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SUMMARY

One of the main difficulties a reduced order method could face is the poor separability of the solution. This
problem is common to both a posteriori model order reduction (Proper Orthogonal Decomposition, Reduced
Basis) and a priori (Proper Generalized Decomposition) model order reduction. Early approaches to solve
it include the construction of local reduced order models in the framework of POD. We present here an
extension of local models in a PGD —and thus, a priori— context. Three different strategies are introduced
to estimate the size of the different patches or regions in the solution manifold where PGD is applied. As
will be noticed, no gluing or special technique is needed to deal with the resulting set of local reduced order
models, in contrast to most POD local approximations.
The resulting method can be seen as a sort of a priori manifold learning or non-linear dimensionality
reduction technique. Examples are shown that demonstrate pros and cons of each strategy for different
problems.
Copyright c© 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computer-based modeling and simulation in applied science and technology has become one of the
most valuable and helpful tools in design, development and prediction in the world. The possibility
of simulating the behavior of virtually any physical system allows us to understand its response
ahead of time. Some big disciplines like economics, biology, sociology or engineering are indeed
examples of successful application of computer simulation. Today researches in new techniques
of simulation will surely be the basic tools used in next years due the fast evolution of the field
and the high requirements of the users. Fast adaptation and continuous development of new models
and techniques are some known features in simulation, among other things, by the high quantity of
people involved.

The joint between human thirst for knowledge and the increased computing power of today
computers has triggered a new revolution in simulation that allows us to obtain the behavior of
any system involving high quantities of parameters. But our wishes have no limits, and researchers
desire to manipulate large data sets to obtain models with a high degree of similarity with the real
behavior, something that not always can be satisfied with nowadays computers (nor presumably, any
existing computer ever [1]).

Model Order Reduction (MOR) [2–6] encompasses a group of techniques to reduce the
complexity of models in the field of computational mechanics. In an algebraic way, it transforms the
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2 A. BADÍAS ET AL.

solution of a given problem from the original basis to a new and reduced one, preserving as many
energy of the system as possible. Traditionally, this is known as transforming the solution from the
high-dimensional problem to the reduced basis problem by keeping only the relevant information.
A classical categorization distinguishes a posteriori from a priori methods:

• The a posteriori methods are built after computing some solutions of the system or the whole
set of solutions, and are especially useful when the model has a relatively small number
of parameters but many observations. The most classical example is Proper Orthogonal
Decomposition (POD) [7], that is based on a statistical procedure called Principal Component
Analysis (PCA) [8]. Other examples include the Reduced Basis Method (RB) [9].

• The a priori methods are built without the need of computing any solution to the problem.
However, avoiding the computation of snapshots implies the need for solving a sequence
of non-linear problems. A representative example of this kind of methods is the Proper
Generalized Decomposition (PGD).

Although both POD and PGD are already well established techniques, we make here a brief
overview of the last one for completeness. The interested reader could consult [10–12] for recent
surveys on the method.

PGD assumes as a basic principle that the solution of the governing equation can be approximated
as a finite sum of products of functions depending only on one variable. Let us assume that we want
to solve a problem stated by its governing differential equation with D coordinates/parameters and
that the solution admits a separated representation

u(x1, x2, . . . , xD) ≈
N∑
i=1

F 1
i (x1) · F 2

i (x2) · ... · FDi (xD), (1)

where N is the number of sums of functional modes and u is the solution of the equation depending
on D independent variables. These D variables can be physical space variables like cartesian
coordinates or parameters like Young’s modulus or Poisson’s ratio in linear elasticity. The particular
form of the modes F ji (xj) is found in a greedy framework in which one sum of the approximation is
computed at a time. Within each sum, to found a product of functions (expressed on a finite element
basis) any linearization scheme can be used. We usually employ fixed point iterations because of its
conceptual simplicity.

Thus, PGD can be used with two different purposes: as a reduction method (by controlling the
number of terms in the approximation, N ) and as a parametric vademecum generator [13] that can
be employed in real time (and also, of course, as a combination of both [14]), being actually the
same concept but observed from two different perspectives.

PGD has demonstrated to be specially efficient in the solution of high-dimensional or parametric
problems [15] [16] [17] [18]. But it has also some limitations that we have to keep in mind:

• On one hand, some problems have, by definition, a solution structure which is intrinsically
non-separable. According to Fourier’s decomposition [19] any periodic function can be
decomposed in a finite (or infinite) sum of a set of simple functions. We can extrapolate
this approximation to a non-periodic function, and also to the PGD method with negligible
loss of accuracy. So we can approximate a non-separable solution as a sum of the product of
separable functions, although the number of required terms can be really high.

• On the other hand, PGD is equivalent to POD —and thus provides optimal modes with
respecto to the chosen norm— when solving elliptic differential equations up to two
dimensions [20]. For parabolic and hyperbolic differential equations, or elliptic equations
with more than 2 dimensions, PGD method is in general able to find a solution but there is not
evidence enough to assure that the solution is optimal. The modes thus obtained are no longer
orthogonal nor contain the maximum amount of the energy for a prescribed number of modes.
But this is not only a PGD problem. Methods based upon POD are in a similar situation,
since high order singular value decomposition (HOSVD [21]), one method for computing the
Tucker3 decomposition [22], is not optimal for 3rd or more order tensors [23].
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LOCAL PROPER GENERALIZED DECOMPOSITION 3

The origin of the poor separability of the solution relies in the manifold structure of the solution.
Many MOR methods look for a suitable basis set in order to project the solution. In general, this
basis, even if it is globally optimal, can lead to very poor results if the manifold structure of the
solution is very intricate. Previous works in the field include [24]. To avoid these problems, the idea
of local basis arises naturally. Initial works were done in the framework of POD-based methods
[25–28]. After that, PCA was used also in its local basis approximation with data analysis [29],
pattern recognition [30] and image interpolation [31] purposes. Kambahtla et al. worked also with
local PCA with clustering techniques to determine the local regions and they compared the results
with neural network implementations of nonlinear PCA [32].

Some works are based in hyper reduction methods [33] on local reduced-order bases [34]. They
make use of an offline-online scheme to precompute the local bases on the offline stage using POD
and obtaining the particular solution in the online stage by exploiting selectively the local bases.
Other model order reduction methods project over a restricted subset of the spatial domain [35]
or use weighted functions to determine the most relevant snapshots [36]. This last work also
established an interesting classification of the POD method into global POD, local POD and adaptive
POD. Global POD projects the original system onto a subspace considering all the snapshots of
the domain, local POD projects a local region of the system onto a subspace considering only the
snapshots in the subdomain, and adaptive POD uses the global domain to create adaptive reduced
bases making use of interpolation methods [37]. Of course, in addition to POD, this classification
can be used with any other MOR techniques.

The difficulty of using PGD in a local context relies precisely in its a priori character, i.e., in the
fact that we have absolutely no information on the manifold structure of the solution. In this paper
we present a method in which we adaptively unveil this manifold structure on the fly, without the
need for previous sampling of the solution.

The structure of the paper has been divided in four sections after this introduction. Section 2
describes PGD briefly and introduces some well-known cases where PGD encounters difficulties in
the resolution. This is the case, for instance, of the so-called Idelsohn’s Benchmark, a transient heat
equation with moving source [38].

This paper shows an analysis of the proposed local PGD (hereafter, `-PGD) method and three
different approaches to it, where two of them take advantage of the known information at each
moment. Section 3 introduces three examples to validate the method: a first example of 2D linear
elasticity with moving loads, a second example solving the Idelsohn’s Benchmark and a third
example solving the Idelsohn’s Benchmark adding the conductivity as a parameter in the PGD
formulation. Finally an analysis with the conclusions of the work is covered in Section 3.

2. LOCAL PGD (`-PGD)

PGD assumes a separated variable structure of the solution that may confront with some problems
called non-separable. As we have seen in Section 1, some physical phenomena have a solution
structure that does not fit with a separate variable expression, and PGD may need too many modes
to obtain an accurate enough solution with acceptable error rates.

2.1. Difficulties in the reduction process

The sources of non-separability of the solution are manifold. Following [5], we could mention

• The global dimension of the problem. At a given space-time(-parameter) point at the solution
manifold we can approximate the solution by the tangent hyperplane, which is in turn spanned
by a basis vector of dimension equal to that of the space plus that of the parameter vector and
time. However, to approximate well all the solution manifold, the number of vectors in the
basis may be much higher.

• It also depends on the approximability of the solution manifold by n-dimensional subspaces,
the so-called Kolmogorov n-width. It is specially high in the case of the already mentioned
Idelsohn’s problem, Eq. (2).
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4 A. BADÍAS ET AL.

• Differentiability and regularity of the solution map.
• Parametric complexity, i.e., to what extent the solution is affine in the parametric space, thus

admitting a separated expression like Eq. (1).

Several methods have been tried so far. One solution would be to employ space-time (thus, non-
separated) basis functions. An example is the work of Gerbeau [39], that employed the concept of
Lax Pairs [40] to obtain a reduced model with a special application to wave and soliton problems.

In general, we have few options to try to minimize the effect of the poor regularity of the solution
map or the parametric complexity. However, there are some options to work with the two first
sources of poor separability mentioned before, namely the global dimension of the problem and
the high Kolmogorov n-width. If the local dimension of the problem is much lower than the global
one, one could reasonably expect that the employ of local PGD approximations could improve the
results.

In what follows we discuss three different strategies for the construction of local PGD (`-PGD)
approximations to the problem at hand.

2.2. Constant local partitions (C`-PGD)

Consider, to begin with, an equation depending solely on space and time, without any parametric
dependence. The most naive approach to the problem is to work by partitioning the time domain
only, and doing it uniformly. Each resulting two-dimensional sub-region is therefore formed by
the same number of nodes both in spatial and temporal axes. In this way, we obtain a local basis
for every reduced sub-domain, and a global solution in separate variables where the spatial modes
are supported in the entire domain Ω. Time modes, on the contrary, span only a local sub-domain
Ii := [t0i , t

end
i ].

No special procedure is needed to guarantee the continuity of the solution, even if time modes
could be discontinuous, see Fig. 16a for an example corresponding to Eq. (2). This example is
discussed thoroughly in Section 3.2. The only requirement to guarantee continuity is to take the
final temperature values at interval Ii as initial conditions of the Ii+1 interval. Therefore, no special
procedure is needed to achieve continuity. The proposed method can be seen as a sequence of PGD
problems with no special treatment of initial nor boundary conditions. All the details concerning the
imposition of non-homogeneous initial and boundary conditions were already studied at one of the
early papers on PGD, see [41].
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Figure 1. a) Time modes Gi(t) may be discontinuous along time (no partition is made here on the space
domain). However, the resulting solution, b), is made continuous by only imposing the temperature field at

the end of sub-domain Ii as initial condition of the subsequent time interval Ii+1.

The partition of the domain into constant size sub-regions allows PGD to capture the behavior of
the solution in a faster and accurate way in some problems —as will be noticed in Section 3—, but
we are not fully exploiting the potential of `-PGD. The number of necessary modes will be highly
variable for each subdomain, in general. We could perform a more efficient domain partitioning by
employing variable subdomains sizes. Solution manifolds with highly intricate geometries can be
described in a better way by using local domains with varying sizes. For example, solution regions
with small variation in the original manifold can be approximated with bigger sub-domains (T3(M)
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LOCAL PROPER GENERALIZED DECOMPOSITION 5

in Fig. 2) than regions with higher variation in the original manifold that may need a higher number
of modes (T4(M) and T5(M) in Fig. 2).

T1(M)

T2(M)

T3(M)

T4(M)

T5(M)

T6(M)

M

Figure 2. ManifoldM where the solution lies, and tangent hyper-planes Ti(M) corresponding to local basis
approximation.

In order to overcome the already mentioned limitations of constant partitioning, we propose the
use of two different alternatives producing an adaptive partitioning of the domain in a smart way. The
first one is an iterative method similar to the one proposed in [42] for time domain partitioning. This
method computes the size of the subdomain iteratively by imposing equal number of modes within
each subdomain and a specific error tolerance. The second method uses Kernel Principal Component
Analysis projections (k-PCA, [43]) of the already computed solution to unveil the manifold structure
of the already computed part of the solution, and to suggest local divisions depending on the degree
of regularity of the manifold.

2.3. `-PGD adaptive partitioning with mode number optimization (MNO`-PGD)

Let us assume that the solution of a multidimensional problem remains on a manifold M as it is
shown in Fig. 2. An adaptive partitioning allows us to better describe the manifoldM by projecting
the solution onto local bases Ti(M) that may be thought of as hyperplanes tangent to the manifold.
The distance between tangency points may be non constant, since the solution manifold may have
an irregular variability.

For space-time problems, we will work on local regions formed by the full spatial domain and
a target number of M local partitions in time. Local time-partitioning will be modified iteratively
and PGD solved in each step. We start with a seed number p of time nodes, optimizing p to allow
the number of local modes to be as close as possible to the sought amount M , which has been
fixed previously, and an error tolerance E. Given a number of local modes Ni required to build
the solution on a sub-domain i, and assuming a space and time discretization ∆x and ∆t both
changeless, since we can only modify the number of local time nodes Ti, it is possible that the
number of modes to obtain M may not be achievable, Ni 6= M . We decided to choose the stopping
number of modes Ni to be below and closest to the optimal, being Ni ≤M ∀ i ∈ [1, k] to ensure the
maximum number of local modes is at most M , i.e.,

max
i
Ni ≤M.

The implementation of the adaptive time-partitioning method with mode number optimization is
shown in Algorithm 1. We have employed unitary increments and decrements of the number of
local modes Ti within each algorithm iteration to assure its simplicity and robustness, but other
techniques may be used to accelerate the convergence.
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The difficulty increases if we add parameters to the PGD separated formulation. This
disadvantage led us to think in a third method able to extract information about the manifold
structure of the solution, so as to allow us to perform adaptive partitions on the fly.

Algorithm 1: Pseudo-code to implement the adaptive partitioning MNO`-PGD at a subdomain
i.

AllowedModes = M ;
while LastTimeInstantOfLastPartition < GlobalTimeEnd do

InitialLocalPartitioning(i);
while (LocalModesObtained(i) 6= AllowedModes) & (LoopOut == 0) do

[SpaceModes(i), TimeModes(i), LocalModesObtained(i)] = LocalPGDImplementation(i);
if LocalModesObtained(i) == AllowedModes then

break;
else if LocalModesObtained(i) 6= AllowedModes then

UpdateLocalPartitioning(i);
end
if AllowedModesCanNeverBeReached then

UpdateLocalPartitioning(i);
LoopOut = 1;

end
end
Solution(i) = SpaceModes(i) * TimeModes(i)’;
SetInitialConditions(i+ 1);
i← i+ 1;

end

2.4. kernel-PCA-based `-PGD (k`-PGD)

The application of PGD locally can be carried out in multiple ways. There could be eventually
many other methods to find the number of local modes depending on the available information.
But our goal remains the same, estimating the size of each local sub-domain to obtain a separated
representation of the solution with a minimal amount of terms and, therefore, computational time
and storage costs.

With this third method we intend to use manifold learning tools to unveil the manifold structure
of the solution. The difficulty, however, remains to be the a priori character of PGD. Since PGD
starts the approximation to the solution from scratch, without any sampling of the parametric space,
we have no information on the manifold structure of the solution. Instead, we start by performing
an arbitrary partitioning. We will employ k-PCA methods [44] to check the appropriateness of this
partitioning and, eventually, correct it iteratively.
k-PCA methods work, surprisingly, by projecting data onto a higher dimensional (eventually,

infinite dimensional) space where data is exactly separable. In this space, standard PCA techniques
can be applied. Then, data can be projected back onto the principal components and the first few,
more relevant projections, retained. To obtain a better understanding of the manifold structure of
the solution, we will measure the distance between different parameter-time-dependent solutions by
resorting to the concept of Hausdorff distance [45].

2.4.1. Kernel Principal Component Analysis. As stated before, the idea behind k-PCA methods
may seem surprising, but the elegance of the method comes from its conceptual simplicity: data
not linearly separable in D dimensions, could be linearly separated if previously projected to a
space in Q > D dimensions [46, 47]. Thus, k-PCA begins by projecting the data to an even higher
dimensional space. To do it, a mapping is necessary:

φ : M⊂ RD → RQ, y → z = φ(y),
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LOCAL PROPER GENERALIZED DECOMPOSITION 7

where Q may be any dimension. One of the biggest advantages of this tool is that there is no need
to explicitly determine the analytical expression of the mapping φ. This is known as the kernel trick
in the machine learning community.

The resulting symmetric matrix Φ = ZTZ needs to be decomposed in eigenvalues and
eigenvectors. In addition, the mapped data zi involved in Φ must be previously centered. The
centering can be performed even if the mapping is unknown, in an implicit way by performing
the so-called double centering.

Let us denote the mean of the j-th column of Φ as µi(zi · zj), and the mean of its i-th row as
µj(zi · zj). The mean of all entries of Φ reads µi,j(zi · zj). The double centering process gives

zi · zj − µi(zi · zj)− µj(zi · zj) + µi,j(zi · zj).

The mentioned eigenvalue-eigenvector decomposition can be performed on the doubly centered
matrix, leading to

Φ = UΛUT .

It is important to realize that the mapping φ needs not to be evaluated in the computation of the
matrix Φ. If the number of dimensions of the target space, Q, is high (even infinite), the explicit
computation of its entries may be prohibitive. The kernel trick allows us to overcome this difficulty
by founding a kernel function κ that directly gives the value of the scalar product κ(yi,yj) = zi · zj .
This property follows from Mercer’s theorem [46, 47].

Many different kernels fulfilling Mercer’s condition exist. Among them, the most popular ones
are:

• Polynomial kernels: κ(u,v) = (u · v + 1)p, with p an arbitrary integer;
• Gaussian kernels: κ(u,v) = exp

(
−‖u−v‖

2

2σ2

)
for a real σ;

• Sigmoid kernels: κ(u,v) = tanh(u · v + b) for a real b.

In this work, and without loss of generality, we have employed Gaussian kernels. These provided
excellent results in the determination of the manifold structure of the solution. Actually, what we
pursue with the application of k-PCA is to determine the true distance between different parameter-
specific solutions in the manifold. In other words, to unveil how intricate the manifold is.

Note that the use of k-PCA methods implies loosing the a priori character of PGD in some
sense. k-PCA is indeed an a posteriori method, which works on a set of snapshots of the problem.
However, as will be clear in the results section, the method is still appealing since it minimizes the
amount of CPU time and memory storage with respect to classical PGD methods.

2.4.2. Hausdorff distance.
Our goal is to determine how far each space-time(-parameter) particularization of the solution is
from its neighboring particularizations. In other words, to unveil the regularity of the solution
manifold. To this end, once the k-PCA structure has been obtained, we determine the Hausdorff
distance between particularized solutions. In fact what we look for are actually trends in the distance.
In other words: to know if the partitioning could be made coarser or, on the contrary, it is necessary
to refine it locally.

The Hausdorff distance between two subsets X , Y of a metric space, is defined as

dH(X,Y ) = max {sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}.

The Hausdorff distance between particular realizations of the solution reveals the intrinsic
variability of the solution. Once the distance between realizations has been determined, an algorithm
must be designed to estimate the most appropriate size of the patches on which k`-PGD is applied.
To this end, we have chosen the ε-neighborhood tool to cluster the information and extract the limits
of local patches.
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8 A. BADÍAS ET AL.

2.4.3. ε-neighborhood clustering. The neighborhood of a point p in a metric space M(X, d) is a
set V if there exists an open ball with center p and radius r > 0, such that Br(p) is contained in V

Br(p) = B(p; r) = {x ∈ X | d(x, p) < r}.

We consider the ε-neighborhood ε-NDi
of a point p as the set of all points in the real space RD

that are located at a distance less than ε from p measured in dimension Di,

B(a; ε) = {x ∈ RD : |x− p|Di < ε}.

In sum, an iterative algorithm has been designed that proceeds by

1. Choosing an arbitrary partition of the space-time(-parameter) space,
2. unveiling its manifold structure by applying k-PGD,
3. measuring the distance between particular time-parameter solutions by means of its Hausdorff

distance, and
4. eventually modify the original partition and adapting it to the distance distribution.

This procedure has been schematically represented in Algorithm 2 below.

Algorithm 2: Pseudo-code to implement the kernel-PCA-based `-PGD (k`-PGD).
VariablesInitialization;
ConstantLocalSolution = ComputeConstantLocalPGD;
while j < NumberOf-kPCACurves do

kPCACurves(j) = ComputekPCA(ConstantLocalSolution);
j ← j + 1;

end
ComputeHausdorffDistance(AllkPCACurves);
LocalkPCADivisions = Clusteringε-neighborhood;
while i < NumberOfLocalkPCADivisions do

[SpaceModes(i), TimeModes(i)] = ComputeLocalPGD;
Solution(i) = SpaceModes(i) * TimeModes(i)’;
SetInitialConditions(i+1);
i← i+ 1;

end

In the next Section we present some examples of application of the three different methods and
compare their relative performance.

3. EXAMPLES

We introduce here three benchmark examples. `-PGD is applied and results compared with the
classical, global PGD, and even the standard, also global, POD method.

The first example considers displacement of a two-dimensional cantilever beam with a moving
vertical load along its upper boundary. The second example considers the already mentioned
Idelsohn’s benchmark. And, finally, the third example is the parametric version of the Idelsohn’s
benchmark, by adding the conductivity k as a parameter in the PGD formulation. Problems in up
to three dimensions have been considered for visualization purposes, but the presented technique is
completely general and can be applied to problems in arbitrary dimensions.

3.1. Cantilever beam with a moving load

This problem considers the horizontal and vertical displacement u(x, y) of any point of a bi-
dimensional cantilever beam Ω, Fig. 3, with a moving vertical load F applied at a variable location
on the upper boundary s ∈ Γ̄ ⊂ ∂Ω where Γ̄ represents the portion of the Neumann boundary Γt
with non-vanishing natural conditions.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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Figure 3. Cantilever beam with a moving vertical load F .

The governing equation for linear elasticity in its strong form is well known [48]: find u(x) such
that  ∇ · σ + b = 0 in Ω,

σ n = t̄ on Γt,
u = ū on Γu.

Since we are interested in finding the parametric solution u(x, s), i.e., for any possible load
position along Γ̄, we develop a doubly weak form by integrating not only in Ω, but also on Γ̄ (details
on the Matlab implementation of this problem can be found in [10], see also [11, 12]):∫

Γ̄

∫
Ω

∇su
∗ : σ dΩ dΓ̄ =

∫
Γ̄

∫
Γt

u∗ t dΓ dΓ̄,

where u∗ ∈ H1
0 (Ω) is an arbitrary test function and∇s = 1

2 [∇+ (∇)T ] is the symmetric gradient
operator. Following the standard PGD assumption on the separability of the solution, we postulate
the solution u(x, s) separated in the following way,

u(x, s) ≈
n∑
i=1

Fi(x) ◦Gi(s),

where “◦” stands for the entry-wise Hadamard or Schur product of vectors, n is the number of terms,
Fi(x) are the space modes in separate variables and Gi(s) are the modes referred to the position of
the load. We consider here s as a scalar, since the boundary of the two-dimensional beam is actually
a one-dimensional region.

Standard PGD methods use a greedy algorithm to obtain the n functions Fi(x) and Gi(s).
Assume that, at iteration p, we look for the p+ 1-th functions R(x) and S(s) that produce the
enrichment of the solution:

up+1(x, s) = up(x, s) +R(x) ◦ S(s).

Therefore, the test function is

u∗(x, s) = R∗(x) ◦ S(s) +R(x) ◦ S∗(s).

The load F has been designed as a unitary force acting along the vertical axis y at a variable position
s along the upper boundary of the beam, see Fig. 3,

t = F δ(x− s)ey,

where δ represents the Dirac delta function. Function t needs to be expressed in separate form to
comply with the PGD method, so

tx = 0; ty ≈
m∑
j=1

hj(x) kj(s),

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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where m is the number of sums to approximate function ty and hj(x), kj(s) are the functions
in space and load position, respectively. We have employed a fixed point algorithm to solve the
resulting non-linear problem of finding the pair functionsR(x) ◦ S(s) at every enrichment iteration,
but any other method (noteworthy, Newton) can be used. See [10] for a more precise description of
the matrix form of this problem and the implementation code in MATLAB language.

In the C`-PGD framework, uniformly-spaced local partitions have been made in the s domain
maintaining the whole space x for every partition. Assuming M partitions in the parameter-space
domain, the solution will be at each one of these partitions ui(x, s) ∈ H1(Ωx)×H1(Ωy)× L2(Γ̄i)
∀ i ∈ [1,M ], with Ωx := [0, 9][m], Ωy := [0, 1][m] and Γ̄i := [s0

i , s
end
i ]. We employed a mesh with

size ∆x = ∆y = ∆s = 0.1[m].
In the k`-PGD approach, on the contrary, we have applied k-PCA to vectors containing nodal

values for the same s position (see Fig. 4b) using the vertical displacement as input. We obtained a
set of embedded curves (Fig. 4a) and making use of the Hausdorff distance concept we measured
the distance between curves and the origin of the coordinate system so as to estimate the manifold
structure of the problem (Fig. 4c). From here, it is possible to divide the s domain in partitions using
clustering tools as described in Section 2.4.3.

The resulting vertical displacement field for the load in the end position of the beam is shown in
Fig. 5a and Fig. 5b shows the surface obtained for the load applied in any available position.

To determine the accuracy of each proposed local implementation of the PGD, we compare
our results with the well-known analytic solution of the 1D Euler-Bernoulli-Navier model of a
cantilever beam [49]. Fig. 5c shows the relative error between the analytic solution of the beam with
a load applied at the tip and the foloowing techniques: finite element method (FEM), PGD in its
global implementation, POD also in its global version, C`-PGD with constant divisions of domain
s and k`-PGD with variable-sized divisions. Finally, Fig. 5d shows the L2-norm error computed by
comparing the result obtained with each technique against the finite element solution with the same
discretization.

It is worth noting that both `-PGD versions provide very similar results, showing that merely
two load modes in nine divisions provide with the same error as the finite element solution for
that particular location of the load. On the contrary, both global implementations of POD and PGD
needed some eighty modes to obtain the same accuracy.

3.2. Idelsohn’s benchmark

An already classical example of non separable problems was established by Sergio Idelsohn in a
joint Spanish-French workshop held at Jaca, Spain, in 2013. It is based in the transient diffusion
equation in one dimension with a moving source. The governing equation and boundary conditions
were described in a subsequent technical report by D. Neron and P. Ladeveze [38]:

ρcp∂tu−∇ · k∇u = f(x, t) in Ω × I, (2)
u = uD on ΓD × I,
u = u0 on Ω × {0},

with Ω := [0, π], T = 1, u(0, t) = u(π, t) = uD = 0 and u(x, 0) = u0 = 0. The value of the thermal
conductivity is k = 0.05, density is ρ = 1 and the specific heat capacity cp = 1. The source term is
described by the equation:

f(x, t) =

{
0 t < ti or t > tf

A cos
(
π
L (x− x0(t))

)
ti < t < tf and − L

2 < x− xo(t) < L
2

,

where x0(t) = xi +
xf−xi

tf−ti (t− ti), A = 100, L = 0.15, ti = 0.2, tf = 0.7, xi = 2π/7 and xf =

5π/7. The source term f(x, t) is the heat added per unit volume. Fig. 6 sketches the problem. In
what follows, we consider also the possibility of a parametric problem, where the conductivity k
acts itself as a parameter of the problem. This problem has also been analyzed, among others, by
Allier et al. [50].
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Figure 4. a) Set of curves obtained after applying k-PCA. b) Sketch of the employed strategy. Red crosses
(nodes) are grouped in columns and k-PCA is applied to the resulting vector of nodal displacements. Each
column will represent a curve in a). c) Hausdorff distance between k-PCA curves and the origin of the

coordinate system. Blue lines indicate the partitions in the s domain.

Idelsohn’s benchmark problem has been solved by applying POD and PGD in their global,
classical version. These will serve as a reference measure of the degree of reduction attainable
by `-PGD.

The temperature distribution of the 1D solid can be plotted in a 3D surface where the first axis
is the time coordinate, the second axis comprises physical coordinates of the solid (assumed to
be one-dimensional) and the third, vertical, axis shows the temperature distribution in the space-
time domain (Fig. 7a). For completeness, we also plot a 2D surface to better appreciate the sharp
discontinuity in the solution (Fig. 7b).

The L2-norm error is computed by comparing the result obtained against the reference finite
element solution with the same discretization (i.e., the full-order model). The k-PCA projection of
the solution onto the three first eigenvectors is shown in Fig. 8.
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Figure 5. a) Vertical displacement of the cantilever beam solved with FEM with F = −1[N ],
E = 1000[N/m2], ν = 0.3, s = 9[m] (this plot corresponds to the case of the load at the end tip). b) Vertical
displacement of the cantilever beam solved for every position of the load in the s domain. c) Relative error
of the vertical displacement of the end point (load at end tip) for some methods respect to the analytic Euler-
Bernoulli-Navier solution. d) L2-norm error of the vertical displacement for every position of the load in the
s domain between each technique and the finite element solution with the same discretization, up to an error

e = 10−8.

x

tini tend

Figure 6. Idelsohn’s benchmark in 1D.

Fig. 9 shows the result of the L2-norm error of the temperature distribution in the space-time
surface (Fig. 7). The size of the mesh is Nx=301 space nodes and Nt=401 time nodes. It should
be pointed out that local time modes can be arranged (and stored in memory) as global, though
discontinuous, time modes. However, since we are taking the full spatial domain to form each sub-
domain, spatial modes can not be organized in the same way. This requires more storage space
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Figure 7. a) 3D surface of the solution of the heat equation with moving source with xf = 5π/7[m],
k = 0.05 [W/(m K)]. b) 2D view of the same problem to better appreciate the difficulty of separating a

sharp discontinuity running across the diagonal of space-time.
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Figure 8. Example of application of k-PCA to the reference solution of the Idelsohn’s benchmark. Each
curve represents a space-time particularization of the solution to Eq. (2).

when compared with the same number of global modes, but still allows us to obtain a much smaller
computation time, as can be shown in Section 3.4.

Fig. 9 shows that `-PGD provides with substantial savings in the number of necessary modes for a
prescribed error in the approximation. It is also important, however, to determine the true savings in
terms of stored memory or how the number of modes is distributed for each sub-domain. A constant
number of modes in all sub-domains denotes that we are using the memory in the best way, and
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POD and `-PGD in its three proposed variants, computed respect FEM solution with the same discretization

and up to an error rate of e = 10−4.

that the size of the sub-domains is balanced in terms of variability of the manifold structure of the
solution. Fig. 10 shows the number of modes per sub-domain for the three `-PGD methods with
a value of xf=2π/7 ( Fig. 10a) and xf=5π/7 (Fig. 10b). The Hausdorff curve that measures the
distance between every k-PCA curve and the origin, used with k`-PGD, is shown in Fig. 11. In this
figure we also plot the divisions employed to form each sub-domain in the time axis.
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Figure 10. Number of modes per sub-domain for the three `-PGD methods with a) xf=2π/7 (global PGD
needs 211 modes) and b) xf=5π/7 (global PGD needs 382 modes)

3.3. Parametric transient heat transfer equation

This example shows the addition of the thermal conductivity k into the PGD formulation of the
transient heat transfer equation (already considered in Section 3.2) as a parameter. It modifies
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Figure 11. Hausdorff curve measured with respect the coordinate origin in red with sub-domain divisions in
blue.

the problem by moving it to a three-dimensional space, where the solution takes now the form
u(x, t, k) ∈ H1(Ω)× L2(I)× L2(Kk) where I, Kk ⊂ R represent the considered intervals for time
and conductivity, respectively. In the spirit of PGD, we assume a separate form for the unknown,

u(x, t, k) ≈
n∑
i=1

Fi(x) ·Gi(t) ·Hi(k).

At iteration p+ 1 we look for an enrichment of the already known approximation at order p (i.e.,
we employ a greedy algorithm),

up+1(x, t, k) ≈ up(x, t, k) +R(x) · S(t) · P (k).

again, the admissible variation of the solution u∗ is

u∗(x, t, k) = R∗(x) · S(t) · P (k) +R(x) · S∗(t) · P (k) +R(x) · S(t) · P ∗(k).

The resulting nonlinear problem is solved by employing a fixed point algorithm.
We present a comparison of the L2-norm error of the solution for one particular conductivity

value (k=0.05 W
mK ) in Fig. 12.

Note that in this example the Hausdorff distance plot becomes a surface because of the 3-
dimensional nature of the problem. One of the advantages of k`-PGD method is that we can work in
a general number of dimensions easily since k-PCA, Hausdorff distances and ε-neighborhoods are
well-defined entities in any number of dimensions. The Hausdorff distance plot in this case is shown
in Fig. 13. Note that, in general, the distance between results grows monotonically up to t ≈ 0.7,
and then remains constant (for k = 0.0) or decreases.

In general, as in previous examples, `-PGD shows much better convergence rates with respect to
the global versions of HOSVD and PGD.

3.4. Time and memory cost

It is worth mentioning that the number of obtained modes is not the only relevant variable. Of course,
the time employed to obtain the separated representation of the solution (the off-line part of the PGD
algorithm), the time employed in reconstructing one particular solution (i.e., the on-line stage) and
the amount of memory employed to store the PGD solution are also important values to keep in
mind. These are represented in Figs. 14, 15 and 16, respectively. It can be noticed how, specially
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for the parametric case, the employ of local PGD approximations results in a very competitive
approach for non-separable problems. Important time and memory savings are obtained that make
`-PGD methods an appealing choice for model order reduction in this context.
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Figure 14. Time needed to compute the off-line stage for the a) Linear Elasticity example, b) Heat Transient
Equation and c) Parametric Heat Transient Equation.

4. CONCLUSIONS

It is well known that for problems whose solution presents an intricate manifold structure, local
model order reduction strategies provide with better results than global ones. However, very little has
been done for a priori methods. The main reason for that is precisely the difficulty of determining
the manifold structure of the solution a priori, with no snapshot of the solution available.

We have proposed here three possible methods for estimating the most appropriate size of the
local sub-domains. Of course, many other methods in addition to those proposed may be envisaged.
But what we know for sure is that adaptive strategies allow a better capture of the behavior of the
solution manifold and look for an as constant as possible size of the reduced bases.

The method of constant division (C`-PGD) may be a valid option with respect to global
implementations, but when compared with the other two adaptive methods shows its brute force
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Figure 15. Time needed to compute the on-line stage for the a) Linear Elasticity example, b) Heat Transient
Equation and c) Parametric Heat Transient Equation.

nature. The adaptive method with mode number optimization (MNO`-PGD) is the optimal method
when only one dimension of the whole domain needs to be adjusted to choose the size of the sub-
domains. But when the number of dimensions increases we propose the k`-PGD as the best method
to adaptive partitioning the domain with, as we have seen, excellent results with respect to global a
priori and a posteriori strategies.
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20 A. BADÍAS ET AL.

8. Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal of educational
psychology, 24(6):417, 1933.

9. JP Fink and WC Rheinboldt. On the error behavior of the reduced basis technique for nonlinear finite element
approximations. ZAMMJournal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik
und Mechanik, 63(1):21–28, 1983.
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14. Carlos Quesada, David González, Iciar Alfaro, Elı́as Cueto, and Francisco Chinesta. Computational vademecums
for realtime simulation of surgical cutting in haptic environments. International Journal for Numerical Methods in
Engineering, 2016.

15. Francisco Chinesta, Pierre Ladeveze, and Elı́as Cueto. A short review on model order reduction based on proper
generalized decomposition. Archives of Computational Methods in Engineering, 18(4):395–404, 2011.

16. A. Ammar, F. Chinesta, P. Diez, and A. Huerta. An error estimator for separated representations of highly
multidimensional models. Computer Methods in Applied Mechanics and Engineering, 199(25-28):1872 – 1880,
2010.

17. Amine Ammar, Antonio Huerta, Francisco Chinesta, Elı́as Cueto, and Adrien Leygue. Parametric solutions
involving geometry: A step towards efficient shape optimization. Computer Methods in Applied Mechanics and
Engineering, 268(0):178 – 193, 2014.

18. David Modesto, Sergio Zlotnik, and Antonio Huerta. Proper generalized decomposition for parameterized
Helmholtz problems in heterogeneous and unbounded domains: Application to harbor agitation. COMPUTER
METHODS IN APPLIED MECHANICS AND ENGINEERING, 295:127–149, OCT 1 2015.

19. PG Dirichlet. Lejeune, 1829,sur la convergence des séries trigonométriques qui servent àreprésenter une fonction
arbitraire entre des limites données. Journal für die reine und angewandte Mathematik, 3:157–169.
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