

Finally, the constitutive equation, accounting the incompress-
ibility of plastic flow results:

σ = 2µd − p I, with µ = σy

3d
. (28)

Fig. 13 Schematic geometry of the die for the extrusion of a hollow
profile. Note the special characteristics of the flow, that must divide to
pass trough the green region and then re-join to flow out of the die (red
region)

5.3.2 Linearized form of the variational problem

If we write the incremental variational equation at time t+∆t
we arrive to:

∫

Ω(t+∆t)

(−(pt +∆p)I + 2µ(d t +∆d)(d t +∆d)
)

: d∗dΩ = 0. (29)

Domain updating is done in an explicit procedure, given
the last converged velocity field, but due to the non-linear
character of the constitutive equations, an iterative approach
has been applied to the conservation equations, using the
Newton–Raphson scheme, thus leading to

∫

Ω(t+∆t)

(

−∆∆p I + 2µ

(
∂µ(d t+∆t

k )

∂d
: ∆∆d

)

d t+∆t
k

+ 2µ(d t+∆t
k )∆∆d

)
: d∗dΩ

= −
∫

Ω(t+∆t)

(−pt+∆t
k I + 2µ(d t+∆t

k )d t+∆t
k ) : d∗dΩ,

(30)
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Fig. 14 Sequence of
aluminium flow at the early
stages of the extrusion of a
hollow cylindrical profile

X
Y

Z

(a)

X
Y

Z

(b)

X
Y

Z

(c)

X
Y

Z

(d)

where the subscript k indicates the iteration within a time
increment. The incremental form of the incompressibility
condition results

∫

Ω(t+∆t)

∇ · (∆∆v) p∗dΩ = −
∫

Ω(t+∆t)

∇ · (vt+∆t
k )p∗dΩ.

(31)

If we approximate the velocities and pressures, as well
as their variations, by employing a finite-dimensional set of
basis functions, we arrive to a discrete form of the previous
equations (Bubnov–Galerkin method)

∆∆vh(x) =
n∑

I=1

φI (x)∆∆v I , (32)

∆∆ph(x) =
n∑

I=1

ψI (x)∆∆pI , (33)

where n represents the number of nodes considered in the
approximation. Natural neighbour approximation (Laplace
interpolations [27]) is employed in this work to interpo-
late the velocity field, while Thiessen interpolation (piece-
wise constant on each Voronoi cell) is used for pressures.
Any other form of meshless approximations could also be

employed as well. More details on the derivation of the model
can be found in [1,2].

5.3.3 Performance of the proposed technique

We considered the simulation of the extrusion of a hollow
cylinder. Tube extrusion is especially difficult to simulate
from the geometrical point of view, since the diverted metal
flow must converge before going through the last section of
the extrusion die. A schematic representation of the geometry
of the die is shown in Fig. 13, where only a quarter of the
domain was represented. By invoking appropriate symmetry
conditions, this same quarter of the domain was employed
for simulation. Some snapshots of the flow of aluminium
during this extrusion process are shown in Fig. 14, where
post-processing has been employed for clarity, in order to
show the whole geometry of the domain.

The domain is marked in red lines on Fig. 15. This fig-
ure also shows a particular time step where using regular
α-shapes results in spurious contact detection. This is also
notorious in Fig. 14c. The invalid tetrahedra can be recog-
nized by their size, larger than the nodal spacing in that area,
giving a jagged feel to the resulting solid.
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Fig. 15 Extrusion process. Simulation domain (red lines) and snapshot
showing spurious contact between flows at an intermediate time step

Fig. 16 Extrusion process. Instant before contact of the two metal
flows. Spurious tetrahedra are removed from the triangulation (α = 8,
a = 0.1, b = 2)

The model is divided in sections of different nodal den-
sities, being the sparsest part at the top. Using the standard
method special care is needed to avoid spurious contact. It
is possible to define different α-values for each region to
address this problem.

With the new approach, a single, deliberately big, α-value
can be defined and still obtain good results. In Fig. 16 a snap-
shot corresponding to the same time step on which traditional
α-shapes failed to avoid the spurious contact is shown. In this
case flow fronts are clearly kept apart from each other until
actual contact occurs.

6 Conclusions

An improved α-shape technique is introduced for domain
tracking in updated Lagrangian simulations of free surface
flows. This improvement is based on the addition a new fil-
tration to the standard α-shape technique. This new filtration
takes into account the velocity field of the flow, so as to

predict in some sense its future geometry. We have intro-
duced a way to use non-geometric information inherent to
our model, as a tool to filter α-shapes and being able to obtain
good surface definition, avoiding traditional problems asso-
ciated to this method, as spurious contacts. Even in cases
where there is large nodal density differences, the flow pro-
vides enough information to recognize, even for rough tun-
ing of α-values, different regions in the model that pertain
either to zones getting in contact or to different bodies in the
simulation. Despite the inclusion of two new user-defined
parameters, our methodology is flexible enough to face the
geometry changes that occur with moderate Reynolds num-
ber flows, as covered by the presented formulation. The main
conclusion is that it is considerably easier to find the three
parameters α, a and b, than to find the single α value for
some special, delicate cases—notably some time steps prior
to contact—in standard α-shape technique. We have shown
how, even for a poor selection of α, the proposed technique
is able to correctly filtrate the actual geometry of the domain.
Values of the parameters are much less sensible to modifica-
tions than α for standard α-shapes, and thus the ease of use
and good results of the proposed technique.
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ABSTRACT. In this paper we present a novel methodology for the numerical simulation of fluid-
structure interactions in the presence of free surfaces. It is based on the use of the Natural 
Element Method (NEM) in an updated Lagrangian framework, together with the integration 
of the Navier-Stokes equations by employing a Galerkin-characteristics formulation. 
Tracking of the free-surface is made by employing shape constructors, in particular α-
shapes. A theoretical description of the method is made and also some examples of the 
performance of the technique are included. 
KEYWORDS: Fluid-structure interaction, Meshless methods, Natural Element Method, α-
shapes. 

 
1. Introduction 

The fact that meshless methods (Belytschko et al., 1994) (Liu et al., 1995) do 
not suffer of mesh distortion opened a renewed interest in the last decade in 
Lagrangian formulations for some problems, being free-surface flows a typical 
example. Thus, it is possible to employ an updated Lagrangian strategy for the fluid 
domain, while employing a total or updated Lagrangian strategy for the solid. This 
approach is very convenient for some classes of problems, especially those 
involving drastic changes in the fluid domain geometry. Both domains are then 
formulated in similar frameworks and the coupling between them becomes more 
direct than in ALE formulations (see (Donea, 1983) or (Donea and Huerta, 2003)) 

In this paper we describe mainly the fluid flow formulation proposed in the 
context of an updated Lagrangian strategy. We employ the α-shape-based Natural 
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Element Method (α-NEM) (Cueto et al., 2002) (Cueto et al., 2003) to this end. At 
present the solid is assumed rigid, being prescribed its kinematics. 

This formulation posses some advantages, that include an exact interpolation 
along the boundary (Cueto et al., 2001), that allows for a standard, FE-like, 
treatment of the fluid-solid interface conditions. We firstly describe the bases of the 
α-NEM and then introduce the proposed numerical scheme for the integration of the 
Navier-Stokes equations. Finally, we include some examples that demonstrate the 
accuracy of the proposed scheme and also prove the potential of the technique. 

2. The Natural Element Method 

2.1. Standard formulation 

The NEM (Sukumar et al., 1998) (Cueto et al., 2003) is a Galerkin procedure based 
on the natural neighbor interpolation scheme, which in turn relies on the concepts of 
Voronoi diagrams and Delaunay triangulations (see Figure 1), to build Galerkin trial 
and test functions. These are defined as the Natural Neighbor coordinates of the 
point under consideration, that is, with respect to Figure 2, the value in the point x 
of the shape function associated with the node 1 is (Sibson, 1980) (Sibson, 1981) 

abcd

abfe

A
A

x =)(1φ  [1] 

 
Figure 1. Delaunay triangulation and Voronoi diagram of a set of points. 

In addition, the NEM has other interesting properties such as linear consistency and 
smooth shape functions (C1 everywhere except of the nodes). These functions are 
dependent on the position and density of nodes, leading to standard FE constant 
strain triangle shape functions, bilinear shape functions or rational quartic functions 
in different situations  (see Fig. 3 for a typical shape function). These properties 
permit an exact reproduction of linear displacement fields on the boundary of 
convex domains. 
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Figure 2. Definition of natural neighbour coordinates. 

 
Figure 3. Typical Sibson shape function (courtesy N. Sukumar) 

 

2.2. α-shape formulation 

A slight modification of the way in which the Natural Neighbour interpolant is 
built was proposed to achieve linear interpolation also over non-convex boundaries 
(Cueto et al., 2001). This modification was based on the concept of α-shapes. These 
are a generalization of the concept of the convex hull of a cloud of points and are 
widely used in the field of scientific visualization and computational geometry to 
give a shape to a set of points. Alpha-shapes give shape to a cloud of points and are 
widely used in Computational Geometry despite having been developed quite 
recently. They were first introduced in two-dimensions by Edelsbrunner in 1983, 
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and not generalised in three-dimensions until (Edelsbrunner and Mücke, 1994) An 
α-shape is a generalisation of the convex hull of a cloud of points. It is a polytope 
that is not necessarily convex and that can be triangulated by a subset of the 
Delaunay triangulation, thereby maintaining the empty circumcircle criterion. 

In what follows, we introduce the formal definition of a complete family of α-
shapes for a given set of points N, as in Edelsbrunner and Mücke, 1994. Let N be a 
finite set of points in ℜ3 and α a real number with 0 ≤ α ≤ ∞. A k-simplex σT with 0 
≤ k ≤ 3, is defined as the convex hull of a subset T ⊆ N of size ⏐T⏐=k+1. Let b be 
an α-ball, that is, an open ball of radius α. A k-simplex σT for 0 ≤ k ≤ 2 is said to be 
α-exposed if there exists an empty α-ball b with T = ∂bIN, where ∂ indicates the 
boundary of the ball or, more properly, the sphere or plane bounding b. That is, a k-
simplex is α-exposed if an α-ball whose boundary passes through its defining points 
contains no other point of the set N. In this way, we can define a family of sets Fk,α 
as the sets of α-exposed k-simplices for the given set N, fixed α and 0 ≤ k ≤ 2.  

Based on these concepts, the α-shape of N, Sα, is defined as the polytope whose 
boundary consists of the triangles in F2,α, the edges in F1,α and the points or vertices 
in F0,α. As the α value decreases, the α-shape shrinks by the progressive 
development of cavities or holes. For this to occur, one or more α-balls can occupy 
the interior of a simplex. The α value clearly gives an intuitive measure of the 
maximum curvature in a region of the domain. The α-shape concept is also a 
generalisation of the convex hull since the α-shape for value α = 0 is identical to the 
initial set of points, i.e., S0 = N, and the α-shape for sufficiently high values of α is 
the convex hull of the given set. 

An example of some α-shapes of the complete family for a given set of points 
distributed over the geometry of a human jaw can be seen in Figure 4. 

 
Figure 4. Five elements of the complete family of α-shapes of a cloud of points 
distributed over the geometry of a human jaw. Increasing values of α from 0 (top 
line, left) to infinity (bottom line, right) 
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It has been demonstrated (Cueto et al., 2001) how the construction of the 
interpolant over an appropriate α-shape of the domain gives rise to an exact 
imposition of essential boundary conditions over any kind of domain (convex or 
not.) In addition, it enables us to track the flow front position accurately. 

3. A natural neighbour updated Lagrangian Strategy for the fluid domain. 

In this section we review the time integration scheme developed in (Gonzalez et 
al., 2006), that will be applied in the integration of the fluid flow equations. It is 
based on a Galerkin-characteristics formulation of the Navier-Stokes equations. 

 
3.1. Governing equations. 

We consider here the problem of Fluid Dynamics at moderate Reynolds number. 
Thus, the governing equations can be set as follows. Consider a fluid in a region Ω 
of the space R2 or R3. The fluid flow is governed by the following momentum and 
mass balance equations: 

bσvvv ρρ +∇=∇+ ))·(( ,t  in [ ]t,0×Ω  [2] 

0· =∇ v  in [ ]t,0×Ω  [3] 

where v represents the fluid velocity, σ the stress tensor, ρ represents fluid density 
and b the volumetric forces acting on the fluid. The constitutive equation for a 
newtonian fluid is given by: 

DIτIσ µ2+−=+−= pp  [4] 

where D  is the strain rate tensor, p the pressure and µ  the dynamic viscosity of the 
fluid. To solve the problem we must prescribe an initial state as well as boundary 
conditions, as usual. 

3.2. Time discretisation 

The motion equations can be grouped to 

⎟
⎠
⎞

⎜
⎝
⎛ ∇+
∂
∂

==+∇ vvvvbσ )·(·
tdt

d ρρρ  [5] 

0· =∇ v  [6] 

DIσ µ2+−= p  [7] 

The weak form of the problem associated to Eqs. [5], [6] and [7] is: 
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0·

::2

*

****

=Ω∇

Ω+Ω−=Ω−Ω

∫

∫ ∫ ∫∫

Ω

Ω Ω ΩΩ

dp

d
dt
dddpd

v

vvbvDIDD ρρµ

 [8] 

The second term in the right-hand side of Eq. [8] represents the inertia effects. 
Time discretization of this term represents the discretization of the material 
derivative along the nodal trajectories, which are precisely the characteristic lines 
related to the advection operator. Thus, assuming known the flow kinematics at time 

tntn ∆−=− )1(1 , we proceed as follows: 

∫∫
Ω

−

Ω

Ω
∆
−

=Ω d
t

d
dt
d nn

*
1

* )()( vXvxvvv ρρ  [9] 

where X represents the position at time tn-1 occupied by the particle located at 
position x at present time tn, i.e.: 

tn ∆+= − )(1 XvXx  [10] 

So we arrive to: 

∫∫ ∫ ∫∫
Ω

−

Ω Ω ΩΩ

Ω
∆

−Ω−=Ω
∆

−Ω−Ω d
t

dd
t

dpd
n *1

*
*

** ::2 vvbvvvDIDD ρρρµ  [11] 

where we have dropped the superscript in all the variables corresponding to the 
current time step. 

3.3. Algorithmical issues 

The most difficult term in Eq. [11] is the second term of the right-hand side. The 
numerical integration of this term depends on the quadrature scheme employed. If 
we employ traditional Gauss-based quadratures on the Delaunay triangles, it will be 
necessary to find the position at time tn-1 of the point occupying at time tn the position 
of the integration point ξk : 

∑∫ ∆
−Ξ

=Ω
∆

−

Ω

−

k
k

kk
nn

t
d

t
ωξρρ )()( *1*1 vvvv  [12] 

where ωk represent the weight associated to integration point ξk, and Ξk corresponds 
to the position occupied at time tn-1 by the quadrature point ξk. If we employ some 
type of nodal integration, as in (Chen et al., 2001) (Gonzalez et al., 2004a), this 
procedure becomes straightforward, with the only need to store nodal velocities at 
time step tn-1. 
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We discuss here the procedure to follow when employing Gauss quadratures on 
the Delaunay triangles. We proceed iteratively. Denoting by i the current iteration, 
( 1i ≥ ), we apply  

ti
kn

i
kk ∆+= −

− )( 1
1 XvXx  with 0

kk Xx =  [13] 

until 1−≈ i
k

i
k XX  within a prescribed tolerance. 

We have assumed that the number of natural neighbours of a given integration 
point does not change during a time step, thus needing the storage of nodal 
velocities at time t-1 only. It can occur that some of the nodes neighbouring the 
integration point at time t were not actually its neighbours at time t-1, but this does 
not constitute a problem, since the number of natural neighbours of a point is 
usually high (much bigger than three), so the quality of the interpolation is thus 
guaranteed. In fact, this procedure has shown to converge at a high speed, with no 
more than 3 iterations, at least for reasonable time steps. 

4. Numerical examples. 

4.1. Broken dam problem 

The broken dam problem is classic when testing the performance of integration 
methods for free surface flows. We consider a rectangular column of water, initially 
retained by a door that is instantaneously removed at time t=0 (see Fig. 5). When 
the door is removed, water flows under the action of gravity, considered as 9.81 
m/s2. Density of water is 103 kg/m3, and a viscosity of 0.1 Pa·s was assumed as in 
other numerical simulations performed using different numerical strategies (see 
Duchemin et al., 2002 and references therein, for instance). The discrete model was 
composed of 3364 nodes. No remeshing, addition or deletion of nodes was 
performed throughout the computation.   

Figure 5. Geometry of the broken dam problem. 
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Fig. 6 shows a comparison between numerical results and experimental ones, 
obtained from the literature (Martin and Moyce, 1952). As can be noticed, an 
excellent agreement was found between experimental and numerical results, despite 
the distortion of the triangulation. In Fig. 7 the error in mass conservation is 
depicted, which remained always below 3%. The influence of the relationship 
between the parameter α and the nodal parameter h on this error was deeply 
analyzed in (Martinez et al., 2004). 

Figure 6. Front position (in non-dimensional form) in time. Numerical results 
vs. experimental ones. 

Figure 7. Error in mass conservation. 
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4.2. Water mill 

In this example we study the flow generated by the movement of a water mill. 
The geometry of the container and the dimensions of the mill are shown in Fig. 8(a). 
The model is composed of 4698 nodes, distributed uniformly at the initial time in a 
square domain of dimension 20×20 cm. The sail is 10 cm long, with unit thickness. 
The sail rotates with constant angular speed of 0.5 rad/s. 

(a) 0th time step. (b) 100th time step. 

(c) 200th time step. (d) 100th time step. 

 Figure 8. (a) to (c) vector plot of the velocity field at three different time steps. (d) 
Contour plot of the velocity field. 

Stick boundary conditions were assumed on the reservoir walls, being the upper 
water surface a free boundary which evolves slightly during the simulation as 
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noticed in Fig. 8(c). Time increment was set to 0.005s. being the fluid viscosity of 
0.01 Pa·s. 

The ability of the proposed method for describing flows in the framework of 
updated Lagrangian description is then fully proved.  

 

4.3. Water mill partially submerged 

 The proposed method seems particularly well adapted for dealing with free-
surface flows. If the sail is only partially submerged, then large-amplitude waves are 
expected, justifying the interest of the present simulation. For this purpose, we 
consider the same geometry as in the previous example, but maintaining the sail 
only partially submerged, as shown in Fig. 9. 

 

Figure 9. Initial geometry of the mill problem for the partially submerged 
configuration. 

Material parameters were chosen as in the previous example. In this case the 
time step was set to 0.03s. This test can be found in other references, see, for 
instance (Idelsohn et al., 2004). Note the appearance of a large amplitude wave on 
the free surface of the liquid. The geometry of the fluid and the eventual generation 
of drop and jets can be accurately described by the α-shapes. A deep study on this 
topic has been recently presented in (Martinez et al., 2004) and (Gonzalez et al., 
2006). 
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(a) 100th time step (b) 200th time step  

(c) 300th time step  (d) 400th time step  

(e) 500th time step  (f) 600th time step  

Figure 10. Six snapshots of the generation of a wave during the rotation of the 
mill. 

5. Conclusions. 

This paper proposes a Galerkin-characteristics updated-Lagrangian fluid flow 
formulation for simulation of fluid-structure interaction problems. The fields 
approximation is based on the use of the Natural Element Method which makes it 
possible to work with the same cloud of nodes which moves with the material 
velocity, avoiding remeshing stages. The use of Lagrangian descriptions in both the 
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solid and fluid domains greatly simplifies the formulation and numerical resolution 
of fluid-structure interaction problems, especially those involving free-surfaces. 

The application of the proposed scheme to real FSI problems (i.e., those in 
which the movement of the solid is coupled with the fluid one) is currently the aim 
of our research. 
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