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Real-time simulation of surgery bymodel

reduction and X-FEM techniques

Abstract

Interactive (that with haptic feedback) simulation of surgery needs for increasingly fast

simulation techniques. Feedback rates are nowadays öxed around 1 kHz for haptic pe-

ripherals and around30Hz for visual display. Such tremendous rates impose very dras-

tic limitations to the simulation procedure. In order to achieve haptic realism, several

techniques have been tested in the literature. These include mass-spring systems, the

use of linear elastic explicit önite element codes or, more recently, the use of Graphic

Processing Units (GPU) to speed up the simulation.

In any case, in order to achieve realistic results compatible with the sense of touch,

large strains must be taken into account, together with sophisticated, state of the art

constitutive models for the soft tissues. This has not been achieved to date, up to the

author's knowledge.

Techniques based on model order reduction (MOR) have received an increasing at-

tention in the last years, and have been employed for interactive simulation of linear

elastic solids undergoing large strains (Barbic and James, 2005). In this thesis, how-

ever, a study has been made in order to discern if MOR techniques are suitable for the

simulation of soft living tissues.

In chapter 2 a technique based upon Proper Orthogonal Decomposition (POD) has

been employed to simulate at haptic rates thegoverning equations for a human cornea

under a hyperelastic, öber-reinforced constitutivemodel. While the technique is able to

efficiently simulate these models, errors up to 20% have been noticed, still acceptable.

In chapter 3 a novel technique has been developed that allows for an accurate so-

lution of material and geometrical non-linear hyperelastic models without the need

of stiffness matrix inversions. It is based upon the combination of POD techniques

andAsymptotic NumericalMethods, which provide an accurate description of the non-

linear stress-strain curve of these organs in a convergence interval of sufficient width.

Finally, the use of globally supported basis functions, an essential characteristic of

POD techniques, verymuch complicates the task of simulating surgical cutting. To that

end, amultiscalemethodhasbeendeveloped that enriches thedisplacementöeldwith

9
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anX-FEM-like, discontinuous, öeld that avoids theneedof remeshing, impossibleunder

such severe time restrictions.
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Real-time simulation of surgery bymodel

reduction and X-FEM techniques

Resumen y Conclusiones

La simulación quirúrgica virtual presenta retos formidables para las técnicas de si-

mulación numérica. Para aquellos sistemas en los que se busca una respuesta háptica

(aquella en la que los periféricos proporcionan una respuesta en fuerza), ésta debe cal-

cular a una frecuencia de alrededor de 1 kHz. Si lo que se pretende es un realismo

visual, por ejemplo, entonces unos 30Hz son suöcientes.

Para lograr estas cifras se han empleado recientemente técnicas de muy variada ín-

dole. Los primeros intentos que se pueden encontrar en la literatura están basados en

el uso de sistemas de masa-muelles que no reproducen siquiera las ecuaciones de la

Elasticidad lineal. Más recientemente, diversos autores han incorporado métodos de

elementos önitos explícitos o el cálculo paralelo en tarjetas gráöcas (GPU).

Recientemente, Barbic and James (2005) han desarrollado un método basado en la

reducción de modelos que proporciona resultados muy esperanzadores para el caso

de ecuaciones lineales de comportamiento sometidas a grandes deformaciones.

En esta tesis se ha planteado el desarrollo de una técnica basada en el uso demode-

los reducidos que sea capaz de simular de una manera apropiada las complejas (fre-

cuentemente, hiperelásticas reforzadas con öbras) ecuaciones de comportamiento de

los tejidos vivos blandos. En el capítulo 2 se presenta una técnica capaz de ello, aunque

presentando un nivel de error no despreciable, todavía compatible con los requerim-

ientos más habituales en el campo.

En el capítulo 3 la técnica mencionada se ha generalizado, hasta ser capaz de simu-

lar materiales no lineales tanto en sus aspectos materiales como geométricos. Esta

técnica, basada en la combinación de la descomposición ortogonal apropiada (POD,

por sus siglas en inglés) y el método asintótico numérico, proporciona excelentes re-

sultados en un entorno de una solución previamente calculada, sin tener que calcular

actualizaciones de la matriz de rigidez tangente.

El uso de funciones de aproximación globales (Ritz), sin embargo, complica tremen-

damente la simulación del corte quirúrgico. A tal ön se ha desarrollado una nueva téc-

11
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nica basada en unametodología multiescala que combina los modelos reducidos pre-

sentados en los capítulos anteriores con el X-FEM, de forma que no resulta necesario

remallar para simular el corte.

Conclusiones

Las conclusiones más sobresalientes de esta tesis son las siguientes:

• Se ha desarrollado una técnica de reducción de modelos que permite, todavía

con un cierto nivel de error, simular a frecuencias hápticas materiales complejos,

especialmente hiperelásticos.

• Paraminorar los niveles de error, las técnicas basadas en la combinación demode-

los reducidos ymétodos asintóticos numéricos permiten seguir complejas trayec-

torias no lineales in necesidad de actualizar e invertir nuevas matrices de rigidez

tangentes.

• Finalmente, se ha demostrado que la combinación de las técnicas de reducción

demodelos y de X-FEM permiten una simulación especialmente apropiada de los

procesos de corte quirúrgico.

• En general, las técnicas de reducción de modelos se muestran como una alterna-

tiva prometedora en el campo de la simulación quirúrgica.

UniversidadZaragoza
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Chapter 1

Introduction

1.1 Introduction

Minimally invasive surgery (MIS) has become more and more common in the last dec-

ade. A minimally invasive procedure typically involves use of laparoscopic devices and

remote-control manipulation of instruments with indirect observation of the surgical

öeld through an endoscope or similar devices. These instruments are inserted through

the skin or through a body cavity or anatomical opening. This may result in less pain,

less strain of the organism, small injuries (aesthetic reasons), economic gain because of

shorter hospital stays, etc. On the other hand, there exist some important difficulties

for the surgeon as a result of his restricted vision of the organs, difficult handling of the

instruments, very restrictedmobility, difficult hand-eye coordination andno tactile per-

ception. Therefore, an important training phase is required before a surgeon acquires

the skills necessary to adequately perform minimally invasive surgery. Currently, sur-

geons are trained to perform minimally invasive surgery by using mechanical simula-

tors—just like plane pilots have been trained for many years—or living animals. There

is some consensus on the limited realism of the mentioned simulators, see Figs. 1.1,

1.2, due to the complexity of the simulations to be carried out (Delingette and Ayache,

2004). The latter trainingmethod consists in practicing simple or complex surgical pro-

cedures on living animals (often pigs for abdominal surgery).

Because of the limitations of current training methods, there is a large interest in

developing surgery simulation software, possibly with haptic feedback, for providing

efficient and quantitative gesture training systems (Delingette, 2000). Haptic feedback

takes advantage of a user's sense of touch by applying forces, vibrations, and/or mo-

tions to the user.
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Figure 1.1. Surgical simulator at INRIA research center, France.

Figure 1.2. The only spanish surgical simulator, insight, made by GMV

http://www.gmv.com.

UniversidadZaragoza



Real-time simulation of surgery bymodel reduction and X-FEM techniques 27

Surgical simulators can be classiöed into three categories or generations (Satava,

1996). The so called örst generation of the simulators is based on the anatomical in-

formation. And mainly the geometry of the organs are included in the simulator. The

shape, surface, volume andmorphology of the organs are considered in the simulators

of this category. The second generation of simulators describes the physical proper-

ties of the human body; it enables the simulation of basic surgical gestures such as

cutting or suturing. There are some simulators of this kind for the simulation of chole-

cystectomy, arthroscopy of the knee and hepatectomy (Delingette and Ayache, 2004).

Simulators in this category are capable of computing the deformation of the soft tissue

under forces and they can also take into account temperature changes. The simulators

of the third generation go one step further and consider some aspects of the physi-

ological behavior of the human body. In this way they are intended to model blood

øow, organ movements and certain diseases for instance. A schematic of these three

generations of simulators is shown in Fig. 1.3.

Figure 1.3. The three generations of surgical simulators. Cf. Delingette and Ayache

(2004).

Although the latter category of simulators is very promising it is very difficult to take

into account all those details in the simulator because of the enormous amount of com-
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putation due to coupling between physiology and physics of the organs. To our knowl-

edge no such simulator has been developed yet, although some instances are able to

include tumors, for instance, in brain surgery. NeuroTouch, for instance, that is used for

brain surgery, was developed with collaboration of about öfty researchers and doctors

from ten research centers and funded by National Research Center of Canada (project,

2009).

In general, a surgical simulator consists of several components: input devices, the

core of the simulator and output devices (Delingette and Ayache, 2004). Fig. 1.4 shows

the architecture of a simulator. The input devices consist of a force-feedback (haptic)

device with which the user moves the virtual surgery tools, a mouse and a keyboard

to have a good view of the operation zone. The core of the simulator does the geo-

metrical and the physical modeling. Geometrical models are obtained using medical

imagery like Computerized Tomography (CT-scan) and Magnetic Resonance Imaging

(MRI) after they have been converted to standard 3D graphics öle formats. Physical

models depend on the speciöc soft tissue. The core of the simulator also detects col-

lision between virtual tools and the soft tissue and then calculates the corresponding

reaction forces on the tools. The computed data is sent to the output devices which

consist of a screen and a haptic device. The haptic device transforms reaction forces

and moments to the user and makes him/her have the perception of virtual contact

with the tissue. Fig. 1.5 displays a diagram of the processes that are performed in a sur-

gical simulator. There are some requirements for visual and haptic feedback that make

simulations difficult to perform in real time. A surgery simulator must provide a realis-

tic visual presentation of the surgical procedure. Visual feedback is specially important

in video-surgery because it helps the surgeon to acquire a tridimensional perception

of the environment. If the positions, orientations and deformations of objects on the

screen are updated at a rate less than about 30 times per second, users will no longer

perceive the simulation as continuousmotion. Haptic feedback provides the sensation

of themovement to the user and therefore it signiöcantly enhances his surgical perfor-

mance. But it should have a frequency between 300 and 1000Hz that is very difficult

to achieve for complex tissue behavior and usually a trade-off between computation

time and accuracy is adopted. Fig. 1.6 shows a comparison of accuracy and computa-

tion time in various disciplines.
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Figure 1.4. Schematic architecture of a surgical simulator (Delinguette, 1998).

1.2 State of the art

In order to comply with these requirements different methods have been used during

last years often with trade-off between time and accuracy, see Fig. 1.7. Among them
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Positions(x,y,z)

“Haptic” device

Deformation Stress field

Resulting Forces

500Hz

Figure 1.5. Simpliöed mechanism of a surgical simulator.

aremass-springmethods, surfacemodels, önite element and boundary elementmeth-

ods. Spring-mass models consist of points with mass that are linked by springs and

dashpots. The spring stiffness and damping constant are usually determined by ex-

periments. They have been used extensively for simulating soft tissues (Waters, 1992),

(Kenedi et al., 1975), (Delinguette et al., 1994). Themain advantage of springmodels is

their ease of implementation and they have been used for statics and dynamics analy-

sis. Another advantage is their ability to model cutting and suturing simply by remov-

ing or adding connections between vertices. However, there are some disadvantages

with these models. The most important is that, in general, they do not reproduce the

laws of linear elasticity and conservation of mass (Meier et al., 2005).

Most of the nowadays simulators are based on the laws of continuum mechanics.

Among the available numerical methods for solving these models, önite element and
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Figure 1.6. Comparison of accuracy vs. computation time in various disciplines. Cf.

Delinguette (1998).

boundary elementmethods can bementioned (Monserrat et al., 2001). A review of dif-

ferent soft tissuemodels based on continuummechanics is given in Famaey and Stolen

(2008). Many of these simulators exploit the laws of linear elasticity in which inönites-

imal strain and small displacements are assumed. By doing so a lot of time is saved by

pre-computation of stiffness andmassmatrices. Although if the body undergoes large

displacements, which is nearly always the case, the amount of error will be substantial.

In order to solve this issue large displacements can be considered in the model which

gives rise to the so called geometrically non-linearmodels. Fig. 1.8 shows a beammod-

eled with linear elasticity in the above ögure and considering large strains in the below

ögure. As can be noticed, the difference is substantial, with a neat gain of volume in

the former case. The result is that the surgeon perceives the motion as unrealistic.

However, it is known that soft tissues are composed of collagen öbers and include

considerable amount of water (Holzapfel and Gasser, 2000). This complex composi-

tion cannot be well simulated using only geometrically non-linear models and other

constitutive laws should be used for a better approximation of the behavior of these

tissues. Among them the so-called Holzapfel model (Holzapfel and Gasser, 2000) and

neo-Hookean strain energy functions (Bonet and Wood, 2008) are very common.
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Figure 1.7. Different methods tried so far for surgery simulation, adapted from Meier

et al. (2005).

Other methods like mesh free methods have been recently used for real-time sim-

ulation of soft tissues. Lim and De (2007) applied the point collocation-based method

of önite spheres (PCMFS) technique to simulate tissue deformations that are geomet-
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Figure 1.8. Beam modeled using linear elasticity laws (top) and geometrically non-

linear strain measures (bottom). Note that the scale in the displacement legend is the

same.

rically nonlinear. The technique is based on a novel combination of a multi-resolution

approach coupled with a fast analysis scheme in the nonlinear model.

Capell et al. (2002) computed the equations of motion for a linearly elastic material

using FEM and then by using coarse volumetricmeshes to do simulations at interactive

rates.

A system based upon the use of neural networks has been presented in Deo and
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De (2009). In it, the system is trained with a large set of possible load states in order to

achieve real-time performance in the execution loop.

Very recently, General Purpose Graphic Processing Units (GPGPUs) have been incor-

porated into the öeld of surgical simulation. It is is able to perform very fast operations,

and a complete non-linear, explicit, önite element code has been implemented in that

work with a gain on speed of the order of 20 times (Taylor et al., 2008). This approach

has allowed to implement medium-sized models (16000 tetrahedrons) including neo-

Hookean behavior in an explicit total Lagrangian approach. Themain drawback of this

elegant approach to the problem is the conditional stability of explicit integration pro-

cedures and also the explicit evaluation of the constitutive laws.

1.3 Model Order Reduction techniques

ModelOrder Reduction (MOR) in computationalmechanics has a strong tradition, start-

ing from the early years in which the performance of computers implied the need for

models with very few degrees of freedom (Idelsohn and Cardona, 1985; Krysl et al.,

2001). But similar techniques are employed inmanyother branches of Engineering and

Applied Sciences: real-time simulation (Barbic and James, 2005), Chemical Engineering

(Park and Cho, 1996), turbulence (Sirovich, 1987), weather forecast (Lorenz, 1956) and

many others. This method of analysis has wide application in scientiöc problems in

which one deals with dauntingly large datasets resulting from large-scale computing.

The slant of this exposition is that typically large datasets intrinsically deöne an optimal

means for their own treatment.

This technique goes back to the beginning of the century (Pearson, 1901) and has

been associated with a variety of names, since it has been employed and rediscovered

in many branches of science and engineering. Maybe the most common names are

Karhunen-Loève decomposition (Karhunen, 1946; Loève, 1963), proper orthogonal de-

composition, POD, (Sirovich, 1987) or empirical orthogonal functions (Lorenz, 1956).

Karhunen-Loève (KL) decomposition or proper orthogonal decomposition (POD) will

be used throughout this text.

Recent applications of model reduction techniques for the analysis of non-linear

solids and structures include the works by Krysl et al. (2001) and the works of Rycke-

lynck et al. for "a priori" model reduction (see Ryckelynck (2003, 2005); Ryckelynck et al.

(2006)). Also, recently, new extensions of themethod have been developed, giving rise

to the so-called non-linear dimensionality reduction (Tenenbaum et al., 2000). In Krysl
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et al. (2001)MOR has been applied to explicit and implicit time integration of the equa-

tions of elastodynamics. As most of the computation time is devoted to solving many

systems of equations, by exploiting MOR the computation time reduces by about 40

percent. Such saving is quite considerable especially in optimization and control that

a great number of problems are to be solved. Although this is a general approach but

computations cannot be performed in real time.

Barbic and James (2005), however, exploited dimensional model reduction tech-

niques to build reduced-coordinate deformable models for bodies with complex ge-

ometry using St. Venant-Kirchhoff constitutive law. In this way they have performed

simulations at real-timeupdate ratesofgeometrically-nonlinearmaterials. Even though

themethod seems not to be generalized tomore complexmaterial behaviors like neo-

Hookean constitutive laws, they have shown that Proper Orthogonal Decomposition,

which is not exactly their approach, is a promising tool for real-time applications.

In general, all these techniques share some common characteristics. It is necessary

to have some previous data coming from previously computed, detailed models (in

this frameworks, the work by Ryckelynck (2005) is an exception). These data can be

obtained after numerical simulations made off-line and stored in memory. But they

can be also obtained from physical experiments, for instance. For the work here pre-

sented the örst option has been chosen, as will be explained later, and FE models of

the organs being simulated will be considered as an "exact" to compare with. From

these data the relevant information about the (non-linear) behavior of the tissues is

extracted by Karhunen-Loève decompositions. Then they are employed to construct

a very fast Galerkin method with very few degrees of freedom. FE methods have had

a tremendous success in many branches of science and engineering because of their

simplicity and good performance in many öelds. They employ piece-wise polynomi-

als as a basis to construct an interpolation of the unknown öeld of interest (usually the

displacement öeld, but also velocities, pressure and stresses are unknowns in different

FE formulations). These piece-wise polynomials are very simple and general functions

deöned over a very restricted domain (the element itself and the elements connected

to that). In model reduction techniques we employ global basis functions that have

the whole domain as their support; But they are of "high quality". This means that in

the construction of these basis we employ available information on the problem. The

more information we have, the better quality basis functions will be constructed. And,

of course, the better results will be obtained.

Models that differ slightly from the original ones can thus be computed with a very

important, sometimes impressive, computational saving, employingonly a very limited
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number of degrees of freedom.

1.4 Objectives

Real-time requirements pose very severe constraints in the simulation method to be

employed, as commented before. One of these limitations is that, in general, there

is not enough time to perform tangent stiffness matrix updates for non-linear consti-

tutive equations of soft tissues. This is why very few works have actually dealt with

material non-linearities at haptic feedback rates.

In this thesis the objective has been set to analyze if model order reduction meth-

ods, and more speciöcally, POD techniques, can be employed to this end. As will be

seen, POD provides with very good results (as good as existing methods, at least), but

for much more sophisticated constitutive laws. This can be considered as a true ad-

vancement in the state of the art. However, this level of error is very often around 20%,

and therefore can be improved.

The second objective of this thesis is the development of a method that, without

tangent stiffnessmatrix updates, could follow complex, non-linear material paths. This

will be accomplished by employing a combination of POD and asymptotic expansions

of the problem at equilibrium points.

Finally, the choice of model order reduction techniques seems to allow for a much

faster simulation, even for very complex and non-linear constitutive equations for soft

tissues. But it very much complicates the issue of simulating surgical cutting. A cut

would imply a change in the mesh, which constitutes a task not feasible at 500 Hz

rates. X-FEM seems to be an appealing choice to avoid remeshing, but it is not readily

applicable to Ritz (globally-supported shape functions) Galerkin methods. Therefore,

the third big objective of this thesis is to provide the method with an efficient means

for the simulation of surgical cutting.

Krysl et al. (2001) performed a thorough analysis of the application of POD tech-

niques to solve the equations of elastodynamics, and also some interesting conclusions

can be obtained after the work of Barbic and James (2005), so this thesis will restrict it-

self to the aspects related to material non-linearities.
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1.5 Thesis overview

The organization of the thesis is as follows: the fundamentals of model reduction tech-

niques are explained in chapter 2, where some applications of these techniques in vir-

tual surgery are shown, demonstrating the suitability of POD for virtual surgery simu-

lation. In chapter 3 the asymptotic numerical method (ANM) is örstly introduced and

then the formulation for geometrically-nonlinear problems is reviewed. A combination

of POD-ANM is then developed that allows to follow complex, non-linear, load trajecto-

ries without the need for stiffness matrix updating. Then this formulation is extended

for non-linear hyperelastic materials undergoing large strains. Different examples in

solid mechanics will be presented that show the performance of the proposed tech-

nique. In chapter 4 it is shown how eXtended Finite Element methods can be used in a

combination with POD to model discontinuities with special attention to cutting pro-

cedure as a speciöc example. Finally, the conclusions obtained from this thesis and the

future work are presented in chapter 5.
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Chapter 2

Real-time simulation of
surgery based upon Proper
Orthogonal Decomposition

2.1 Introduction

One of the main limitations of existing models in real-time simulation is that they do

not take into account the anisotropic and highly non-linear response of virtually all soft

tissues, see Meier et al. (2005) for a recent survey on the topic. Recently, geometric

non-linearities have been taken into account in a work also based onmodel reduction,

see Barbic and James (2005). But in this case, only linear materials have been consid-

ered (i.e., the so-called Saint Venant-Kirchhoffmodel, or homogeneous isotropic linear

elastic materials undergoing large strains). Most soft tissues, however, exhibit complex

non-linear responses, possibly with anisotropic characteristics, and frequently show in-

compressible or quasi-incompressible behavior. Geometric non-linearities (those de-

riving from large strains) should be also considered on top of this complexmaterial be-

havior. The standard simulation of these material non-linearities requires the employ

of Newton-Raphson or similar techniques in an iterative framework. In other words, a

tangent stiffness matrix must be inverted, possibly many times, at each time step. This

makes the existing engineering FE codes impractical for real-time simulations.

While most of the existing simulation techniques in real time, as mentioned before,

are based upon Finite Element or Boundary Element techniques, we have pursued a

different philosophy. Following Bro-Nielsen and Cotin (1996), "... We do not care about
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the time taken for one-time pre-calculation such as setting up equations, invertingma-

trices, etc.".

The technique here presented is based upon existing data on the behavior of the

simulated tissues. These data can be obtained after numerical simulations made off-

line and stored in memory. But they can be also obtained from physical experiments,

for instance. For thework here presentedwe have chosen the örst option, and FEmod-

els of the organs being simulated will be considered as an "exact" solution to compare

with. From these data the (statistically speaking) relevant information about the (non-

linear) behavior of the tissues is extracted by Karhunen-Loève decomposition. Thenwe

employ it to construct a very fast Galerkin method with very few degrees of freedom.

To this end,weemploymodel reduction techniquesbasedonproperorthogonal de-

composition (Karhunen, 1946), (Loève, 1963), (Lorenz, 1956), (Ryckelynck et al., 2006).

FE methods have had a tremendous success in many branches of science and engi-

neering because of their simplicity and good performance inmany öelds. They employ

piece-wise polynomials as a basis to construct an interpolation of the unknown öeld of

interest (usually the displacement öeld, but also velocities, pressure and stresses are

unknowns in different FE formulations). These piece-wise polynomials are very simple

and general functions deöned over a very restricted domain (the element itself and the

elements connected to that). In model reduction techniques we employ global basis

functions that have the whole domain as their support; But they are of "high quality".

This means that in the construction of these basis we employ available information on

the problem. The more information we have, the better quality basis functions will be

constructed. And, of course, the better results will be obtained.

To obtain the information necessary to construct these "good" basis functions, as

mentioned before, we employ Proper Orthogonal Decomposition (POD) techniques.

And these can be built upon önite element results (or, in general any numerical simula-

tion results, if available) or also upon experimental results. Of course, these simulations

are made off-line and their results are stored prior to starting the on-line simulation.

In order to show the performance of themethod, the behavior of the human cornea

is chosen tobe simulated, although the technique is equally applicable to anyother soft

tissue. Other tissues, such as bones, that in short periods of time present almost linear

response, could be also simulated with this technique, obtaining even better results.

The cornea presents a highly non-linear response, with anisotropic and heterogeneous

behavior due to its internal collagen öber reinforcement. As an accurate enoughmodel

we have implemented that employed in Alastrué et al. (2006). The interested reader is
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referred to that paper and the references therein for further details on the mechanical

response of the cornea.

2.2 Model reduction techniques

2.2.1 Fundamentals: Karhunen-Loève's Decomposition

In this technique it is assumed that the evolution of a certain öeld u(x, t) is known. In

practical applications (assume thatwehaveperformedsomenumerical simulationsoff-

line, for instance), this öeld is expressed in a discrete formwhich is known at the nodes

of a spatial mesh and for some instants of time tm. Thus, we consider that u(xi, t
m) =

um(xi) ≡ umi (tm = m×∆t) are known. We can alsowriteum for the vector containing

the nodal degrees of freedomat time tm. Themain idea of the Karhunen-Loève (KL) de-

composition is to obtain themost typical or characteristic structure ϕ(x) among these

um(x), ∀m. This is equivalent to obtain a function that maximizes the functional α:

α =

∑m=M
m=1

[∑i=N
i=1 ϕ(xi)u

m(xi)
]2

∑i=N
i=1 (ϕ(xi))2

(2.1)

where N represents the number of nodes of the complete model andM the number

of computed time steps. The maximization leads to:

m=M∑
m=1

[( i=N∑
i=1

ϕ̃(xi)u
m(xi)

)( j=N∑
j=1

ϕ(xj)u
m(xj)

)]
= α

i=N∑
i=1

ϕ̃(xi)ϕ(xi); ∀ϕ̃ (2.2)

which can be rewritten in the form

i=N∑
i=1

{
j=N∑
j=1

[m=M∑
m=1

um(xi)u
m(xj)ϕ(xj)

]
ϕ̃(xi)

}
= α

i=N∑
i=1

ϕ̃(xi)ϕ(xi); ∀ϕ̃ (2.3)

Deöning the vector ϕ such that its i-th component is ϕ(xi), Eq. (2.3) takes the fol-

lowing matrix form

ϕ̃
T
c ϕ = αϕ̃

T
ϕ; ∀ϕ̃ ⇒ c ϕ = αϕ (2.4)

where the two-point correlation matrix is given by

cij =
m=M∑
m=1

um(xi)u
m(xj) ⇔ c =

m=M∑
m=1

um(um)T (2.5)
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which is symmetric and positive deönite. If we deöne the matrixQ containing the dis-

crete öeld history:

Q =


u11 u21 · · · uM1

u12 u22 · · · uM2
...

... . . . ...

u1N u2N · · · uMN

 (2.6)

then it is easy to verify that the matrix c in Eq. (2.4) results in

c = QQT (2.7)

2.2.2 A posteriori reducedmodeling

If somedirect simulations have been carried out, we can determineumi , ∀i ∈ [1, · · · , N ]

and ∀m ∈ [1, · · · ,M ], and from these solutions the n eigenvectors related to the

n-highest eigenvalues that are expected to contain the most important information

about the problem solution. For this purpose we solve the eigenvalue problem de-

öned by Eq. (2.4) retaining all the eigenvalues ϕk belonging to the interval deöned by

the highest eigenvalue and that value divided by a large enough value (108 in our sim-

ulations). In practice n is much lower thanN , and this constitutes the main advantage

of the technique. Thus, we can try to use these n eigenfunctionsϕk for approximating

the solution of a problem slightly different to the one that has served to deöne umi . For

this purpose we need to deöne the matrixA = [ϕ1 · · ·ϕn]

A =


ϕ1(x1) ϕ2(x1) · · · ϕn(x1)

ϕ1(x2) ϕ2(x2) · · · ϕn(x2)
...

... . . . ...

ϕ1(xN) ϕ2(xN) · · · ϕn(xN)

 (2.8)

Now, if we consider the linear system of equations coming from the discretization

of a generic problem, in the form:

K um = Fm−1 (2.9)

where the superscript refers to the time step, then, assuming that the unknown vector

contains the nodal degrees of freedom, it can be expressed as:

um =
i=n∑
i=1

ζmi ϕi = A ζm (2.10)
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from which Eq. (2.9) results

K um = Fm−1 ⇒ K Aζm = Hm−1 (2.11)

and by multiplying both terms byAT we obtain

ATK Aζm = ATFm−1 (2.12)

which proves that the önal system of equations is of low order, i.e. the dimension of

ATGA is n× n, with n≪ N .

2.3 Interpolation of reducedmodels

As it was explained before the reducedmodel employs the tangent stiffnessmatrix,K ,

linearized from the non-linear problem formulation at a given time instant. Instead of

inverting the full stiffnessmatrix of sizeN×N , we employmodel reduction techniques

to invert the matrixATK A, of size r × r, that is much lower than the original size, as

mentioned before.

However, this tangent stiffness matrixK corresponds to a given state of the model

(i.e., a given load position and load value, for instance, inmechanical problems). Differ-

ent load values would lead to different matricesK along the loading path (this is due

to the non-linear character of the problem).

It is proposed to perform some direct simulations for a set of different positions of

the surgical tool. For each tool position a reduced-order basis set can thus be com-

puted. But the position of the tool at the on-line simulation does not need to coincide

with the precomputed ones, and therefore some interpolation scheme is needed if the

load is placed at positions different from the originally computed ones. Therefore, we

need to interpolate the reduced basis sets, from pre-computed complete models, to

an arbitrary position of the load.

How to interpolate reducedmodels is currently an active area of research, anddiffer-

ent methods have been proposed so far. The most prominent two are now reviewed.

2.3.1 Interpolation of the reduced basis: a geometrical approach

Amsallem and Farhat (2008) have pointed out that the set of empirical eigenfunctions

given by Eq. (2.4) for a given model forms the so-called Grassman manifold G(n,N).
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Figure 2.1. Schematic description of the Grassmanmanifold formed by the set of basis

functions of all the reduced modes of a given model.

Therefore, in order to interpolate the set of basis functions, that consequently do not

form a vector space, we must move to the tangent plane at a point of the manifold,

which is a "øat" space, interpolate there, and project back to the manifold, as schemat-

ically explained in Fig. 2.1.

In this way, the columns ofA constitute a basis of the subspace S0 of dimension n

of the space ℜN . At each point S of the manifold G(n,N) one can deöne a tangent

plane of the same dimension, TS , with its points deöned by a matrix Γ ∈ ℜN×n. The

exponential mapping ExpS transforms χ in an n-dimensional subspace S ′ given by a

matrixA′ ∈ ℜN×n, such that

Γ = UΣV T (Singular value decomposition)

A′ = AV cosΣ+U sinΣ

Conversely, the logarithmic mapping LogS , deönes a map between a point in the

neighborhood of S ∈ G(n,N) and the tangent plane at the origin. Thus, the image of

S ′, in a neighborhood of S , given by the logarithmic mapping, χ = LogSS ′ ∈ TS will

be

(I −AAT )A′(ATA′)−1 = UΣV T (Singular value decomposition)

Γ = U tan−1(Σ)V T

So, consider, for instance,A0 ∈ ℜN×n andA1 ∈ ℜN×n, two matrices representing

two subspaces, obtained for different parameters of themodel (for instance, load posi-

tions, but the theory is completely general for other parameters of the model), s0 and
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s1. LetS0,S1 be the two subspaces originatedby consideringparameters s0 and s1. Let,

in turn, Y(t) be the geodesic line that joins both subspaces (points in the Grassmann

manifold), having S0 as origin. In that case, the initial derivative of the geodesic line,

that belongs to the tangent plane at S0, will be

Ẏ0 = LogS0S1

such that thematrix representing this initial derivative of the geodesic will be (see Am-

sallem and Farhat (2008) for a complete proof of this)

(I −A0A
T
0 )A1(A

T
0A1)

−1 = UΣV T

Γ = U tan−1(Σ)V T

Let S̃ denote the point of the Grassmann manifold representing the reduced-order

basis for the new value of the parameter. s̃. The initial derivative of the new geodesic

line, joining S0 and the sought interpolated subspace S̃ , will be

˙̃Y0 = r̃Ẏ0

with

r̃ =
s̃− s0
s1 − s0

The computation of the singular value decomposition is not a very time-consuming

task. For instance, on a PC which has 2GHz CPU, the computation of svd(A) using

Matlab, withA a randommatrix of 5× 5000 elements takes on averagemuch less than

1 ms, still compatible with real-time constraints.

2.3.2 PODwith interpolation (PODI)

A less rigorous, but much simpler, method to interpolate among previously computed

reduced models was established in Ly and Tran (2005). Although in the standard PODI

technique the POD procedure is applied to the complete set of snapshots (for differ-

ent load positions, say) of the system to obtain an orthonormal basisA = [ϕ1 · · ·ϕn],

in this thesis we proceed by just applying the POD to each complete model (i.e., to

each load position). Thus, we obtain an orthonormal basis for each system's parameter

value. Basis are then interpolated for intermediate positions of the load. Although it is

clear that the interpolation of orthogonal sets of functions does not yield, in general, to

new orthogonal basis functions, the technique works well if the "distance" of reduced

models in the Grassman manifold is not too large.
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Results obtained with this technique showed to be much more efficient and accu-

rate than those obtainedwith themore rigorous technique base upon interpolation on

theGrassmanmanifold. This surprising result is still notwell understood by the authors

and is currently one of our research topics. In any case, results presented in section 2.5

were obtained with the PODI technique.

2.4 Ahyperelasticmodel for thehumancornea

Asmentionedbefore,wehave chosen thehumancorneaas anexampleof ahighlynon-

linear tissue. This non-linearity comes from a variety of reasons, such as the internal

collagenöber reinforcement (material non-linearity) andalso fromthevery large strains

it could suffer. The human cornea is composed of a highly porous material, composed

of about 80% water, and thus quasi-incompressible. Most of the cornea's thickness

(around 90%) constitutes the stroma, that is composed of 300-500 plies of collagen

öbers, distributed in parallel to the surface of the cornea. This microstructure induces

in the corneal tissue a highly non-linear and heterogeneous behavior.

The model here employed for the simulation of the human cornea (Alastrué et al.,

2006) considers the cornea as a hyperelastic material. the initial, undeformed, conög-

uration of the cornea will be denoted by Ω0. A continuous movement χ translates a

point X ∈ Ω0 to its location at time t, x ∈ Ωt. Reinforcing öbers, that move con-

tinuously together with the cornea, posses a direction m0, with |m0| = 1. After the

deformation, this orientation changes tom(x, t), always with unit modulus. The öber

stretching after the deformation will be given by

λm(x, t) = Fm0 (2.13)

where F = dx/dX represents the deformation gradient tensor. A second family of

öbers,n0, is also considered as reinforcement at each point.

Due to the dependence of strain on the considered direction, the existence of a

strain energy density functional,Ψ, depending on the right Cauchy-Green tensor,C =

F TF , and the initial öber orientations, m0 and n0, is postulated. Based on the volu-

metric incompressibility restrictions, this functional can be expressed as (Alastrué et al.,

2006)

Ψ(C) = Ψvol(J) + Ψ̄(C̄,m0 ⊗m0,n0 ⊗ n0) (2.14)

where Ψvol(J) describes the volumetric change and Ψ̄(C̄,m0 ⊗ m0,n0 ⊗ n0) the

change in shape. Both are scalar functionsofJ = detF, C̄ = F̄
T
F̄ , where F̄ = J−1/3F ,

m0 andn0.
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Material C1 D C2 k1 k2 k3 k4

Cornea 0.1 1e-5 0.0 0.234 29.917 0.234 29.917

Table 2.1. Material properties (MPa).

Once this energy density functional is known, the second Piola-Kirchhoff stress ten-

sor, S, and the fourth-order tangent constitutive tensor, C, can be determined by

S = 2
∂Ψ

∂C
C = 2

∂S(C)
∂C

(2.15)

A detailed derivation of the model can be obtained in Alastrué et al. (2006). The

interested reader is referred to this paper for reference.

We have consideredΨvol =
1
D
(Ln(J))2 to enforce the quasi-incompressible behav-

ior of the cornea through the penalty parameter 1/D, and to model the corneal tissue

we have employed themodel proposed by Holzapfel and Gasser (2000), initially devel-

oped for arterial tissue:

Ψ̄ =
C1

2
(I1−3)+

C2

2
(I2−3)+

k1
2k2

{exp[k2(I4−1)2]−1}+ k3
2k4

{exp[k4(I6−1)2]−1}
(2.16)

Hence, similar approaches can be employed for most soft tissues. Material characteris-

tics are summarized in Table 2.1. I1, I2, I4 . . . , I9 aredifferent invariants of themodiöed

symmetric right Cauchy-Green tensor (Holzapfel and Gasser, 2000). They are deöned

as:

I1 = tr(C), I2 =
1

2
(tr(C))2 − tr(C

2
) (2.17)

I4 = m0 ·Cm0, I5 = m0 ·C
2
m0 (2.18)

I6 = n0 ·Cn0, I7 = n0 ·C
2
n0 (2.19)

I8 = (m0 · n0)m0 ·Cn0, I9 = (m0 · n0)
2 (2.20)

For this particular implementation we have chosen, based on Alastrué et al. (2006),

I5 = I7 = 0.

2.5 Numerical results

In order to test theperformanceof theproposed technique, attention is focusedmainly

on two aspects. First, the accuracy of the results. Second, the compliance with the re-

quirements of haptic feedback, i.e., all resultsmust be obtained at a frequency between
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300 and 1000Hz. Aspects related to image rendering, contact detection, tissue cutting,

etc, have not been addressed here. In chapter 4 amethodology to deal with tissue cut-

ting will be discussed.

A set of tests have been accomplished, all based on themodel of the human cornea

presented before. Inertia effects are neglected in this problem, due to the typical slow

velocity in the application of the loads in this kind of organs. Thus, we face a parametric

problem like the one described in section 2.3.

The cornea was discretized with linear hexahedron önite elements. The mesh con-

sisted of 8514 nodes and 7182 elements. A viewof the geometry of themodel is shown

in Fig. 2.2.

The orientation of the two families of öbers, distributed along the thickness of the

cornea, is shown in Fig. 2.3.

2.5.1 Palpation of the cornea

The örst test for the proposed technique consists of simulating the palpation of the

corneawith a surgical instrument. In order to validate the results, a loadwas applied to

the complete FEmodel in the central regionof themodel. Theobtained resultwas com-

pared to the one obtained by employing the model reduction techniques presented

before, for the load applied at the same location.

Once the complete model is solved, the most important eigenmodes are extracted

from the computed displacement öeld, together with the initial tangent stiffness ma-

trix. The number of eigenmodes employed in this case was only six, which is, in our

experience, the minimum number of modes that should be employed in such a sim-

ulation. Other tangent stiffness matrices different to the initial one can also be used,

perhaps withmore accurate results. Themodes are depicted in Fig. 2.4. The associated

eigenvalues are, from the biggest to the smallest one, 9.02 · 104, 690, 27, 2.63, 0.221
and 0.0028. As can be noticed, the relative importance of these modes in the overall

solution, measured by the associated eigenvalue, decreases very rapidly. Note that the

reducedmodel employed only six degrees of freedom, while the complete model em-

ployed 8514 nodes with three degrees of freedom each, thus making 25542 degrees

of freedom. The computational savings are obvious: instead of inverting a matrix of

25542 × 25542, we invert a matrix of only 6 × 6. Of course, if more accurate solutions

are needed, a higher number of modes can be employed.

The displacement öeld obtained for the complete model is compared to that of the

reducedmodel. Different positions of the load were chosen and the results compared.
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Figure 2.2. Geometry of the önite element model for the human cornea.
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(a)

(b)

Figure 2.3. Fiber distribution in the önite element model of the cornea. Two families

of collagen öbers, roughly perpendicular to each other, are considered.

The application of loads at different locations produced levels of error of similar values

as the examples here reported. For a örst location of the load, the obtained vertical

displacement is shown in Fig. 2.5.

In Fig. 2.6 load-displacement curve has been depicted. In Fig. 2.7, however, the

load was applied at a point located slightly towards the outer boundary of the model.

In this case, as can be seen from Fig. 2.7, the displacement obtained at the point of

application of the load is nearly exact, although the shape of the deformed cornea is

somewhat different. This is not the case for Fig. 2.5, where errors of about 20% are no-

ticed. The L2 error norm ranged from very low values (0.08) in the early steps of the

simulation, to higher values (around 0.34) for the last step. In our experience, this is

a typical upper bound of the obtained error, even if very large deformations are im-

posed to the simulated organ, as is the case. This error can be attributed to a severe
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buckling phenomenon that appears in the complete model. The reducedmodel is not

able, obviously, to capture exactly this behavior. We believe, however, that the present

technique can be ameliorated in order to account for buckling phenomena.

All the simulations presented here ran on a PC equipped with two processors (only

onewas employed, noparallel computingwasused) AMDQuadOpteron running at 2.2

GHz andwith 16GbRAM, under Scientiöc Linux. Theprototype codewas implemented

under MATLAB, which is not obviously the best solution for such type of problems. It

was chosenas itwas easy and fast to implement these early versionsof themethod. Lim

and De (2007) reported very recently similar levels of error (evenmore, up to 30%), but

for linear elastic materials undergoing large displacements (thus, only geometrically

non-linear problems). They employed a meshless method called the method of Finite

Spheres.

The simulations ranat 472-483Hz,which is among the limits imposedbyhaptic feed-

back realism, as mentioned before. Of course, the use of more sophisticated codes, for

instance using parallel programming, could give even faster results.

2.5.2 Force prediction

The architecture of a real-time simulator requires, however, the prediction of the re-

sponse force to a given displacement imposed to the model by means of the haptic

device. To analyze the behavior of the proposed technique under these requirements,

we studied precisely a prescribed displacement problem for the case analyzed in the

previous section.

A vertical displacement was imposed to node 4144, located almost in the center of

the cornea, with linearly increasing value. The response force exerted by the cornea on

the tool tip was simulated with the aid of the complete model as well as the reduced

one. While the complete model took around 3 hours to solve the problem, due to the

large displacement imposed at the last steps of the simulation, the reducedmodel still

runs at between 400-500 Hz. The results are summarized in Table 2.2.

As can be noticed, the predicted response is very accurate at the middle of the sim-

ulation, and gives some error both at the very beginning of the simulation and for very

large strains.
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u FROM(N) FFEM(N) Error(%)

0.1 0.0045 0.0055 18

0.2 0.0091 0.0108 16

0.3 0.0136 0.0158 14

0.45 0.0204 0.0227 10

0.675 0.0307 0.0321 4

0.9 0.041 0.0405 1

1.125 0.0511 0.0482 6

1.35 0.0614 0.0555 10

1.575 0.0716 0.0628 14

1.8 0.0818 0.0702 16

2.025 0.092 0.0779 18

2.135 0.097 0.0818 19

Table 2.2. Error in the predicted force response on the tool. Reduced Order Modeling

(ROM) vs. Finite Element Modeling (FEM).

2.5.3 Force located at an arbitrary point

As mentioned before, the strategy here presented includes the off-line calculation of

the response of the organ to prescribed loads. Thus, a sampling strategy must be

adopted to construct a basis capable of representing the overall response of the or-

gan to virtually any load (although it is expected that a good surgeon will not make

unexpectedmovements away from "good practice" rules in the surgery). It is therefore

of utmost importance to know the quality of the response of the system to a force lo-

cated in a position whose response has not been calculated. To this end, we employ

the PODI approachmentioned before (Ly and Tran, 2005), by placing loads in between

the loaded nodes in the complete model, in order to seek for the worst case scenario

for the method.

To study thisbehavior, a simple testwas implemented. The responseof the cornea to

two different loads located at different locations was computed bymeans of complete

FEmodel. Then, a new load at a different positionwas applied, in between the two and

computed the response of the system by means of PODI techniques. We assume that

the three loads increase their value from zero linearly with time. The complete model

for this third loadwas also solved in order to test the accuracy of themethod. As before,

this completemodel is assumed as "exact" in the absence of any further knowledge on

the behavior of this cornea.
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The obtained results for a very large strain are shown in Fig. 2.8. The results for the

PODImodel are, as can be noticed, in good agreement with the results of the complete

model, see Fig. 2.8(b).

The error in the prediction of the vertical displacement under the load is 27.18% at

the end of the simulation (maximum of the strain). We have also computed the error

in || · ||2 norm, deöned as:

||e||2 =
1

n

√√√√ n∑
I=1

e2I (2.21)

where eI represents the nodal error and n the number of nodes in the model. This

error took a value of 29.5%, still within the limits for the best techniques available today

for linear elastic materials (Lim and De, 2007). Of course, larger values of error can be

obtained if larger strains are imposed, but they remain bounded if "expected" values

are given to the loads. For situations that will not likely occur, out of surgeons' good

practice, the error can of course be very large. In any case, the reduced basis of the

model could be completed with more basis modes corresponding to non-expectable

behavior of the surgeons.

2.6 Discussion

In this chapter a novel strategy is presented for real-time interactive simulation of non-

linear anisotropic tissues. The presented technique is based on model reduction tech-

niques and, unlike previous works (Barbic and James, 2005), it allows for the consider-

ation of both geometrical and material non-linearities.

The reducedmodels are constructed by employing a set of "high quality" global ba-

sis functions (as opposed to general-purpose, locally supported FE shape functions) in

a Galerkin framework. These functions are constructed after somedirect simulations of

the organs performed by standard FE or BE techniques, for instance. These simulations

are made off-line and the computed displacements and tangent stiffness matrices are

stored in memory prior to beginning with the real-time simulation.

Results obtained showed good accordance with complete model results, and ran

at frequencies of around 400-500 Hz, enough for real-time requirements, even for this

very rude code prototypes. In sum, the technique presented constitutes in ourmodest

opinion an alternative to standard FE simulation techniques for real-time applications

involving non-linear and anisotropic materials. In the following we discuss some imi-

tations of the applied method.
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2.6.1 Limitations of standardmodel reduction techniques

Classical model reduction techniques, when applied to the simulation of non-linear

solids and structures imply the need for frequent updating of the stiffness tangentma-

trix K (or, equivalently, the reduced stiffness matrix ATK A, but the matrix A is as-

sumed constant throughout the simulation). Otherwise, the reduced model will ob-

viously be linear as shown seen in Fig. 2.6. This implies that once the residual of the

discrete, algebraic form of the problems is estimated unacceptable, the only way of

searching the equilibrium is by updating the stiffness matrix of the complete problem.

Modiöed Newton-Raphson methods could equally be employed, but in the context of

reduced models their convergence is often judged too slow. Even if this strategy can

be employed for reducing non-linear models the computing cost is considerable, and

of course this technique is unfeasible if one is looking for quasi-real-time simulations.

A different question arises in the so-called hyper-reduction methods Ryckelynck

(2008) in which only a few rows of the stiffness matrix are integrated, based on the

fact of the limited number of degrees of freedom that POD techniques select for a par-

ticular problem. The problem is precisely to select appropriately in which part of the

model the integration is performed.

This stiffness matrix updating is usually an expensive procedure in terms of compu-

tational cost (and noteworthy in the context of reduced models). But sometimes it is

simply unaffordable. This is the case in the frameworkof real-timeor near real-time sim-

ulations, where a frequency of 500-1000Hz in the response of the simulation is needed,

for instance, for haptic realism (30Hzwould be enough for video feedback, which is too

much a limitation indeed). In the following chapter a technique will be presented that

could take into account the non-linearity of the problem without resorting to tangent

stiffness matrix updating in the complete model.
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Figure 2.4. The eigenmodes of the problem employed as global basis for the reduced

model simulation.
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Figure 2.5. Vertical displacement öeld for a örst position of the load. Complete model

(up) vs. reduced model (down).
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Figure 2.6. load-displacement curve at the vertex of the cornea.
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Figure 2.7. Vertical displacement öeld for a second position of the load. Complete

model (up) vs. reduced model (down).
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Figure 2.8. Vertical displacement (mm) for (a) the reducedmodel and (b) the complete

model of a load in a position not previously computed.
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Chapter 3

Real-time simulation of
non-linear hyperelastic
materials throughModel
Order Reduction

3.1 Introduction

In the preceding chaptermodel order reduction techniques, andparticularly proper or-

thogonal decompositionmethods, have been applied to the simulation of highly non-

linear, state of the art, constitutive models for soft tissue. It has been demonstrated

that POD techniques constitute an appealing means for real-time simulation of such

models. However, some important limitations have been also pointed out.

Although the levels of error found in these applications can be considered high

(around 20% for some applications), it is within the best techniques published so far in

the öeld, see for instance Lim and De (2007). The main limitation lies, therefore, in the

practical impediment for tangent stiffnessmatrix updatingdue to the severe restriction

posed by real-time requirements.

Tangent stiffness matrix updating constitutes an essential procedure in Newton-

Raphsonmethod for the iterative solution of non-linear systemsof equations. Modiöed

Newton methods, for instance, that do not need for such an updating procedure, are

unable, however, to follow buckling or post-buckling phenomena, essential in some

cases, such as the before presented simulation of palpation of the human cornea.
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Otherwise, the resulting simulationwill be actually linear, even if it employs the best

(in statistical terms) basis functions available. In the work by Ryckelynck (2005), on the

contrary, Krylov subspaces are added to the reduced set of basis functions once the

simulation provides an unsatisfactory norm of the residual. But this implies to come

back to the last converged time step and to continue with the just enriched basis.

The approach followed in this chapter is somewhat different. In order to avoid a

frequent update of the stiffness matrix, an asymptotic expansion of some variables of

interest ismade at the last converged time step. When this expansion is introduced into

the discrete weak form of the problem, a series of problems is encountered that share

the same stiffness matrix for all the terms of the expansion. Of course, the expansion

has a önite radius of convergence, but it is frequently enough to perform many of the

simulations considered here, as will be demonstrated.

This technique thus combines twomain ingredients: theProperOrthogonalDecom-

position of the existing data coming from completemodels, and an asymptotic expan-

sion of variables of interest in the neighborhood of equilibrium points (Cochelin et al.,

1994a) (Abichou et al., 2002). This technique originated in the works of Yvonnet et al.

(2007) for buckling analysis of foam structures, considered linear elastic (geometrically

non-linear), although it is generalized here formore complex, hyperelastic, constitutive

equations includingmaterial non-linearities. This extension is not straightforward and,

up to the best of our knowledge, has not been developed so far.

The structure of the chapter is as follows. In section 2 the basics of the technique

proposed in Yvonnet et al. (2007) for linear elastic solids undergoing önite strains (Saint

Venant-Kirchhoff models) is reviewed. In section 3 this technique is extended to ac-

count for material as well as geometrical non-linearities. The proposed technique is

described in detail and, önally, in section 4 some examples of application for Saint

Venant-Kirchhoff and neo-Hookean models are included that show the performance

of the technique and compares the computational cost with a standard FE solution.

3.2 Asymptotic Numerical Methods

Non-linear structural problems are generally solved using iterative methods such as

Newton-Raphson or modiöed Newton schemes. Such algorithms have been success-

ful for solving the non-linear equilibrium equations of the model. However, the com-

puting time is usually large as compared to a linear solution because of the number of
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iterations usually needed and the computation of tangent stiffness matrices. A fam-

ily of asymptotic numerical methods (ANM) based on perturbation techniques and ö-

nite element methods have been proposed and intensively used by Potier-Ferry and

co-workers for computing perturbed bifurcations, and applied in computing the post-

buckling behavior of elastic plates and shells. Next they have extended the method

to many non-linear elastic solutions, plastic deformations, etc. For a complete review

the interested reader can refer to Cochelin et al. (1994a) or Abichou et al. (2002). In

contrast to predictor-corrector algorithms, the non-linear equilibrium paths are deter-

mined bymeans of asymptotic expansions: the unknown nodal vectorU and the load

parameter λ—that represents a pseudo-time, the overline is used to avoid confusion

with the Lamé coefficient—are represented by power series expansions with respect

to a control parameter a. By introducing the expansions into the equilibrium equation,

the non-linear problem is transformed into a sequence of linear problems in a recurrent

manner and are solved by the önite elementmethod, for instance. It is noteworthy that

as all the linear problems have the same tangent stiffness matrix the method requires

only one matrix inversion. Moreover one gets a continuous analytic representation of

the load-displacement (response) curvewhich differs from thepoint bypoint represen-

tation of standard algorithms.

It is precisely this feature (the existence of only one tangent operator per equilib-

riumpoint) thatmakes the ANMan appealing choice to combinewithmodel reduction

techniques in order to get a very efficient technique.

3.2.1 Problem formulation for Saint Venant-Kirchhoffmodel

Herewe review thedevelopmentmade in Yvonnet et al. (2007) for thebuckling analysis

of foam structures. We will also consider it in our numerical examples, where they will

be compared with non-linear constitutive models. We use a Lagrangian description

of the movement whose material coordinates are given by the vector X . The solid

occupies a volumeΩ0whoseboundary is denotedbyΓ. Essential andnatural boundary

conditions are applied to the non-overlappingportions of the boundary denotedbyΓu

and Γt. The deformed conöguration of each point is given by the vector x, such that

x = X + u, (3.1)

where the displacement öeld is denoted by u.

Following Cochelin et al. (1994b), we consider a linear and a non-linear term for the
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Green-Lagrange strain tensor,E, in the form

E =
1

2
(F TF − 1) = γl(u) + γnl(u,u) (3.2)

whereF = ∇u+I is thedeformationgradient tensor andusing thenotation inCoche-

lin et al. (1994b),

γl(u) =
1

2
(∇(uT ) +∇(u)), (3.3a)

γnl(u,u) =
1

2
∇(uT )∇(u). (3.3b)

The equilibrium equation stated in the reference conöguration looks like

∇P +B = 0 in Ω0 (3.4)

in whichB is the body force andP is the örst Piola-Kirchhoff stress tensor. The bound-

ary conditions of the body are deöned by

u(X) = ū on Γu,

PN = λt on Γt (3.5)

whereN is the unit vector normal to Γ, t̄ is an applied traction and λ is a loading pa-

rameter, equivalent to a pseudo-time, and ranging from 0 to 1. The weak form of the

problem is then given by∫
Ω0

S : δE dΩ = λ

∫
Γt

t̄ · δudΓ ∀δu ∈ H1(Ω) (3.6)

where in the above equation δE is expressed by

δE =
1

2

[
F T∇(δu) +∇(δu)TF

]
= γl(δu) + γnlS(u, δu), (3.7)

where, in turn, γnlS(u, δu) is deöned by

γnlS(u, δu) = γnl(u, δu) + γnl(δu,u). (3.8)

The technique is best viewed by considering the Saint Venant-Kirchhoff's model, as

done in Cochelin et al. (1994b) and Yvonnet et al. (2007), since only geometric non-

linearities are present. Later on, in section 3.3, we will generalize the method for other

hyperelastic models. The Saint Venant-Kirchhoff model is characterized by the energy

function given by

Ψ =
λ

2
(tr(E))2 + µE : E (3.9)
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where λ and µ are Lamé's coefficients. The second Piola-Kirchhoff stress tensor can be

obtained by

S =
∂Ψ(E)

∂E
= C : E (3.10)

in which C is the fourth-order constitutive (elastic) tensor.

The Saint Venant-Kirchhoff's model possesses well-known limitations, particularly

some instabilities when subjected to pure compression. Nevertheless, it remains to be

interesting for some applications. It is noteworthy that in real-time simulation environ-

ments (see Barbic and James (2005) and references therein, for instance) it is among the

state-of-the-art models that can be computed under the severe limitations that real-

time frameworks impose (30Hz for video feedback and 500Hz for haptic feedback).

3.2.2 Asymptotic numerical method for geometrically non-linear

problems

In the ANM (Cochelin et al., 1994a), (Abichou et al., 2002) the displacement of each

material point is expanded asymptotically in terms of a control parameter "a". This ex-

pansion is developed in the neighborhood of a known equilibrium point (un;Sn;λ
n
)

at step n and the series is truncated at order N . To simplify the resulting expressions,

also the second Piola-Kirchhoff stress tensor and the load parameter λ are expanded in

series prior to their introduction in the weak form of the problem:
un+1(a)

Sn+1(a)

λ
n+1

(a)

 =


un(a)

Sn(a)

λ
n
(a)

+
N∑
p=1

ap


up

Sp

λp

 , (3.11)

where (up,Sp, λp) are unknown and (un+1(a),Sn+1(a), λ
n+1

(a)) represents the solu-

tion along a portion of the loading curve. It is noteworthy that the behavior of the solid

is described continuouslywith respect to "a". The introductionof Eq. (3.11) into Eq. (3.6)

and Eq. (3.10) leads to a series of linear problems with the same tangent operator, thus

avoiding the burden associated with stiffness matrix updating in the Newton-Raphson

scheme.

A general procedure for constructing quadratic forms of equations consists in de-

veloping auxiliary variables into önite series, as will be detailed in section 3.3 for neo-

Hookean materials. The series expansion of δE(u) gives

δEn+1(a) = γl(δu) + γnlS(δu,u
n) +

n∑
p=1

apγnlS(δu,up). (3.12)
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The series expansions of S gives in turn

Sn+1(a) = C : En+1(a) =

C :

[
γnl(u

n,un) + γl(u
n) +

n∑
p=1

ap

(
γl(up) + γnlS(u

n,up) +

p−1∑
i=1

γnl(ui,up−i)

)]
,

(3.13)

and at order pwe obtain

Sp = C :

{
γl(up) + γnlS(u

n,up) +

p−1∑
i=1

γnl(ui,up−i)

}
(3.14)

Introducing the asymptotic expansion into Eq. (3.10) results in∫
Ω0

{(
Sn +

N∑
p=1

apSp

)
:

(
γl(δu) + γnlS(u

n, δu) +
N∑
p=1

apγnlS(up, δu

)}
dΩ =(

λ
n
+

N∑
p=1

apλp

)
Ψext(δu), (3.15)

with Ψext(δu) =
∫
Γt
t · δudΓ. Introducing Eq. (3.14) into Eq. (3.15) and identifying

terms with the same power of a results in a successive series of linear problems which

at order p, (p = 1, . . . , N) takes the form

L(δu,un) = λpΨext(δu) + F nl
p (δu) (3.16)

with

L(δu,un) =

∫
Ω

{Sn : γnlS(u
n, δu)

+ [γl(δu) + γnlS(up, δu)] : C : [γl(up) + γnlS(u
n,up)]}dΩ (3.17)

and where F nl
p (δu) is equal to zero at order one and at order p it can be calculated as

F nl
p (δu) = −

∫
Ω

{
p−1∑
i=1

Si : γnlS(up−i, δu)

+

p−1∑
i=1

[γnl(ui,up−i)] : C : [γl(δu) + γnlS(u
n, δu)]}dΩ (3.18)

Discretization of Eq. (3.16) by using önite elements leads to a sequence of linear

problems in the form (Cochelin et al., 1994b)

Order 1

{
Ktu1 = λ1f

uT
1u1 + λ

2

1 = 1
(3.19)

UniversidadZaragoza



Real-time simulation of surgery bymodel reduction and X-FEM techniques 67

Order p

{
Ktup = λpf + fnl

p (ui) i < p

uT
pu1 + λpλ1 = 0

(3.20)

whereKt denotes the tangent stiffness matrix associated with Eq. (3.17), common to

theproblemsatdifferent ordersp. It is the sameas theoneapplied in a classical iterative

algorithm likeNewton-Raphson (in the örst iteration). In the above,up is thediscretized

form of the displacement öeld at order p, f is the loading vector and fnl
p represents the

discretized form associated with F nl
p (δu) in Eq. (3.18), which at order p only depends

on the values of ui, i < p. The solution of these problems can be obtained as follows

at order 1


û = {Kt}−1f

λ1 =
1√

ûT û+1

u1 = λ1û

(3.21)

at order p


unl

p = {Kt}−1fnl
p

λp = −λ1{unl
p }Tu1

up =
λp

λ1
u1 + unl

p

(3.22)

3.2.3 Combined POD-ANMmethod

As explained before the use of the reduced order basis within the standard strategy,

without updating the stiffness matrix, leads to very fast calculation of the system of

equations but at the cost of some error in the results. On the other hand by using ANM

we can obtain the solution of non-linear problems accurately in a neighborhood of

an equilibrium point, and without the necessity of iterative procedures. In the next

section this procedure is extended for solving non-linear constitutive models. Here we

assume that the POD basis has been calculated as explained in chapter 2. The terms of

the asymptotic expansions associated with the displacements are in turn expressed as

functions of POD basis as

up =
M∑

m=1

ϕmζmp = Aζp, (3.23)

where ζp are unknowns. So the new asymptotic expansion of u is expressed by

un+1(a) = A

(
ζn +

N∑
p=1

apζp

)
(3.24)

where (ζn, λ
n
) represents the previous converged solution. Introducing Eq. (3.24) into

Eq. (3.16) results in

L(Aζp,Aδζ) = λpδΨext(Aδζ) + F nl
p (Aδζ). (3.25)
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After önite element discretization, and making use of the fact that the POD basis is

orthonormal, we have the following sequence of linear systems of equations

At order 1

{
ATKtAζ1 = λ1A

Tf

ζT
1 ζ1 + λ

2

1 = 1
(3.26)

At order p

{
ATKtAζp = λpA

Tf + fnl
p

ζT
p ζ1 + λpλ1 = 0

(3.27)

The size of the above equations depend on the number of the PODbasis functions, but

it is very low, as explained before (typically less than ten), so they can be computed in

a very short time.

The solution of these equations can be obtained as follows:

At order 1


ζ̂ = {ATKtA}−1ATf

λ1 =
1√

ζ̂
T
ζ̂+1

ζ1 = λ1ζ̂

û = Aζ̂,u1 = λ1ζ1

(3.28)

At order p


ζnl
p = {ATKtA}−1ATfnl

p

λp = −λ1{ζnl
p }Tζ1

ζp =
λp

λ1
ζ1 + ζnl

p

up = Aζp

(3.29)

Note that, as mentioned before, in Eqs. (3.28)-(3.29) there exists only one tangent stiff-

ness matrix per time step, shared by all the terms for any order p. The advantage, of

course, comes from the fact that the radius of convergence of the method, as will be

seen, and consequently the size of time steps, is considerably bigger than the time step

in traditional Newton procedures.

3.3 Non-linearmodel reduction of hyperelas-

tic materials

The extension of the technique explained before to other hyperelastic materials, in

which non-linearities other than geometrical ones are present, is not straightforward

and, up to our knowledge, it has not been done before. In this section we extend the

technique to neo-Hookean materials (Bonet and Wood, 2008). Extension to other hy-

perelastic materials would follow the same guidelines, the major difference with the
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Saint Venant-Kirchhoff model is the presence of material non-linearities, in addition to

the geometrical ones.

The compressible Neo-Hookean model is characterized by a strain energy function

given by

Ψ =
µ

2
(tr(C)− 3)− µ ln J +

λ

2
(ln J)2 (3.30)

where λ and µ are Lame's constants andC = I + 2E is the right Cauchy-Green strain

tensor. The second Piola-Kirchhoff stress tensor can be obtained by

S =
∂Ψ(E)

∂E
= µ(I −C−1) + λ(ln J)C−1. (3.31)

In this case, an expansion similar to that in Eq. (3.11) is done, but in this case the

intricate expansion procedure becomes more clear if we identify, as in Cao and Potier-

Ferry (1999), the asymptotic expansion with a Taylor series of the variables of interest,

denoted byU(a), in the vicinity of a = 0. Truncating at orderN :

U(a) = U 0 +
N∑
p=1

U pa
p (3.32)

whereU 0 = U(0) and

U p =
1

p!

dpU

dap

⌋
a=0

. (3.33)

In this case we have selected the following variables to perform the expansion:

U(a) =



u(a)

S(a)

J2C−1(a)

ln
√
J2(a)

1
J2 (a)

λ(a)


. (3.34)

By performing the substitution of the before mentioned variables into the weak

form of the problem, see Eq. (3.6) we arrive at a problem entirely similar to that in Eqs.

(3.19) and (3.20), in which the tangent stiffness matrix takes the form

Kt =

∫
Ω0

(BTDB +GT S̃0G)dΩ, (3.35)

where

D = λ

(
1

J2
0

C−1
0 MT

0

)
+ 2(µ− λ ln J0)

(
1

J2
0

(C−1
0 MT

0 )− C̃0

)
(3.36)

Now it takes into account the material non-linearity and it has a somewhat similar ap-

pearance to the Lagrangian elastic tensor at the initial state. J0 andC0 represent the
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Jacobian and right Cauchy-Green strain tensor of the initial solution. M 0 is obtained

from the series expansion of the Jacobian, and contains minors of C0. Finally, C̃0 is

obtained from the series expansion ofC−1 and contains components ofC0, arranged

in a particular way.

The geometrical non-linearities are included in the matrices B, G and S̃0. B rep-

resents the usual strain-displacementmatrix,G relates the nodal displacementsu and

the gradient of displacement vector, and, önally, S̃0 represents a matrix that contains

the initial stresses (we have chosen the same notation as in Cochelin et al. (1994b)).

In the right hand side of Eq. (3.20), the non-linear load vector fnl
p is a vector con-

taining information of material and geometrical non-linearities of all order problems

ranging from order one to p− 1. It can be written as:

fnl
p =

∫
Ω0

(BT (Snlmat
p + Snlgeom

p ) +GTS∗
p)dΩ (3.37)

As in the stiffness matrix, Snlgeom
p and S∗

p represent the standard matrices found in

literature when ANM is used to solve geometrical non-linear problems with linear ma-

terials. Snlmat
p takes into account the material behaviour:

Snlmat
p = (λ ln J0 − µ)

(
CC0

(
RZp −

RJp
J4
0

)
+

RCCp

J2
0

+RC−1
p

)
+ λ

(
CC0

J2
0

(
RYp +

RJp
2J2

0

)
+RSp

)
(3.38)

In this equation, CC0 represents the cofactor matrix of C0 andRCCp is a vector

containing values of Cij of all problems from order one to p − 1, obtained when the

cofactor matrix ofC is expanded using Taylor series:

CCp = C̃0Cp +RCCp, (3.39)

RCCp =

p−1∑
r=1



Cr
22C

p−r
33 − Cr

23C
p−r
23

Cr
11C

p−r
33 − Cr

13C
p−r
13

Cr
11C

p−r
22 − Cr

12C
p−r
12

Cr
13C

p−r
23 − Cr

12C
p−r
33

Cr
13C

p−r
12 − Cr

11C
p−r
23

Cr
12C

p−r
23 − Cr

13C
p−r
22


. (3.40)

Here, RJp is a summation of products of different components ofCp and is obtained

when the squared Jacobian is expanded by Taylor series:

(J2)p = MT
0Cp +RJp. (3.41)
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RSp collects terms concerning the expansion of Y = ln J andC−1:

RSp =

p−1∑
r=1

YrC
−1
p−r. (3.42)

RC−1
p collects terms concerning Z = J−2 and cofactor matrix ofC expansions:

RC−1
p =

p−1∑
r=1

ZrCCp−r (3.43)

Finally, it is necessary to expand Y = ln J and Z = J−2 by using Taylor series and

the chain rule generalized to higher derivatives:

Yp =
1

2J2
0

(J2)p +RYp, and Zp =
−1

J4
0

(J2)p +RZp, (3.44)

where

RY1 = 0,

RY2 =
−1

4J4
0

(J2)21),

RY3 =
1

6J6
0

(J2)31 + 2
−1

4J4
0

(J2)1(J
2)2,

RZ1 = 0,

RZ2 =
1

J6
0

(J2)21,

RZ3 =
−1

J8
0

(J2)31 + 2
1

J6
0

(J2)1(J
2)2,

. . .

Once the expansion of the ANM has been performed, the next step of the method

consists of the use in this framework of a reduced model, as explained in the previous

sections for a general case, regardless of the constitutive model chosen.

3.4 Numerical results

In order to show the performance of this methodwe have applied it to some problems

with hyperelastic materials.
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Figure 3.1. Geometry of the beam in traction.

3.4.1 Beam in traction

In this example we have applied four concentrated 100N forces to the left face of a

beam in the axial direction. The nodes on the right face are constrained in the axial

direction. The length of the beam is 400mm and the cross section is a square with

sides of length 40mm. The beam is shown in Figure 3.1. The material properties of the

beam areE = 1MPa and ν = 0.25.

Saint Venant-Kirchhoffmaterial

In this example the dimension of the basis of the reduced model is six, which are the

number ofmodes necessary to capture the 99.9%of the energy of the system. They are

depicted in Fig. 3.2. The load-displacement curve has been obtained for a node on the

left face and is shown in Figure 3.3 for p = 1, . . . , 6. The linear solution obtained with

p = 1 is the same as the one that can be obtained using standard POD only, without

updating the tangent stiffness matrix. In this case for higher p the load-displacement

curves are clearly non-linear and in this example they coincide with the analytical solu-

tion and the one calculated using full FE Newton-Raphson equilibrium iterations (the

curves are indistinguishable for p ≥ 2).

Notice how large is the radius of convergence of the proposed technique for p ≥ 2

(on the order of 60mm of tip displacement), for a beam with a total initial length of
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Figure 3.2. Six most important eigenmodes for the simulation of the Saint Venant-

Kirchhoff beam under traction. The corresponding eigenvalues are: 38488.48 (a), 0.04

(b), 1.04E − 11 (c), 3.44E − 12 (d), 1.34E − 12 (e) and 1.28E − 12 (f ).
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Figure 3.3. Beam in traction. Load-displacement results (in terms of λ) for different or-

der of approximation, p, compared with the analytical solution. Saint Venant-Kirchhoff

behaviour.

400mm. If it is needed to follow the equilibrium path beyond this point, the method

can be restarted at any equilibrium point, by a new computation of the stiffnessmatrix

at that point.

Neo-Hookeanmaterial

For the neo-Hookean material the behavior of the proposed technique is very similar

to that of Saint Venant-Kirchhoff. The load-displacement curve is depicted in Fig. 3.4,

where an excellent agreement between the FEM results and the p = 4 reduced model

has been noticed.

In Fig. 3.5 the six most important modes of the complete solution, obtained by

Newton-Raphson methods, are depicted.

The excellent agreement of the results for very large beam tip displacements also

deserve some comments. Note that we have plotted the solution of the complete FE

model up to a tip displacement of around 120mm. Up to this very large level of strain

(the beam is 400 mm long) the reported solution by the reduced model with an order

p = 4 is remarkable, while it seems to reproduce the "expected" solution far beyond

that point.
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Figure 3.4. Beam in traction. Load-displacement results (in terms of λ) for different

order of approximation, p, compared with the analytical solution. Neo-hookean be-

haviour.

3.4.2 Pinched hemisphere

In this example a concentrated force of 30N is applied to the pole of a hemisphere

and directed towards its centre. The bottom of the hemisphere is öxed. Its radius is

25mm and its Young'smodulus and poison's ratio are 2MPa and 0.48 respectively. The

mesh is shown in Figure 3.6 and it is composed of 614 nodes and 448 linear hexahedral

elements. Saint Venant-Kirchhoff and neo-Hookean constitutive laws are assumed in

this example.

Saint Venant-Kirchhoffmaterial

In this example the empirical basis has ten modes, depicted in Fig. 3.8. The load-

displacement curves for the node on the pole of the hemisphere for p = 1, . . . , 6 have

been obtained and depicted in Figure 3.7.

Again it is worth noting that the solution with p = 1 that is linear is the same as the

solution that one could obtain using standardmodel reductionwithout stiffnessmatrix

updating. For p ≤ 5 it can be seen that the ANM-POD solution has a good agreement

with the solution computedusing full Newton-Raphson equilibrium iterationup tou ≈
−2.5mm, which can be considered as the radius of convergence (note that this is in the

order of 10% of the sphere radius). But for p = 6 the size of the radius of convergence

is remarkable, going beyond 4mm (more than 20% of the radius of the sphere). Again,
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Figure 3.5. Six most important eigenmodes for the simulation of the neo-Hookean

beam under traction. The corresponding eigenvalues are: 38488.48 (a), 0.04 (b),

1.04E − 11 (c), 3.44E − 12 (d), 1.34E − 12 (e) and 1.28E − 12 (f ).
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Figure 3.6. Hemisphere mesh.
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Figure 3.7. Load-displacement curves for the hemisphere problem.
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Figure 3.8. Ten most important eigenmodes employed for the simulation of the

pinched hemisphere. The corresponding eigenvalues are: 25.42 (a), 0.19 (b), 0.02 (c),

4.80E − 05 (d), 6.04E − 07 (e), 1.15E − 08 (f ), 2.85E − 10. Saint Venant-Kirchhoff be-

havior.
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Figure 3.8. Ten most important eigenmodes employed for the simulation of the

pinched hemisphere (Cont.). The corresponding eigenvalues are: (g), 4.12E − 12 (h),

6.52E − 14 (i) and 2.32E − 16 (j). Saint Venant-Kirchhoff behavior.
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Figure3.9. Deformedhemisphereobtainedusing the combined techniquePOD-ANM.

if the load is to be extended beyond this point, a new tangent stiffness matrix should

be computed at this point, performing again the algorithm given by Eqs. (3.28)-(3.29).

The deformed hemisphere for p = 6 and λ = 1 is shown in Figure 3.9 and the dis-

placement öeld in z direction, uz , obtained by Newton-Raphson procedures is shown

in Figure 3.10.

Neo-Hookean behaviour

As in the previous example, results were tested also for the neo-Hookean behaviour,

showing similar levels of accuracy as the Saint Venant-Kirchhoff examples. The modes

employed as global basis in the example are depicted in Fig. 3.11.

Results for the completemodel, solved bymeans of full Newton-Raphson iterations,

and the reduced model, for different approximation order, are compared in Fig. 3.12.

The great similitude for both models is noteworthy. Again, the load-displacement (in

terms of the load factor, λ) curve shows great similarity for p = 2, . . . , 4 and a large

convergence radius.

3.4.3 Pinching the human cornea

Asmentioned before, real-time simulation in surgical environments is one of the öelds

in which very fast simulations are needed. This öeld arises as a natural potential appli-
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Figure3.10. Deformedhemisphere computedby full FENewton-Raphson equilibrium

iteration.

cationof the techniquehereproposed,which can solvewithmoderate accuracy simpli-

öedmodels of non-linear solids without the need for tangent stiffnessmatrix updating

nor iterative procedures.

In this example forces of 0.014N each have been applied to nine neighbor nodes

located at the center of the cornea, thus simulating the contact of a rounded tool. The

mesh data and boundary conditions are as explained in chapter 2.

Saint Venant-Kirchhoffmodel

The material properties of the cornea are assumed to be E = 2MPa and ν = 0.48,

although a realistic model of corneal tissue could eventualy be used, as in chapter 2

and Niroomandi et al. (2008).

In this example nine modes were applied that provide decent approximation. The

solution has been obtained using ANM-POD for p = 1, . . . , 6, plotted in Fig. 3.13. Note

how closely the örst mode resembles the önal solution. Higher modes contribute to

capturing the solution near the region where the load is applied.

In order to verify the results we have computed the solution by full FE Newton-

Raphson method. The loading factor (λ) has been plotted versus the maximum (ab-

solute value) displacement in Figure 3.14.
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Figure 3.11. Six most important eigenmodes for the simulation of the neo-Hookean

pinchedhemisphere. The corresponding eigenvalues are: 30.0 (a), 0.013 (b), 2.95E−05

(c), 9.42E − 08 (d), 3.12E − 10 (e) and 4.14E − 12 (f ).
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Figure 3.12. Load-displacement curves for the hemisphere problem with neo-

Hookean behaviour.

As it can be noticed the results have good accuracy with Newton-Raphson solution.

The deformed cornea obtained using ANM-POD for λ = 1 is shown in Figure 3.15 and

the one obtained using full FE Newton-Raphson is depicted in Figure 3.16.

Note that, despite the high Poisson's ratio employed, close to 0.5, themethod shows

no tendency to lock in the examples studied (although it is well known that this does

not constitute a valid proof of robustness).

Neo-Hookeanmodel

In this case, only sixmodeswere enough to simulate the cornea, thusmaking a stiffness

matrix of size 6 × 6. These modes are depicted in Fig. 3.18. Again, results for the neo-

Hookean cornea follow the same guidelines of accuracy as those for the Saint Venant-

Kirchhoff model. With an expansion of only three or four terms (see Fig. 3.17) a great

accuracy is obtained along a big radius of convergence.

3.4.4 Palpation of the liver

In this example we consider the palpation of a liver with a surgical tool, assumed per-

fectly rigid. The liver is the biggest organ in the human body, after the skin. Liver ge-

ometry has been obtained from the SOFA project (Allard et al., 2007) and after post-

processing we have obtained a mesh composed of 2853 nodes and 10519 tetrahedral
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Figure 3.13. Six most important eigenmodes for the simulation of the cornea. The

corresponding eigenvalues are: 67.5 (a), 0.07 (b), 5.95− 4 (c), 7.54E − 7 (d), 1.26E − 8

(e) and 3.48E − 10 (f ).
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Figure 3.14. The loading factor vs. minimum displacement for the Pinched cornea.

Saint Venant-Kirchhoff model.
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Figure 3.15. uy-contour of the pinched cornea obtained by ANM-POD.

elements, whose geometry is shown in Fig. 3.19. The anterior surface of the liver is con-

sidered free, while the posterior one was assumed to be supported over different or-

gans (it is connected to the diaphragm by the coronary ligament, for instance). The in-

ferior vena cava travels along the posterior surface, and the liver is frequently assumed
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Figure 3.16. uy-contour of the pinched cornea obtained by a full FE model with

Newton-Raphson iterations.

clamped at that location. Although the assumed boundary conditions are not strictly

correct from a physiological point of view, our main interest is to show that the model

can be solved under real-time constraints with reasonable accuracy.

Although the literature on themechanical properties of the liver is not very detailed,

we have assumed a Young's modulus of 160 kPa, and a Poisson coefficient of 0.48, thus

nearly incompressible (Delingette and Ayache, 2004).

A load of 1.2N has been applied at an arbitrary point on the surface of the liver

and the reduced model has been constructed, composed in this case by the 9 modes

depicted in Fig 3.20, that capture the 99.9% of the energy of the system.

In order to compare the results a standard Newton-Raphson algorithm was em-

ployed, without any modiöcation such as arc-length methods or anything similar. The

load (in terms of load factor λ)-displacement curve obtained by POD-ANM techniques

is depicted in Fig. 3.21. It is worth noting the high accuracy of the results for a wide

range of displacements (up to≈ 5mm under the tool tip) for expansions of order 5 and

6, less than 5%. This accuracy can also be noticed from Figs. 3.22 and 3.23, represent-

ing the displacements for FE complete mode and POD-ANM (sixth-order expansion)
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Figure 3.17. The loading factor vs. minimum displacement for the Pinched cornea.

Neo-hookean model.

techniques, respectively.

3.4.5 Inøuence of the interpolation of reduced basis

The other big ingredient of the resulting method, namely the non-linear force term

fnl
p of Eqs. (3.28)-(3.29) also needs to be interpolated between pre-computed models,

since it is too computationally-demanding to be evaluated in real time. To this end, we

establish a piece-wise polynomial (FE-like) interpolation among completemodels. This

simple procedure has rendered excellent results, as will be shown in the subsequent

section.

If we consider a case in which the load is placed at a position for which a reduced

model has not been stored, the interpolation procedure, as described in section 2.3, is

applied. As mentioned before, the tangent stiffness matrix at origin is identical for all

load states. The procedure follows by (linearly) interpolating the reducedbasis set from

the fournearest neighborpre-computed states andalsoby interpolating thenon-linear

force term fnl
p for each order of the expansion.

The resulting load-displacement curve is depicted in Fig. 3.24. The excellent agree-

ment with the complete model results (denoted by pFEM in the legend) is noticeable.
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Figure 3.18. Six most important eigenmodes for the simulation of the neo-Hookean

cornea. The corresponding eigenvalues are: 53.5 (a), 2.44E − 02 (b), 2.09E − 04 (c),

7.60E − 08 (d), 3.78E − 10 (e) and 7.19E − 13 (f ).
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Figure 3.19. Geometry of the önite element model for the liver.
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Figure3.20. Ninemost important eigenmodes for the simulationof the liver palpation.

The corresponding eigenvalues are: 2.69E − 03 (a), 8.28E − 05 (b), 8.82E − 07 (c),

1.07E − 08 (d), 6.73E − 11 (e), 5.21E − 13 (f ), 2.52E − 15 (g).
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Figure 3.20. Ninemost important eigenmodes for the simulation of the liver palpation

(Cont.).
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Figure3.21. Load-displacement, [mm], curve for the liver palpation for different orders

of approximation. The continuous blue line represents the solution for the complete

model employing Newton-Raphson method.
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Figure 3.22. Result for the FEMmodel, displacement uy , [mm].
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Figure 3.23. Result for the reduced-ANMmodel, displacement uy , [mm].
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Figure 3.24. The loading factor vs minimum displacement, [mm], for the Pinched

cornea. The resulting behavior is interpolated among four previously stored reduced

models.
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3.4.6 Timing

The examples below have been performed on a laptop runningMatlab on aWindows-

operated computer at 2 GHz., with 2 Gb RAM. The code prototype is obviously thought

for the design and testing of newalgorithms. Under these circumstances, the examples

ran at around 20 Hz, which is enough for visual perception, but not for haptic environ-

ments. This can be improved by considering more sophisticated programming and

not a high level language such as Matlab. The summary of the computational cost for

a typical simulation is as follows:

• Interpolation of the basis and the non-linear force term: 3.9 · 10−3s.

• Construction of the reduced stiffnessmatrixATKtA (note that the complete tan-

gent stiffness matrix at the origin,Kt, is identical for all simulations and therefore

could be previously stored in memory): 4.7 · 10−2s.

• Solving the resulting system of equations (6 × 6 in this particular example): 3.1 ·
10−4s.

The use of Graphics Processing Units (Taylor et al., 2008) is obviously another possi-

bility to achieve true real-time performance, that seems to be at hand.

3.5 Discussion

In this chapter we have studied a technique for the construction of reduced models of

hyperelastic solids. It is based on the use of model reduction techniques (based upon

Proper Orthogonal Decomposition or Karhunen-Loève methods) and an asymptotic

expansion of the solution in the neighborhood of the last converged equilibriumpoint.

This technique has been generalized here for hyperelastic materials involving material

non-linearities.

These two ingredients render amethodwith very attractive features, such as the use

of very few degrees of freedom (up to ten in the examples showed in this chapter) and

the necessity to compute only one tangent stiffness matrix within the region covered

by the radius of convergence of the asymptotic expansion. This radius of convergence

is often relatively large (on the order of 10% of the total dimensions of the solid for

the examples showed herein). Within this radius of convergence neither iterative pro-

cedures (typical of modiöed Newton methods) nor the update of the stiffness matrix

(typical in standard Newton-Raphson methods) are required.
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The examples developed in this work showed that between six to ten eigenmodes

are enough for the vastmajority of the examples considered, and usually an expansion

of order 4-6 renders very acceptable results, with excellent accuracywithin a vast radius

of convergence.

Then we have focused on various ways of interpolating the reduced basis and also

non-linear forces in order to obtain near real-time rates.

Other approaches based upon reduced models exist, see Barbic and James (2005),

for instance. The main difference between the approach followed in this work and

that of Barbic and James is that in the latter case a general-purpose reduced basis is

employed. These basis functions are obtained frommass-scaled principal component

analysis. These basis functions are thought to be optimal for any load state of the solid.

In the present approach different sets of basis functions are obtained for different load

(andpossibly boundary conditions) states that can be changed accordingwith the user

experience. Basis sets for any state different from the precomputed ones are obtained

after interpolation, as explained in the previous sections. In section 2.3 it has been ex-

plained how the set of reduced models for different loading states of the organ forms

a manifold. Therefore, it is crucial for the method to work well that the set of complete

models to be solved to feed the algorithm is chosen adequately. For the moment, the

brute-force approach seems to be out of reach. In our opinion, this process should be

guided by surgeons, by indicating the most probable loading states for each surgical

procedure, distinguishing, for instance, between experienced surgeons and medicine

students.

The method has been developed for Saint Venant-Kirchhoff constitutive law. This

kind of law is among thebest state-of-the-art existingmodels (Barbic and James, 2005),

but is judged to be poor for some applications. It is well-known that it suffers from in-

stabilities when subjected to compression (although no instabilities have been found

in the examples tested by the authors), so it would be interesting to extend the pro-

posed technique to some more sophisticated constitutive laws, such as neo-Hookean

law, for instance, or other much better suited for speciöc applications (Alastrué et al.,

2006).

Despite the facts commented above, the proposed technique seems to be an ap-

pealing method for the simulation of linear elastic materials undergoing large strains

at real time.
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Chapter 4

Simulation of surgical cutting
with coupled POD and X-FEM
techniques

4.1 Introduction

In the previous chapters we mentioned the challenges of real-time simulation of soft

tissues. One of the sources of complexity is due to the highly non-linear behavior of

soft living tissues that were investigated in chapters 2 and 3 as well as the highly de-

manding feedback rates imposedby the simulators (25Hz for visual feedback and some

500 Hz if haptic feedback is to be added to the system). The third source of complexity

comes from themulti-physics nature of the phenomena occurring in the actual surgery

procedure: non-linear elasticity, contact, cutting, temperature, etc. While the thermal

dependenceof theproblem is often—if not always—neglected, contact detection and

cutting simulation are of utmost importance for a convincing result in terms of both vi-

sual and haptic perception.

Numerical simulation of contact mechanics is a well-known öeld in the computa-

tional mechanics community (see, for instance the recent book by Wriggers (2002) to

acquire an overall impression of the difficulty of the topic). An accurate simulation of

the process of contact between surgical tools and organs, and between organs them-

selves, seems to be at this moment out of reach under real-time requirements. Some

simpliöed algorithms, however, provide acceptable results at high feedback rates, see

for instance Barbic and James (2007). This algorithm supports distributed contact de-

tection between both rigid and reduced deformable models at 1KHz. The surgical tool

97



98 Siamak Niroomandi

can bemodeled as a rigid body and the soft tissue is simulated as reduced deformable

model. They exploit low-dimensional deformablemodels usingmass-Principal Compo-

nent Analysis for gaining such high rates. And this shows that model order reduction

can be a valuable tool in these kind of simulations.

As mentioned before, cutting simulation is another important source of difficulties

for real-time modeling of surgery. This is so as it is necessary to modify the geome-

try and/or the topology of the domain and its associated mesh, and this needs to be

done without penalizing the computation times of the integration of the equations

of motion. A vast corps of literature has been devoted to this end. See, for instance,

Courtecuisse et al. (2010); Lee et al. (2010); Meier et al. (2005); Zhang et al. (2009). All

these approaches share the same spirit. All of theseworks proposemore or less sophis-

ticated algorithms that allow to remove önite elements froman existingmesh to create

a cut or even to remove a whole part of the organ, if it is being ablated.

The X-FEM is an appealing method as it can model discontinuities within an FEM

mesh without any kind of remeshing. It can be applied to complex material behaviors.

This method grew out of research into meshfree methods and it has been applied by

researchers in computational and applied mechanics communities. The basic philoso-

phy of the X-FEM is that features of interest in a problem, for example crack surfaces,

phase boundaries, and øuid-structure interfaces, can be represented independently

of the önite element mesh. As a result, simulating the evolution of these features is

greatly facilitated. This is particularly true when they exhibit changes in topology of

the mesh. The önite element mesh needs not to explicitly "öt" these features with the

X-FEM, circumventing the need to remesh in many cases and facilitating adaptivity in

others. The basic ideas behind themethod are easy to understand. Most önite element

approximations to the öeld of interest (for instance displacement or temperature) can

be expressed as a linear combination of nodal shape functions. These shape functions

are only able to represent discontinuities in these öelds if the mesh is constructed in

a particular way. For example, the classical approach to representing the jump in dis-

placement öeld across a crack front is to explicitly mesh both crack faces. With the

X-FEM, the classical mesh need only overlap the geometry of the crack front and does

not need to be carefully aligned with it. The linear combination is then augmented

with enrichment functions that capture the jump indisplacement öeld across the crack.

Crack growth can in turn be simulated through the identiöcation of additional enriched

nodes and a new construction for the enrichment function, a process that is typically

much simpler than remeshing. Although the X-FEM was originally designed for linear

elastic fracture mechanics, it has since been adapted to a wide range of applications.
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These include the representation of complexmicrostructures, multi-phase øow, virtual

surgery, and general øuid-structure interaction problems.

The application of X-FEM to cracks began with Belytschko and Black (1999), where

theyapplied thepartitionofunitymethods (see for instanceMelenkandBabuska (1996))

to the problem of using önite elements with discontinuous basis functions. Moës et al.

(1999) used X-FEM to create a technique for simulating crack propagation in two di-

mensions without remeshing the domain. The extension to three dimensions was be-

gun by Sukumar et al. (2000a), where they used the two dimensional enrichment func-

tions for planar cracks, and then extended in Areias and Belytschko (2005).

However, the X-FEM approach carries technical challenges: assembling the stiffness

matrix requires integration of singular/discontinuous functions and implementing en-

richment requires resolving material connectivity. Integrating the gradients of the X-

FEM basis functions is difficult because of the singularities and discontinuities. One

approach is (see, for instance, Stazi et al. (2003)) is to perform a Delaunay triangulation

on the cut triangle that incorporates the crack edges, and then to use Gauss quadra-

ture on each of the resulting triangles. This triangulation does not provide additional

degrees of freedom; it is only used for integration of the basis functions. However, this

approach can be difficult to implement when the geometry of the crack is complicated

by branching or multiple cracks, and is generally impossible in three dimensions with-

out introducing new vertices. Another approach is to use higher order Gauss quadra-

ture (see Strouboulis et al. (2000)).

Theuse of higher orderGauss quadratures for computing the integrals, without pay-

ing attention to the position of the discontinuity has been analyzed, but it has been

found that the Gibbs effect (oscillation of higher-order polynomials) greatly affects the

accuracy of the results, thus being impractical.

If we resort ourselves to the öeld of surgical simulation, Jerabkova (2007) and Ono

et al. (2009) seem to have been the örst to use X-FEM for interactive cutting of de-

formable objects.

Althoughweshould somehowusemodel order reduction techniques toobtainnear-

ly real-time rates the use of global, Ritz, shape functions imposes additional limitations.

For instance, the use of X-FEM techniques is not straightforward in this context. In this

work a newmethod is presented that combines the features of existingmethods based

uponmodel order reduction and the ease of creating cuts and discontinuities without

remeshing of the X-FEM technique. As will be noticed, the proposed technique has

its origins in the s-FEM techniques by Fish (1992) and the multiscale FEM by Rank and

Krause (1997).
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The chapter is organized as follows. In section 4.2 we brieøy review the X-FEM in

the framework of standard önite elements, prior to its introduction in conjunctionwith

reduced basis. In section 4.3 a new technique is developed that can efficiently cre-

ate cuts and discontinuities in the reduced model without remeshing and with minor

modiöcations to the problem's stiffness matrix. Finally, in Section 4.6 an analysis of its

performance is done in an application to refractive surgery of the cornea.

4.2 A brief review of the eXtended Finite Ele-

ment Method (X-FEM)

In order to make this work self-contained a brief review of the well-known X-FEM is

included here. The interested reader is referred to Sukumar et al. (2000b), for instance,

among other classical references in the öeld.

The basic ingredient of X-FEM methods is to consider a cut or crack Γd as a discon-

tinuity in the displacement öeld. Therefore, by simply enriching those nodes whose

shape function's support intersects the crack with a discontinuous function will suffice

to obtain a conforming discretization without the need of remeshing. Thus, the new

approximation of the displacement will be, in the context of X-FEM, for a single crack

or cut,

uh(x) =
∑
i∈I

uiNi(x) +
∑
j∈J

bjNj(x)H(x), (4.1)

where J = {j ∈ I : ωj ∩ D ̸= ∅}, I represents the set of all nodes in the FE mesh,

Ni(x) represents the i-th node shape function evaluated at x, ui represents node i's

displacement vector, andH(x) is discontinuous across the crackΓd, whosegeometry is

represented byD. Finally, bj represents a new set of enriched degrees of freedom that

control the magnitude of the displacement discontinuity in across the crack. Fig. 4.1

depicts the shape functions of X-FEM in one dimension. In Fig. 4.2 they are represented

for two-dimensional cases and bilinear quadrilateral elements.

Classical works of X-FEM in the context of fracturemechanics such as Sukumar et al.

(2000b), still add somemoredegreesof freedom inorder to reproduce theLEFMasymp-

totic solution at the crack front. These are not considered here for several reasons.

Firstly, for living soft tissues the form of the asymptotic solution (if any) at the crack

front is in general not known. In any case, the gain in accuracy would be, in general,

negligible, if compared with all the simplifying assumptions made up to now in order

to reach real-time performance.
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Figure 4.1. Shape functions of X-FEM. Conceptual development.
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Figure 4.2. Shape functions of X-FEM in two dimensions. Top left, standard FE shape

function associated to a given node. Top right, the Heaviside function. Bottom, the

resulting discontinuous shape function.

4.3 Coupling reduced models and X-FEM de-

scriptions of surgical cuts

The approach here suggested is composed by the coupling between the (Ritz) reduced

basis anda superimposedpatchof önite elementswhere the forceexertedby the scalpel

exceeds some limit value, thus appearing a cut in the organ. This approach can be seen

as a generalization of some existing techniques in the öeld of önite elements, notably
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the so-called s-version of the FEM by Fish (1992) and the multiscale FEM by Rank and

Krause (1997), among others (Ammar et al., 2009). The basic of the method is easily

understood from Fig. 4.3.

Figure 4.3. Basics of the method for reduced basis-X-FEM coupling.

The domain Ω is discretized by önite elements and a reduced-order model is con-

structed on top of it that employs Ritz basis functions, as explained before. Once the

force exerted by the scalpel reaches a prescribed threshold (see the sections that fol-

low) a cut is supposed to appear at the contact location. Around that region, a su-

perimposed patch ΩL of önite elements is placed around the scalpel tip. In ΩL the

displacement öeld is approximated as

u = u0 + uL onΩL (4.2)

where, to guarantee the compatibility of the displacement öeld, we enforce

uL = 0 on Γ0L. (4.3)

The reduced order model approximates the displacement everywhere, in the spirit of
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Eq. (2.10),

u0(x) =
i=r∑
i=1

ζiϕi(x), (4.4)

whereas in ΩL a traditional femmesh, including discontinuous enrichment, is added:

uL(x) =
∑
j∈ΩL

djNj(x) +
∑
k∈J

bkNk(x)H(x). (4.5)

The discrete equilibriumequations can be obtained after theweak formof the prob-

lem, namely, öndu ∈ U = {u : u ∈ C0,u = u on Γu} such that∫
Ω

ε∗ : σdΩ =

∫
Γt

u∗tdΓ +

∫
Ω

u∗bdΩ,

∀u∗ ∈ U 0 = {u∗ : u∗ ∈ C0,u = 0 on Γu}, (4.6)

where, as usual, Γu represents the Dirichlet (essential) part of the boundary of the do-

main,u represents the value of the prescribed displacement at that location, t the pre-

scribed vector of traction at the boundary, and, önally, Γt the Neumann (natural) part

of the boundary Γ. Admissible variations of the displacement are calculated as

u∗ =
(
u0
)∗

+
(
uL
)∗
. (4.7)

By substituting the displacement öeld approximations (4.4) and (4.5) into the weak

form (4.6), and after invoking the arbitrariness of admissible displacements u∗, we ar-

rive at a discrete system of equations of the typeKζζ Kζd Kζb

Kdζ Kdd Kdb

Kbζ Kbd Kbb


ζ

d

b

 =

f
ζ

fd

fb

 , (4.8)

where the stiffness matricesKαβ are given by

Kαβ
IJ =

∫
Ωi

(Bα
I )

TDBβ
JdΩ (4.9)

where matrixBα
I , α = ζ, d, b, represent the standard shape function derivative matrix

for any of the three types of approximation functions here considered, namely, the Ritz

functions ϕ(x), the standard önite element shape functions N(x) or the discontinu-

ous enrichment shape functions,N(x)H(x). Ωi represents the domain of integration,

either Ω or ΩL, respectively. Finally,D represents the consistently linearized constitu-

tive tensor. As mentioned before, due to the severe restrictions placed by real-time re-

quirements in haptic environments, it is not possible, in general, to update this tangent
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stiffness matrix. In this work, for the sake of simplicity in the exposition of the method,

an approach similar to that applied in chapter 2 is employed, in which no updating is

accounted for. This leads, of course, to higher errors in the results, still acceptable in vir-

tual surgery environments. If more accurate results are needed that formulation that

was presented in chapter 3 can be used. That method employs asymptotic expansions

of the displacement öeld and, without any updating, allows to closely follow complex

non-linear force-displacement paths.

In order to evaluate the previous integrals leading to the stiffnessmatrix of the prob-

lem, no special integration procedure is employed, in sharp contrast with the original

works by Fish (1992), since we assume that the superimposedmesh conforms with the

existing one. It is necessary, however, to perform some form of tailored numerical in-

tegration in those elements enriched by discontinuous displacements.

4.3.1 Simpliöed physics of the cutting procedure

The last ingredient in the method is related to the placement of the patch ΩL during

the surgery. Once contact between the scalpel and the organ has been detected by a

suitable contact algorithm (see Barbic and James (2007) for instance, for a valid contact

criterion in reduced model settings), a criterion must be set in order to determine if

cutting appears, thus generating a new boundary in the domain, or not. We follow

closely the criteria set in Bielser and Gross (2000). Although greatly simpliöed, these

criteria have demonstrated to provide realistic enough results in haptic environments.

A scalpel cuts along its blade, so a decomposition of the acting force as in Fig. 4.4 is

employed:

F ext = F⊥ + F ∥ = F⊥ + F a + F n (4.10)

A threshold value of the forceFcut is considered such that lowermodulus of the force

F ∥ produce static friction, but no cut. Once ∥F ∥∥ exceedsFcut, the önite element patch

ΩL is added to the scalpel tip.

In order to simplify the process and tomake it simpler and (notably) faster, once the

threshold value Fcut is reached, a whole önite element is then cut. No cut of length

smaller the the typical element size h is considered. If the önite element mesh is dense

enough, this limitation does not very much affect the results. Remember that the size

of the global önite element mesh,N , does not affect the size of the reduced model, r,

see Eq. (2.12).
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Figure 4.4. Force decomposition at the scalpel point of contact.

4.4 Speeding up the X-FEM

The standard X-FEM technique, as presented before, provides excellent results but is, in

general, somewhatheavy for real-time simulation. In this section several improvements

are taken into account in order to alleviate this limitations.

The örst one is related to the support of enriched degrees of freedom. The so-called

shifted enrichment functions (Zi andBelytschko, 2003) allow tominimize the support of

enriched approximation functions and therefore the width of the superimposed önite

element mesh. These functions have the simple form

ψi(x) =
H(x)−Hi

2
(4.11)

whereHi represents the value ofH(x) at the i-th node. With this simple modiöcation,

the shape functions look as shown in Fig. 4.5.

The second big problem of the use of X-FEM for real-time simulation is that of the

integration of the resulting weak form. The discontinuity forces to explicitly take into

account the two resulting elements from a cut element and to apply standard Gauss

integration on each volume. Location of the integration points in these resulting vol-

umes is often a very heavy task. For that purpose, in this thesis an alternative approach

has been employed. It is based on the use of linear tetrahedra (in spite of their well-

known numerical stiffness), for which exact, closed-form expressions exist for the stiff-

ness matrix. Thus, the resulting stiffness matrix of an element traversed by the cut will
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Figure 4.5. Shifted enrichment functions (right) versus standard enrichment functions

(left). Note that the resulting approximation is interpolant at the nodes of the elements

cut by the scalpel (ögure taken from Jerabkova (2007)).

be

K =

(
Kuu Kua

Kau Kaa

)
(4.12)
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whereKuu corresponds to the standard, unenrichedelement stiffnessmatrix, andKua,

Kau andKaa correspond to the enriched degrees of freedom. Since the linear tetra-

hedra have constant strain (and therefore constant derivatives matrixB), we arrive at

Kuu
ij = Kij (4.13)

Kua
ij =

(
Va
V
Ψaj +

Vb
V
Ψbj

)
Kij (4.14)

Kau
ij =

(
Va
V
Ψai +

Vb
V
Ψbi

)
Kij (4.15)

Kaa
ij =

(
Va
V
ΨaiΨaj +

Vb
V
ΨbiΨbj

)
Kij (4.16)

whereKuu is identical to that of the non-enriched tetrahedron, andΨa(b) represent the

enrichment functions above (respectively, below) the cut plane. In the same spirit, V ,

Va and Vb represent the volume of the tetrahedron, or the volume above or below the

cut, respectively.

The formulation presented before is apt for linear FEM. In the case of large displace-

ments or strains, more sophisticate approaches should be used. This would be impera-

tive in the case of resections, with largedisplacements of the resectedpart, for instance.

However, for the application pursued in this chapter, and for the sake of speed of sim-

ulation, it is maintained as presented before. As will be shown, the results are good in

spite of this formal contradiction.

4.5 Finite element model of the cornea

The same cornea mesh as in previous chapters has been used here. The cornea was

assumed to be, without loss of generality, hyperelastic, with a Kirchhoff-Saint Venant

behavior. More sophisticated material behaviors can also be efficiently tackled with

this technique, as in chapter 2, where a two-families of öbers reinforced hyperelasticity

model was successfully employed. We have applied nine concentrated forces on the

right and left half of the cornea with about 1.5 mm eccentricity from the center of the

cornea.

For punctual loads of increasing value the completemodel gave the övemodes that

capture 99% of the energy of the model. These modes are shown in Fig. 3.13.

With these öve modes, standard reduced order models provide an error under 20%

for loads placed at different positions to the one considered in the evaluation of the

modes in Fig. 4.6. This level of error is considered valid in many real-time applications
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Figure 4.6. Five most important eigenmodes for the simulation of the cornea. The

corresponding eigenvalues are: 10.77 (a), 0.014 (b), 2.58 · 10−4 (c), 6.53 · 10−7 (d), 4.43 ·
10−11 (e).
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as it was explained in chapter 2. If more accurate simulations are needed, the method

proposed in chapter 3 provides a nearly exact simulation for displacement under the

scalpel tip up to 1 mm (possibly much more than that, but at the scale of the cornea,

1 mm displacement involves very large strains and no reference önite elements results

could be obtained to compare with).

4.6 Application to the simulation of corneal

refractive surgery

It must be highlighted at this point that the purpose of this work is not to validate the

use of reduced-order models in the context of real-time applications. This has been

done in the previous chapters and also in the published papers, see for instance Ni-

roomandi et al. (2008), Niroomandi et al. (2010b), Niroomandi et al. (2010a) or Bar-

bic and James (2005), among others. Nor the validation of X-FEM technique to accu-

rately simulate moving discontinuities in solid mechanics problems, for instance (see,

among others, Sukumar et al. (2000b), Combescure et al. (2008), Meschke and Dum-

storff (2007), Daux et al. (2000) or Stolarska et al. (2001)). However, the combination

of both provides a unique set of features that makes the resulting technique an ap-

pealing choice. Among these features, the feasibility of real-time simulation of com-

plex non-linear tissues (including, for instance, öber-reinforced hyperelastic tissue, see

Niroomandi et al. (2008)) combined with the possibility of simulating surgical cutting

without remeshing (at haptic feedback rates, it is obvious that for realistic rendering

the cut must be represented accurately, but only at some 30 Hz feedback rates not at

500 Hz). To this end the case of corneal refractive surgery is analyzed here under the

framework of the proposed method.

Astigmatism is a refractive error due to the non-spherical shape of the cornea, that

is, the refractivepower is not uniform in allmeridians. Refractive surgery techniques are

used to modify the curvature in order to repair the refractive error of the eye (Alastrué

et al., 2006). This defectmaybe correctedbymaking the cornea as spherical as possible,

through the application of some cuts.

In addition, properties of the cornea can be quite different between patients with

the same level of pathology, therefore the technique presented before can be seen as

an efficient means to plan a patient-speciöc surgery that minimizes uncertainty in the

results, providing the surgeonwith the sensations and results hewill obtain later in the

real surgery.
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Figure 4.7. Superimposed X-FEMmesh at the position of limbal relaxing incision.

The cornea was assumed to be, without loss of generality, hyperelastic, with a Saint

Venant-Kirchhoffbehavior. More sophisticatedmaterial behaviors canalsobeefficiently

tackledwith this technique, as inNiroomandi et al. (2008), where a two-families of öbers

reinforced hyperelasticity model was successfully employed.

4.6.1 Simulating limbal relaxing incisions

Limbal relaxing incisions (LRI) are one f the threemain types of cutsmade in corneal re-

fractive surgery. These incisions are made near the outer edge of the iris, and are used

to correct minor astigmatism (typically less than 2 diopters). In this case, a cut is made

roughly at this position. In Fig. 4.7 a detailed view of the deformed cornea, together

with the superimposed X-FEMmesh is presented. For post-processing purposes, those

elements cut by the scalpel are represented as two different önite elements in the ög-

ure, although no such elements exist in the simulation, as explained before.
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Figure 4.8. Displacement öeld (y-direction) in the cutting procedure.

The obtained displacement öeld is shown in Fig. 4.8. A detailed view of the x-

direction displacement öeld is shown in Fig. 4.9, where the appearance of the cut can

be noticed, in spite of the lowmagnitude of the displacement between crack lips.

In order to see the difference that a practitioner would see when dealing with the

simulator, in Fig. 4.10 a comparison is made between the solutions obtained by em-

ploying the complete model, explicitly meshing the cut by separate hexahedral önite

elements, and that obtained by the combined POD-X-FEM model. It is noticeable the

practically indistinguishable displacement öeld that is obtained.

4.6.2 Timings

The results presented in this chapter have been obtained with a MacBook Pro laptop,

runningMatlab 2010awith an Intel Core 2 duo processor at 2.80GHz and 4Gb of DDR3

RAM memory. Despite the use of rude Matlab code prototypes, the examples of the

cornea ran at some 25 Hz, which is enough for visual real-time requirements.
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Figure 4.9. Cutting procedure. Displacement öeld (x-direction). Enrichment degrees

of freedom are magniöed 10 times to highlight the magnitude of the cut.
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Figure 4.10. Cutting procedure. Comparison among the complete (red) and reduced

(blue) models.
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The use of more powerful computers, possibly running in parallel, since many of

the procedures here described can easily be programmed to run in that way, or the

use of GPUs seem to be a feasible alternative to improve these promising results, still

compatible with the state-of-the-art techniques in the öeld, see for instance Jerabkova

and Kuhlen (2009)

4.7 Conclusions

In this chapter a novelmethod for the real-time simulation of surgery in haptic environ-

ments has beenpresented. Themethod is basedon theuseof reducedordermodeling.

Reduced models are, to the author's knowledge, the only technique able to simulate

at real-time feedback rates, highly complex constitutivemodels for living tissues (öbre-

reinforced hyperelastic models, for instance). The problem with such an approach lies

in the introduction of surgical cuts. The global character of the approximation func-

tions (Ritz) precludes the possibility of employing standard methods in the literature

that use very efficient algorithms for partitioning or eliminating themesh in the neigh-

boring of the cut. The approach here developed is based on the use of X-FEM tech-

niques, coupled with the existing reduced model through a multi-scale-like method.

Thus, the superimposed önite element mesh is capable of reproducing the displace-

ment discontinuities produced by the scalpel, while the underlying reduced model is

able to accurately reproduce the global behavior of the organ.

The proposed method runs at feedback rate, thus allowing to take part in a surgery

simulator, together with some specialized contact detection algorithm. This opens the

possibility to incorporate complex, state-of-the-art soft tissue constitutive laws into

real-time simulation of surgery, thus leading the possibility of making a true second-

generation simulator at hand.
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Chapter 5

Conclusion

In this thesis a novel strategy has been presented for real-time interactive simulation of

non-linear anisotropic tissues. The presented technique is based on model reduction

techniques and, unlike previous works, it allows for the consideration of both geomet-

rical and material non-linearities.

The reduced models are constructed by employing a set of "high quality" global

basis functions (as opposed to general-purpose, locally supported FE shape functions)

in a Galerkin framework. These functions are constructed after some direct simulations

of the organs to be analyzed. These simulations are made off-line and the computed

displacements and tangent stiffness matrices are stored in memory prior to beginning

the on-line, real-time simulation.

The obtained results show good accordance with complete model results, and run

at frequencies of around 400-500 Hz, enough for real-time requirements, even for this

very rude code prototypes.

A technique for the construction of reduced models of hyperelastic solids has also

been studied that is basedon theuseofmodel reduction techniques andanasymptotic

numericalmethod. The technique, initially developed forgeometrically non-linear solids

was generalized here for hyperelastic materials involving material non-linearities. This

allows for a simulationof complex, non-linear tissueswithout theneed for typical (Newton-

Raphson) tangent matrix updates, impossible to be done under real-time constraints.

These two ingredients render amethodwith very attractive features, such as the use

of very few degrees of freedom (up to ten in the examples showed in this chapter) and

the necessity to compute only one tangent stiffness matrix within the region covered

by the radius of convergence of the asymptotic expansion. This radius of convergence

is often relatively large (on the order of 10% of the total dimensions of the solid for
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the examples showed herein). Within this radius of convergence neither iterative pro-

cedures (typical of modiöed Newton methods) nor the update of the stiffness matrix

(typical in standard Newton-Raphson methods) are required.

The examples developed in this work showed that between six to ten eigenmodes

are enough for the vast majority of the examples considered, and usually an expansion

of order 4-6 renders very acceptable results, with excellent accuracywithin a vast radius

of convergence.

Then the work was focused on various ways of interpolating the reduced basis and

also non-linear forces in order to obtain near real-time rates. Real-time feedback rates

were obtained for visual perception using Matlab and very rude code prototypes. In

the present approach different sets of basis functions are obtained for different load

(andpossibly boundary conditions) states that can be changed accordingwith the user

experience. Basis sets for any state different from the precomputed ones are obtained

after interpolation, as explained in the previous sections. Therefore, it is crucial for the

method toworkwell that the set of completemodels to be solved to feed the algorithm

is chosen adequately. For the moment, the brute-force approach seems to be out of

reach. In our opinion, this process should be guided by surgeons, by indicating the

most probable loading states for each surgical procedure, distinguishing, for instance,

between experienced surgeons and medicine students.

The method has been developed for Saint Venant-Kirchhoff constitutive law. This

kind of law is among the best state-of-the-art existingmodels in real-time applications

but is judged to be poor for some applications. So it was found interesting to extend

the proposed technique to some more sophisticated constitutive laws, such as neo-

Hookean, for instance, or other much better suited for speciöc applications. The work

developed in this thesis demonstrated that the method can be further generalized to

other constitutive, hyperelastic models.

Finally, a novelmethod for the real-time simulation of surgery cutting in haptic envi-

ronments has been presented. Themethod is based on the use of reduced order mod-

eling. Reducedmodels are, to the author's knowledge, the only technique able to sim-

ulate at real-time feedback rates, highly complex constitutive models for living tissues.

The problemwith such an approach lies in the introduction of surgical cuts. The global

character of the approximation functions (Ritz) precludes the possibility of employing

standard methods in the literature that use very efficient algorithms for partitioning

or eliminating the mesh in the neighboring of the cut. The approach here developed

is based on the use of X-FEM techniques, coupled with the existing reduced model

through a multi-scale-like method. Thus, the superimposed önite element mesh is ca-
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pable of reproducing the displacement discontinuities produced by the scalpel, while

the underlying reduced model is able to accurately reproduce the global behavior of

the organ.

The proposed method runs at feedback rate, thus allowing to take part in a surgery

simulator, together with some specialized contact detection algorithm. This opens the

possibility to incorporate complex, state-of-the-art soft tissue constitutive laws into

real-time simulation of surgery, thus leading the possibility of making a true second-

generation simulator at hand.

5.1 Thesis contributions

Among the main contributions of the work done in this thesis, the following ones can

be cited:

• Model Order Reductionwith application to real-time simulation of soft tissues has

been presented in this thesis and it has been shown that it is a promising tool in

this öeld.

• A new extension of Proper Orthogonal Decomposition and Asymptotic Numeri-

cal Method for hyperelastic materials has been obtained. The importance of this

extension is that Saint Venant-Kirchhoffmaterial is not appropriate, in general, for

predicting the behavior of soft tissues. This is so, since it presents some instabil-

ities when subjected to compressions that could eventually make it not suitable

for surgery simulation.

• A new methodology for including discontinuities in the displacement öeld pro-

duced by surgical cutting in combination with reduced models has been pro-

posed. The proposedmethodhas been successfully used in interactive simulation

of cutting procedure.

5.2 Future works

This thesis opens the door to new promising research lines in the group. Among the

topics that have not been yet studied the following ones can be included in the real-

time simulation of soft tissues:
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• The POD-ANM technique could be extended to other constitutive laws that in-

clude öber reinforcement of soft tissues. In principle there is no limitation for this

generalizations, although it has not been done yet.

• The models that have been presented are sufficient for acquiring basic surgical

skills but are not realistic enough to represent fully the complexity of the human

anatomy and physiology. Notably, respiratory motion, bleeding and contact be-

tween organs could drastically improve the perception of the trainee. The tech-

nique here developed does not impose any limitations for the inclusion of these

aspects, provided that very fast contact detection algorithms exist for reduced

models.

• In this thesis Matlab has been used for the simulations. It is well known that al-

though such a high level programming language is suitable for evaluation of the

methods but it is not efficient in terms of computation time. GPU-based program-

ming, for instance, could help in decreasing the simulation time and the results of

this in other öelds have been very promising.

• Recently, the so-calledProperGeneralizedDecomposition (PGD)methodhasbeen

developed (Ammar et al., 2006), (Ammar et al., 2007), (Chinesta et al., 2010). This

technique generalizes the PODmethod and opens promising newways tomodel

order reduction of the dynamics of non-linear materials such as soft tissues.
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Asa result of the thesis several articleshavebeenpublished in journals andproceedings

of national and international conferences.
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Appendix A

Formulation of the
Asymptotic Numerical
Method for compressible
neo-Hookeanmaterials

A.1 Formulation of neo-Hookeanmodel

Thecompressibleneo-Hookeanmodel is characterizedbya strainenergy functiongiven

by

Ψ =
µ

2
(tr(C)− 3)− µ ln J +

λ

2
(ln J)2 (A.1)

where λ and µ are Lamé's constants andC = I + 2γ is the right Cauchy-Green strain

tensor.

As mentioned in the body of this thesis,

γ = γ l(u) + γnl(u,u)

γ l(u) =
∇u+∇Tu

2
, γnl(u,u) =

∇u∇Tu

2
(A.2)

The second Piola-Kirchhoff stress tensor can be obtained by

S =
∂Ψ(γ)

∂γ
= µ(I −C−1) + λ(ln J)C−1. (A.3)

In the formulation developed in Cochelin et al. (1994b), the second tensor of Piola-

KirchhoffS, displacementu and load factor λwere expanded around a point at which
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the solution of the problem is known. Here, for compressible neo-Hookean material,

some additional variables have been introduced in order to make the derivation less

tedious. In the end the value of these additional variables will be calculated in terms of

stress and displacement. These additional variables are

X = J2 (A.4)

Y = ln J = ln
√
J2 as J > 0 (A.5)

Z =
1

J2
(A.6)

Introducing these new variables in Eq. A.3 leads to

S = µI + (λY − µ)C−1 (A.7)

A.2 Preliminary formulae

A.2.1 Expansion series

As stated in chapter 3 all variables are expanded asymptotically in terms of a control

parameter "a". This expansion is done by using Taylor series. The Taylor series for a

smooth function f(a) around the point a = 0 is as follows:

f(a) = f 0 +
∑
p=1

f pa
p

where f 0 = f(0) and f p =
1

p!

dpf

dap

∣∣∣
a=0

(A.8)

A.2.2 Taylor series for the product of two functions

In deriving the formulation it is needed to calculate the Taylor series of the product of

two functions. If C(u(a)) = A(u(a))B(u(a)) the series will take the form

C0 + C1a+ C2a
2 + · · · = (A0 + A1a+ A2a

2 + · · · )(B0 +B1a+B2a
2 + · · · ) (A.9)

The coefficients Cn will be obtained as follows

at order 0 ⇒ C0 = A0B0

at order 1 ⇒ C1 = A0B1 + A1B0

...

at order p ⇒ Cp = A0Bp + ApB0 +

p−1∑
r=1

ArBp−r (A.10)
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A.2.3 Composition of expanded variables

Now ifA = A(b(a)) and bothA and b(a) are going to be expanded, the chain rule can

be applied.

A = A0 +
∑
p=1

Apa
p

b = b0 +
∑
p=1

bpa
p (A.11)

where A0 = A(b0), b0 = b(0). Ap can be calculated by applying the chain rule for

higher derivatives (Arbogast, 1800).

A1 =
∂A

∂a

∣∣∣
a=0

=
∂A

∂b

db

da

∣∣∣
a=0

=
∂A

∂b

∣∣∣
b0
b1, where b1 =

db

da

∣∣∣
a=0

A2 =
1

2

∂2A

∂a2

∣∣∣
a=0

=
1

2

∂

∂a

(
∂A

∂b

db

da

)
=

1

2

∂2A

∂b2

∣∣∣
b0
b21 +

∂A

∂b

∣∣∣
b0
b2

... (A.12)

In the same way the rest of the coefficients can be calculated. In these expressions

the following variables are used

b1 =
db

da

∣∣∣
a=0

b2 =
1

2!

d2b

da2

∣∣∣
a=0

...

Again some notations will be adopted for simplicity. We now deöne

Ab0 = A(b0), Ab1 =
∂A

∂b

∣∣∣
b0
, Ab2 =

1

2!

∂2A

∂b2

∣∣∣
b0
, . . . , Abp =

1

p!

∂pA

∂bp

∣∣∣
b0

By using this notation the coefficients ofAwill be simpliöed as

A0 = Ab0

A1 = Ab1b1

A2 = Ab2b
2
1 + Ab1b2 (A.13)

...
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A.3 Expansion ofX = J2

AsX = J2 = det(C), before expandingX it is necessary to expandC . For that, örstly

the displacement vector is expanded as

u(a) = u0 +
∑
p=1

upa
p, u0 = u(0), up =

1

p!

dpu

dap

∣∣∣
a=0

(A.14)

Then the linear term of strain can be rewritten as

at order 0 γ l0 =
∇u0 +∇Tu0

2
...

at order p γ lp =
∇up +∇Tup

2
(A.15)

If FEM is used for discretization of the weak form and the displacements are approx-

imated by u = Nvp, one will have

γ l0 = Blv0

...

γ lp = Blvp (A.16)

For the non-linear term of strain, the multiplication of expanded variables is used

γnl0 =
∇u0∇uT

0

2
...

γnlp = ∇u0∇Tup +

p−1∑
r=1

∇ur∇Tup−r

2
(A.17)

After discretization these terms take the form

γnl0 =
1

2
Ã(v0)Gv0

...

γnlp = Ã(v0)Gvp +

p−1∑
r=1

1

2
Ã(vr)Gvp−r (A.18)
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In which Ã andG can be found in standard texts of non-linear önite element anal-

ysis as in Zienkiewicz and Taylor (1994).

Ã =



θTx 0 0

0 θTy 0

0 0 θTz

θTy θTx 0

0 θTz θTy

θTz 0 θTx


in which

θx =
∂ux
∂x

, θy =
∂uy
∂y

, θz =
∂uz
∂z

and

G =



∂h1

∂x
0 0 · · · ∂h8

∂x
0 0

0 ∂h1

∂x
0 · · · 0 ∂h8

∂x
0

0 0 ∂h1

∂x
· · · 0 0 ∂h8

∂x
∂h1

∂y
0 0 · · · ∂h8

∂y
0 0

0 ∂h1

∂y
0 · · · 0 ∂h8

∂y
0

0 0 ∂h1

∂y
· · · 0 0 ∂h8

∂y
∂h1

∂z
0 0 · · · ∂h8

∂z
0 0

0 ∂h1

∂z
0 · · · 0 ∂h8

∂z
0

0 0 ∂h1

∂z
· · · 0 0 ∂h8

∂z


Finally, the right Cauchy-Green strain tensor can then be computed as follows

C = I + 2 (γ l(u) + γnl(u,u)) (A.19)

C = C0 +
∑
p=1

Cpa
p (A.20)

where

C0 = I +
(
2Bl + Ã(v0)G

)
v0

...

Cp = 2
(
Bl + Ã(v0)G

)
vp +

p−1∑
r=1

Ã(vr)Gvp−r (A.21)

Now it is possible to calculate the coefficients in theexpansionofX . As statedbefore

X = J2 = det(C) =

∣∣∣∣∣∣∣
C11 C12 C13

C21 C22 C23

C31 C32 C33

∣∣∣∣∣∣∣ (A.22)
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In order to calculate det C , Laplace's formula canbeused along the örst row. Having

denoted the cofactor of entry Cij by CCij one will have

X = C11CC11 + C12CC12 + C13CC13 (A.23)

AsC is a symmetric tensor, a vector of six elements could be associated to it. In this

way one will have

X0 = detC0

...

Xp = MT
0Cp +RXp (A.24)

in which

C0 =
[
C011 C022 C033 2C012 2C023 2C013

]T
MT

0 =

[
CC110 CC220 CC330

CC120

2

CC230

2

CC130

2

]
(A.25)

RXp =

p−1∑
r=1

Cr
11CC

p−r
11 + Cr

12CC
p−r
12 + Cr

13CC
p−r
13

+ C0
11

(
Cr

22C
p−r
33 − Cr

23C
p−r
23

)
+ C0

12

(
Cr

13C
p−r
23 − Cr

12C
p−r
33

)
+ C0

13

(
Cr

12C
p−r
23 − Cr

22C
p−r
13

)
(A.26)

Note that, for example,

Cp−r
11 =

(
C0

22C
p−r
33 − C0

23C
p−r
23

)
+
(
Cp−r

22 C0
33 − Cp−r

23 C0
23

)
+

p−r−1∑
i=1

Ci
22C

p−r−i
33 − Ci

23C
p−r−i
23 (A.27)

SubstitutingCp by its expansiongiven inA.21, the önal expression forXp is obtained

as

Xp = 2MT
0B(v0)vp +MT

0

p−1∑
r=1

Ã(vr)Gvp−r︸ ︷︷ ︸
RCp

+RXp

︸ ︷︷ ︸
RTXp

(A.28)

whereB(v0) = Bl + Ã(v0)G
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A.4 Expansion of Y = ln J

The Taylor series of Y can be written as follows

Y (a) = Y0 +
∑
p=1

Ypa
p, Y0 = Y (0), Yp =

1

p!

dpY

dap

∣∣∣
a=0

(A.29)

As Y = ln
√
X the chain rule could be applied which results in

∂Y

∂X
=
∂ ln

√
X

∂X
=

1

ln
√
X

1

2 ln
√
X

=
1

2X

∂2Y

∂X2
=

∂

∂X

1

2X
=

−1

2X2

...

∂pY

∂Xp
=

(−1)p−1(p− 1)!

2Xp

(A.30)

We now deöne

YX0 = ln
√
X0 = Y0

YX1 =
∂Y

∂X

∣∣∣
X0

=
1

2X0

YX2 =
1

2!

∂2Y

∂X2

∣∣∣
X0

=
−1

4X2
0

...

YXp =
(−1)p−1

2pXp
0

(A.31)

The coefficients in the Eq. A.29 are obtained as

Y0 = ln
√
X0

Y1 = YX1X1 =
X1

2X0

Y2 = YX2X
2
1 + YX1X2 =

−X2
1

4X2
0︸ ︷︷ ︸

RY2

+
X2

2X0

...

Yp =
Xp

2X0

+RYp (A.32)

Using equation A.28 one will get

Yp =
1

X0

MT
0B(v0)vp +

1

2X0

(
MT

0RCp +RXp

)
+RYp︸ ︷︷ ︸

RTYp

(A.33)
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A.5 Expansion ofZ = 1
J2

The Taylor series of Z can be written as follows

Z(a) = Z0 +
∑
p=1

Zpa
p, Z0 = Z(0), Zp =

1

p!

dpZ

dap

∣∣∣
a=0

(A.34)

Considering that Z = 1
J2 = 1

X
, the coefficients in the series can be obtained as

∂Z

∂X
=

−1

X2

∂2Z

∂X2
=

2

X3

...

∂pZ

∂Xp
=

(−1)p(p)!

Xp+1
(A.35)

We now deöne

ZX0 =
1

det(C0)
=

1

X0)
= Z0

ZX1 =
∂Z

∂X
|X0 =

−1

X2
0

ZX2 =
1

2!

∂2Z

∂X2

∣∣∣
X0

=
1

X3
0

...

ZXp =
(−1)p−1

X
(
0p+ 1)

(A.36)

The coefficients in Eq. A.34 can be obtained as

Z0 = ZX0 =
1

det(C0)

Z1 = ZX1X1 =
−X1

X2
0

Z2 = ZX2X
2
1 + ZX1X2 =

X2
1

X3
0︸︷︷︸

RZ2

+
−X2

X2
0

...

Zp =
−Xp

X2
0

+RZp (A.37)
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After replacing these variables with matrices and vectors that have been deöned so

far Zp will take the form

Zp =
−2

X2
0

MT
0B(v0)vp +

−1

X2
0

(
MT

0RCp +RXp

)
+RZp︸ ︷︷ ︸

RTZp

(A.38)

A.6 Expansion ofC−1

In order to calculate the inverse ofC , its adjugate will be calculated and then divided

by its determinant. If the transpose of the cofactor matrix of C is denoted by A, the

inverse ofC will be computed as follows

C−1 =
A

det C
=

1

X
A = ZA (A.39)

where

A =

 CC11 CC12 CC13

CC21 CC22 CC23

CC31 CC32 CC33

 (A.40)

The expansion of the adjugate matrix CCT is obtained as follows

A0 = CC0
T

...

Ap = C̃0Cp +RAp (A.41)

in which

C̃0 =



0 C033 C022 0 −C023 0

C033 0 C011 0 0 −C013

C022 C011 0 −C012 0 0

0 0 −C012 −1
2
C023

1
2
C013

1
2
C023

−C023 0 0 1
2
C013 −1

2
C011

1
2
C012

0 −C013 0 1
2
C023

1
2
C012 −1

2
C022


(A.42)

RAp =

p−1∑
r=1



Cr
22C

p−r
33 − Cr

23C
p−r
23

Cr
11C

p−r
33 − Cr

13C
p−r
13

Cr
11C

p−r
22 − Cr

12C
p−r
12

Cr
13C

p−r
23 − Cr

12C
p−r
33

Cr
13C

p−r
12 − Cr

11C
p−r
23

Cr
12C

p−r
23 − Cr

13C
p−r
22


. (A.43)
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After replacing these variables with matrices and vectors that have been deöned so

farAp will take the form

Ap = 2C̃0B(v0)vp + C̃0RCp +RAp︸ ︷︷ ︸
RTAp

(A.44)

Now the inverse of Right Cauchy-Green strain tensor can be computed as

C−1
0 = A0Z0 = Inv(C0)

...

C−1
p = ApZ0 +A0Zp +

p−1∑
r=1

ArZp−r︸ ︷︷ ︸
RC−1

p

. (A.45)

After replacing these variables with matrices and vectors that have been deöned so

farC−1
p will take the form

C−1
p = 2

(
C̃0Z0 −

−1

X2
0

A0M
T
0

)
B(v0)vp +A0RTZp +RTApZ0 +RC−1

p︸ ︷︷ ︸
RTC−1

p

(A.46)

A.7 Expansion ofS

Replacing the obtained values so far in the stress formulation for a neo-Hookean com-

pressible material from Eq. A.3 will result in

S0 = µI − µC−1
0 + λY0C

−1
0

S1 = −µC−1
1 + λ

(
Y0C

−1
1 + Y1C

−1
0

)
...

Sp = −µC−1
p + λ

Y0C−1
p + YpC

−1
0 +

p−1∑
r=1

YrC
−1
p−r︸ ︷︷ ︸

RSp

 (A.47)

After replacing these variables with matrices and vectors that have been deöned so
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far Sp will take the form

Sp =

2(λY0 − µ)

(
C̃0Z0 −

1

X0

C−1
0 MT

0

)
+

λ

X0

C−1
0 MT

0︸ ︷︷ ︸
D

B(v0)vp+

(λY0 − µ)RTC−1
p + λC−1

0 RTYp + λ

p−1∑
r=1

YrC
−1
p−r︸ ︷︷ ︸

RTSp = Snl
p

(A.48)

Now Sp can be written in the following form

Sp = D B(v0)vp + Snl
p (A.49)

Non-linear stress can be expressed in terms of geometrical and material non-linear

stresses.

Snl
p = Snlmat

p + Snlgeom
p (A.50)

In which

Snlgeom
p =

1

2
DRCp = D

p−1∑
r=1

1

2
Ã(vr)θp−r (A.51)

Snlmat
p = (λY0 − µ)

(
A0

(
RZp −

RXp

J4
0

)
+

RAp

J2
0

+RC−1
p

)
+ λ

(
A0

J2
0

(
RYp +

RXp

2J2
0

)
+RSp

)
(A.52)

A.8 Obtaining the önal system of equations
The weak form of the problem is

Find v ∈ H1(Ω) ∋
∫
Ω0

S : δγ(v)dΩ = λ

(∫
Ω0

b · δv dΩ +

∫
γ0

t · δv dΓ
)

∀δv ∈ H1
0 (Ω)

(A.53)

In order to obtain the system of equations örst the variation of Green-Lagrange

strain tensor is expanded as

δγ(v)0 =
(
Bl + Ã(v0)G

)
δv = B(v0)δv

...

δγ(v)p = A(vp)Gδv (A.54)
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Also the load factor λ has to be expanded.

λ(a) = λ0 +
∑
p=1

λpa
p, λ0 = λ(0), λp =

1

p!

dpλ

dap

∣∣∣
a=0

After substituting variables by their expansion and identifying terms with the same

order the following system of equations will be obtained.

KTv0 = λ0F

...

KTvp = λpF − fnl
p (A.55)

in which

KT =

∫
Ω0

B(v0) D B(v0) +GTS0GdΩ (A.56)

fnl
p =

∫
Ω0

(BT (Snlmat
p + Snlgeom

p ) +GTS∗
p)dΩ (A.57)
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