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Abstract Meshless methods, that appeared in the early nineties, constitute
nowadays an appealing method for the simulation of forming processes. In this
review we revisit the basic ingredients of the most common of such methods,
by analyzing their theoretical foundations, applicability and limitations, and
give some examples of performance to show the wide variety of situations in
which they can be employed.
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1 Introduction

Although there are some examples of meshless methods dating back to the
late seventies [57], the strong development of meshless methods came after
the little revolution provoked by the seminal paper of Villon and coworkers on
the so-called “diffuse element method” (DEM) [86] and the popularity given
to them by some modifications introduced on it by Belytschko and coworkers
to create the “Element Free Galerkin” (EFG) method [15,16] and by W. K.
Liu to create the somehow equivalent Reproducing Kernel Particle Method
(RKPM) [80].

These pioneering works opened the possibility to develop numerical meth-
ods without the need for time-consuming meshing procedures, since the con-
nectivity of the “elements” was created by the method itself in a process
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transparent to the user. What is even more important, meshless methods do
not suffer from lack of accuracy due to mesh (or cloud) distortion, as finite
elements do. This is why, some years later, a great interest was paid on them
in the forming processes community [27].

After those initial years of exploration, meshless methods came into an
age of maturity once their theoretical foundations were established by Oden
and coworkers [42], and Babuška and coworkers [10,11]. The flexibility, nice
properties such as arbitrary degree of consistency or continuity, the never-
before obtained spectacular simulations obtained with these methods, and
also, why not, the understanding they provide on the sound properties of finite
elements, provoked a decade or more of strong popularity of meshless methods
and very active research interest on the numerical community. A plethora of
modifications or (very often slight) improvements over existing methods gave
rise to an almost endless list of different names for methods that share some
common characteristics (notably, the lack of sensitivity to mesh distortion)
but that nowadays remains a difficulty for those coming for the first time to
the field.

After these years of maturity, only some methods came into play with re-
ally different characteristics to the ones mentioned before. Among them we
can cite the Natural Element Method (NEM) [101], or the Maximum Entropy
(MaxEnt) methods [98,6]. They respond to some of the most important crit-
icisms of meshless methods, namely the lack of true interpolation along the
boundary of the domain, which leads to difficulties on the imposition of essen-
tial boundary conditions, and (although only partially in the case of MaxEnt)
numerical integration errors.

In this paper a review is made on the use of meshless methods, with a
particular emphasis on their usage in the framework of material forming, ir-
respective of the particular process considered. There have been some prior
reviews on the field of meshless methods and, although some of them are nowa-
days somewhat old, we recommend the interested reader to consult [14,17,77,
87], to name a few. There are also some books available on the topic, such as
[78], some of them specifically devoted to aspects related to forming processes
[25,26].

During these years, meshless methods have successfully been applied to the
simulation of a variety of forming processes, involving both solid and fluids, but
with the main characteristic of employing, in general, an updated Lagrangian
perspective for the description of the equations of motion. This is perhaps the
most relevant novelty that meshless methods introduced, when viewed form
the forming process point of view: they successfully overcome the traditional
difficulty related to mesh distortion (or numerical diffusion, if prefer to employ
extensive remeshings, as in many commercial codes in the field).

In this paper a review is made of the most relevant meshless (or meshfree)
approaches to the field of material forming. First, a brief overview of the
theoretical aspects is made in Section 2. In it, common aspects of all meshless
methods are reviewed, as well as those characteristics that truly differentiate
them, far beyond the long list of different names for methods that differ only
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in very subtle details. These include the different approximation schemes, the
numerical integration schemes available to perform quadrature of the weak
form of the equations, and the imposition of essential boundary conditions.
These are some of the most prominent aspects of meshless methods in today’s
literature.

To provide the reader with a clear picture on where do we stand on the
field, Section 3 includes some interesting examples of application of meshless
methods that explore the ability of these methods to be applied under general
conditions for the simulation of material forming processes.

2 Theoretical foundations of meshless methods

In this section an overview of the theoretical foundations of meshless methods
is made. Particular attention is paid to the three most relevant aspects of
any of such methods, namely, its approximation scheme (strictly related to
its degree of continuity and consistency), its numerical integration scheme1

and aspects related to the imposition of essential boundary conditions. These
aspects are here judged as the most relevant ones for the field of forming
processes. For instance, the degree of consistency of each method (the order
of the polynomial they are able to reproduce exactly) is of utmost importance
in the development of stable (LBB-compliant) approximations when dealing
with incompressible media, as in plasticity or fluid mechanics. The degree of
continuity is generally not so important, but having smooth (differentiable)
approximations is essential when developing shell formulations for sheet metal
forming, for instance. In turn, numerical integration is a well known source of
error when dealing with meshless approximations, due to their inherent non-
polynomial character, and this is so irrespective of the particular application.
Finally, many physical phenomena occur near the boundaries of the domain
(contact, friction, merging flows, among others), so reproducing accurately the
essential field of the problem in these regions is again a key aspect. That is
why the imposition of essential boundary conditions or, more generally, the
accurate interpolation of the displacement (velocity) field along the boundary
is often required, and not always achieved, for meshless methods.

2.1 Meshless approximations

Probably the best form to integrate a meshless method within an existing
finite element solver is to think of a finite element as the set of a particular ap-
proximation scheme (in this case, an interpolation scheme formed by piecewise

1 We focus here on methods based on the weak form of the problem, although many
methods exist that are based upon the strong form, and that utilize a collocation approach,
see [17]. However, their applicability to the simulation of forming processes is somewhat
lower, due to aspects such as the description occurring in the vicinity of the boundary of the
domain —contact, friction— and therefore are not included here. We refer the interested
reader to the before mentioned reviews or books on the field for detailed explanations.
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polynomials) and an integration cell where Gauss quadrature is performed
(again, in the case of finite elements, the intersection of the supports of its
nodal shape functions). By combining different approximation schemes and
different quadrature schemes, as will be seen, different meshless methods can
be obtained. We review (not exhaustively) in this section the most important
ones in a historic sense. In the review, moving least squares, natural neighbor,
and local maximum entropy approximations are reviewed. Although not the
only ones in the literature, these three approximation schemes somewhat rep-
resent three different ages in the development of meshless methods, for reasons
that will be clear soon.

2.1.1 Moving Least Squares approximation

Although not the first in a strict historical sense, the responsible for the pop-
ularity of meshless methods is the so-called Diffuse Element Method (DEM)
[86] and, notably, the Element-Free Galerkin method (EFG) [15,16]. Both are
based upon the approximation of the essential field of the problem (here, as-
sume the displacement) through a moving least squares approximation. We do
not include here the Smooth Particle Hydrodynamics method (SPH) [83,57,
77], since it lacks of some very basic properties such as linear consistency, nor
the Reproducing Kernel Particle Method (RKPM) [80,81,65], that has been
shown to be equivalent, despite its very different origin, to the EFG [14].

In general, not only in EFGM, the domain Ω is discretized by cloud of
nodes, rather than a mesh, as seen in Fig. 1. In EFG methods, the essential
field (usually, the displacement or velocity fields) is approximated as

uh(x) =

m∑
i=1

pi(x)ai(x) ≡ pT (x)a(x), (1)

where m refers to number of terms in the basis, pi(x) constitutes a polynomial
basis up the desired order and, finally, ai(x) are the coefficients to determine,
that notably depend on x.

As a polynomial basis, in one dimension, the linear one is often used

pT = (1, x),

or a quadratic one

pT = (1, x, x2),

which in two dimensions reads

pT = (1, x, y, x2, xy, y2).

The approximation given by Eq. (1) can be made local through

uh(x,x) =

m∑
i=1

pi(x)ai(x) ≡ pT (x)a(x),
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Fig. 1 Covering of the domain Ω by the shape functions associated to each node, whose
support is denoted by ΩI .

where coefficients ai are obtained by minimization of a functional composed by
the difference between the local approximation to the sought function and the
essential field itself, in a least squares sense, i.e., by minimizing the following
quadratic functional

J =
∑
I

w(x−xI)(uh(x,xI)−u(xI))
2 =

∑
I

w(x−xI)

[∑
i

pi(xI)ai(x)− uI

]2
,

where I = 1, . . . , n represents the number of nodes in the model.

Weighting, and the corresponding local character of the approximation, is
given by the function w(x − xI).This function is often a gaussian or a cubic
spline. We can then re-formulate the functional as

J = (Pa− u)TW (x)(Pa− u),

where, as usual,

uT = (u1, u2, ..., un),
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(in a one-dimensional case) and P

P =


p1(x1) p2(x1) · · · pm(x1)
p1(x2) p2(x2) · · · pm(x2)

...
...

. . .
...

p1(xn) p2(xn) · · · pm(xn)

 ,

where, finally, W

W =


w(x− x1) 0 · · · 0

0 w(x− x2) · · · 0
...

...
. . .

...
0 0 · · · w(x− xn)

 .

To determine the coefficient’s value, it is then necessary to minimize J

∂J

∂a
= A(x)a(x)−B(x)u = 0.

Matrix A is called matrix of moments and has the following expression

A = P TW (x)P

B = P TW (x),

such that

a(x) = A−1(x)B(x)u, (2)

or, equivalently,

uh(x) =

n∑
i=1

φki (x)ui,

where

φk = [φk1 , φ
k
2 , ..., φ

k
n] = pT (x)A−1(x)B(x),

and where k denotes the order of the approximation. The resulting shape
function, for the quadratic case, is depicted in Fig. 2 for the interval [0, 1]
discretized with eleven nodes. Different support sizes for W are considered,
from r = 2h, with h the nodal spacing, to r = 4h.

Duarte and Oden [42] studied the EFG method and established for the first
time one key characteristic of the method: that the shape functions constitute a
partition of unity and that, despite the order of the approximation (there called
intrinsic), there is the possibility of establishing and extrinsic enrichment of
these functions so as to be able to make them reproduce a polynomial or
arbitrary order. Melenk and Babuška generalized this approach by defining
the so-called Partition of Unity method [10,11]:

uh(x) =
∑
i

φi(x)
∑
j

βjipj(x),
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Fig. 2 Example of quadratic EFG shape function on a regular one-dimensional grid for
different support sizes.

where βji represent the new unknowns of the problem (additional degrees of
freedom per node) and pj represent a basis including monomials up to a certain
degree (here, care must be taken so as not to produce linear dependencies with
the basis φi, see details in [9]).

In general, EFG methods acquired a great popularity for some years, but
still present some notable drawbacks. Some of them are common for most
meshless methods, others are particular of EFG. Among them we can cite the
imposition of essential boundary conditions (due to the influence of interior
nodes on the boundary, see Fig. 1), and the errors related to numerical inte-
gration (due to the use of quadrature cells not conforming to shape functions’
support and the use of non-polynomial shape functions, see Eq. (2)), that will
be discussed specifically in Sections 2.2 and 2.3, respectively.

2.1.2 Natural neighbor approximation

In the quest for a method free of errors in the interpolation of the essential
variable along the boundary, the Natural Element Method (NEM) [101,100,
102] was the first successful attempt. The NEM was originally a Galerkin
method in which interpolation was achieved through natural neighbor (NN)
methods [95,96,12,13].

NEM, as was the case in EFGM, also construct the connectivity of each
integration point in a process transparent to the user (and thus the appearance
of no need of any mesh), but relies on the concept of Delaunay triangulations
to do it. Although Delaunay triangulations are widely used in FE technology
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Fig. 3 Delaunay triangulation and Voronoi diagram of a cloud of points. The rightmost
figure shows a degenerate situation in which four nodes lye in the same circle.

to construct meshes (it can be demonstrated that it is the best possible mesh
in two dimensions), here the advantage is not the lack of any mesh, but the
good accuracy provided by the NEM despite the quality or distortion of this
triangulation, as proved in [101] for the first time and also in [36,31,29,4],
among other references.

The Delaunay triangulationD [40] of a cloud of nodesX = {x1,x2, . . . ,xN} ⊂
Rd, d = 2, 3, is the unique triangulation of the cloud that satisfies the so-called
circumcircle criterion, i.e., no node of the cloud lies within the circumcircle of
any triangle (see Fig. 3).

The dual structure of the Delaunay triangulation is the Voronoi diagram.
It is composed by a tessellation of the space into cells of the form:

TI = {x ∈ Rn : d(x,xI) < d(x,xJ) ∀ J 6= I},

where TI represents the Voronoi cell and d(·, ·) the Euclidean distance. The
simplest interpolation scheme that can be constructed on top of this geomet-
rical construction is the so-called Thiessen interpolation, a piecewise constant
interpolation within each Voronoi cell [104], which is therefore of continuity
C−1 and that has been used for mixed velocity-pressure approximations in [60,
59], among others.

But the undoubtedly most popular natural neighbor interplant is due to
Sibson [96]. If we define the second-order Voronoi cell as

TIJ = {x ∈ Rn : d(x,xI) < d(x,xJ) < d(x,xK) ∀ K 6= J ; ∀ K 6= I},

then, the Sibsonian shape function is defined as (see Fig. 4):

φsibI (x) =
κI(x)

κ(x)
,

where κ(x) and κI(x) represents the Lebesgue measure of the cells Tx and
TxI , respectively.

Thus defined, natural neighbor interpolation has some remarkable proper-
ties, if compared to EFG shape functions. For instance, NN shape functions
are smooth (C1) everywhere except from the nodes, where they are simply
continuous. A simpler form to calculate NN interpolation (termed Laplace in-
terpolation) that involves area computations instead of volumes (but produces
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Fig. 4 Definition of the Natural Neighbor coordinates of a point x.

less smooth shape functions) has been proposed in [12,13]. Also, an alterna-
tive definition has also been proposed by Hiyoshi and Sugihara to achieve any
degree of continuity in [69]. See Fig. 5 for a comparison of different shape
functions on a regular grid of nodes. All the before mentioned interpolation
schemes posses linear consistency, but when needed (as in the case of plasticity,
where incompressibility restraints needs for the use of LBB-compliant mixed
interpolations) higher-order NN interpolations can also be achieved [61]. Even
a combination of NN with bubble shape functions seems to give good result
for incompressible media [108].

In addition to these interesting properties, in the pioneer work of Sukumar
it was reported they Sibson interpolation was interplant along convex bound-
aries (which is in sharp contrast to EFGM, for instance). Albeit in non-convex
domains errors of about 2% were reported due to the lack of true interpolation.
Later on, in [102], Sukumar claimed the interpolatory character of Laplace
functions along the boundary, although in [30] some counter-examples were
found that demonstrate that in concave domains this interpolation may not
be true and proposed some nodal spacing restrictions so as to ensure a proper
imposition of essential boundary conditions. For a deeper analysis of the issue
of imposition of essential boundary conditions we refer the reader to Section
2.2.

Despite these interesting properties of NN interpolation (and others ex-
plained in Section 2.2), the main drawback of NEM is perhaps its high com-
putational cost, especially for Sibson interpolation. In [4] a deep analysis of the
computational cost of several meshless methods was accomplished. In it, it was
shown that mesh distortion could lead to important inaccuracies when deal-
ing with finite elements in practical applications, while Sibson interpolation
is several orders of magnitude heavier to compute than traditional piecewise
polynomial shape functions for finite elements. However, in non-linear com-
putations, while frequent Newton-Raphson iterations are needed, the relative
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Fig. 5 Sibson (a), Laplace (b), and Hiyoshi-Sugihara interpolants with C1 (c) and C2 (c)
continuity, respectively.

cost of shape function computation is obscured by the cost of updating tangent
stiffness matrices.

2.1.3 Local maximum entropy approximation

In the quest for the “perfect” meshless method, local maximum entropy (here-
after max-ent) methods are maybe the last to come into play. Sukumar seems
to have been the first in employing global max-ent methods to solve PDEs
[98]. Max-ent approximations provide smoothness (not easily attainable by
NEM), interpolation on the boundary (not easy to obtain with EFG), but are
non-local in nature. That is why the original work of Sukumar proposed to
use this type of interpolation on polygonally-shaped cells, thus avoiding full
matrices.
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More recently, Arroyo and Ortiz [6] proposed a new form of local max-ent
approximation, by viewing it as a problem of statistical inference in which the
in ear consistency requirement is set as a restriction to the problem. A new
parameter controls the support of the shape function, thus making unnecessary
to construct it over polygons.

To see the form of this new way of constructing meshless methods, consider
as usual a set of nodes X = {x1,x2, . . . ,xN} ⊂ Rd. Let u : convX → R be a
function whose values {uI ; I = 1, . . . , N} are known on the node set. “conv”
represents here the convex hull of the node set. Consider an approximation of
the form

uh(x) =

N∑
I=1

φI(x)uI ,

where the functions φI : convX → R represent the shape or basis functions.
These functions are required, to be useful in the solution of second-order PDEs,
to satisfy the zeroth and first-order consistency conditions:

N∑
I=1

φI(x) = 1, ∀x ∈ convX, (3a)

N∑
I=1

φI(x)xI = x, ∀x ∈ convX. (3b)

If these shape functions are, in addition, non-negative (φI(x) ≥ 0 ∀x ∈
convX), then, the approximation scheme given by Eq. (2.1.3) is referred to as
a convex combination, see for instance [46].

Since we look for positive functions φI , the max-ent rationale is based upon
the consideration of such functions as probability measures [98]. In this sense,
the Shannon entropy of a discrete probability distribution is given by:

H(φ) = −
N∑
I=1

φI lnφI .

Proceeding in this way, the basis function value φI(x) is viewed as the probabil-
ity of influence of a node I at a position x [98]. The problem of approximating
a function from scattered data can thus be viewed as a problem of statisti-
cal inference. Following [6], the optimal, or least biased, convex approximation
scheme (at least from the information-theoretical point of view) is the solution
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of the problem

maximize H(φ) = −
N∑
I=1

φI lnφI , (4)

subject to φI ≥ 0, I = 1, . . . , N,

N∑
I=1

φI = 1,

N∑
I=1

φIxI = x.

Proofs of the existence and uniqueness of the solution to this problem are given
in [6].

While approximations obtained after solving the problem 4 are global by
definition (and thus would produce full matrices when applied in a Galerkin
framework), Arroyo and Ortiz proposed a local max-ent approximation by
adding spatial correlation to the problem given by Eq. (4). In this way, the
width of the shape function φI can be defined [6] as

w(φI) =

∫
Ω

φI(x)|x− xI |2dx,

which is equivalent to the second moment of φI about xI . The most local
approximation is that which minimizes

W (φ) =

N∑
I=1

w(φI) =

∫
Ω

N∑
I=1

φI(x)|x− xI |2dx,

subject to the constraints given by Eqs. (3a), (3b) and the positivity restraint.
The new problem

For fixed x minimize U(x,φ) =

N∑
I=1

φI |x− xI |2 (5)

subject to φI ≥ 0, I = 1, . . . , N

N∑
I=1

φI = 1,

N∑
I=1

φIxI = x

has solutions if and only if x belongs to the convex hull of the set of points
[6]. If these points are in general position, then the problem (5) has unique
solution, corresponding to the piecewise affine shape functions supported by
the unique Delaunay triangulation associated with the node set X (see [6] and
references therein for the proof of this assertion).
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Arroyo and Ortiz [6] found an elegant solution to the problem of finding
a local approximation satisfying all the interesting properties of a (global)
Maximum Entropy approximation by seeking a compromise between problems
(4) and (5):

For fixed x minimize fβ(x,φ) ≡ βU(x,φ)−H(φ) (6)

subject to φI ≥ 0, I = 1, . . . , N,

N∑
I=1

φI = 1,

N∑
I=1

φIxI = x.

Proofs of the existence and uniqueness of problem (6) are also given in the
before mentioned reference. Note that the evaluation of the approximation
(6) does not require the solution of this problem. It is enough to solve an
unconstrained minimization problem that arises from the dual form of the
problem (6). The calculation of the shape function derivatives is also explicit,
see [6].

In general, max-ent shape functions provide with a smooth approximation
of the essential field, but the max-ent shape functions recover the piece-wise
linear polynomials over the Delaunay triangulation of the point set if the pa-
rameter β tends to infinity (see Fig. 6). Thus defined, the method possesses
linear consistency, very much like natural neighbor interpolation. It is possi-
ble, however, to obtain a (very complex) quadratic form [37] or, by extending
the algorithm initially designed for NEM in [61], to obtain any degree of con-
sistency also in a max-ent approach [64]. The computational cost of max-ent
approaches is considerably less than that of NEM (and higher than the corre-
sponding FEM approach), making it an appealing candidate for the simulation
of complex forming processes [91,62]. We will compare some results in Section
3 to see the relative importance of this assertion in practical implementations.

2.2 Imposition of essential boundary conditions

As introduced before, the imposition of essential boundary conditions, some-
thing very natural in finite elements, has been a kind of nightmare for meshless
methods. See the excellent analysis by Huerta and coworkers in [48]. Other
works on the topic include [65,66]. This is so since, due to the inherent un-
structured connectivity between nodes in the model, interior nodes could even-
tually influence the result on the boundary, see Fig. 7. In general, EFG or RKP
methods, whose shape function’s support is normally circular or rectangular,
present this problem. Also very frequently shape functions do not verify Kro-
necker delta properties (i.e., the approximated function does not pass through
nodal values), but this is normally easier to overcome by several methods.
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Fig. 6 Influence of the β parameter on the resulting shape function. Functions φI(x) for
the point located at the centre of the cloud and parameters β = 0.2, 0.6, 2.0 and 4.0,
respectively. Note the different supports, but also the different heights of the functions on
the scale.
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Fig. 7 Lack of true interpolation along the essential boundary due to influence of interior
nodes on the boundary.
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One of the earliest methods to impose essential boundary conditions in
EFG methods was simply to couple them with a strip of finite elements along
the boundary [75,47,70]. But obviously this method somewhat eliminates the
meshless character of the approximation, although it is very simple to imple-
ment. Other techniques include constrained variational principles [56], penalty
formulations, Lagrange multipliers, and many others, but in general focused
in the lack of Kronecker delta condition [22] and therefore did not attain a
true interpolation along the boundary.

If we restrict ourselves to the case of NEM, it was assumed that the Sibson
approach was interplant along convex boundaries. In [31] it was demonstrated
that through the use of he concept of α-shapes a true interpolation could be
achieved even in non-convex boundaries. α-shapes are particular instances of
the so-called shape constructors. Shape constructors are geometrical techniques
that enable to find the shape of the domain, described solely by a cloud of
nodes, at each time step. α-shapes [44] have been employed in a number of
previous works involving free surface flows, see for instance [72] [71] [84] [59]
[18] [88] [89], among others. In essence, through the definition of a parameter α
that represents the level of detail up to which the geometry is to be represented,
this technique allows to extract almost with no user intervention the actual
geometry of the domain, see Fig. 8.

Therefore, in addition to the importance of the true interpolation achieved
by this method, α-shapes (or, in general, shape constructors) provide a very
efficient means to deal with nodal clouds evolving in time, as will be analyzed
in Section 3 for fluid mechanics problems. Fragmentation, coalescence, merging
flows, etc., can be treated with no user intervention very conveniently in this
way.

In [107] a new approach was developed for the imposition of essential
boundary conditions in the context of the NEM (Constrained-NEM, or C-
NEM) that is based upon the usage of a visibility criterion, a concept initially
developed in the context of EFGM [90]. It can be demonstrated that, up to
some differences in the implementation aspects, it produces results entirely
equivalent to those obtained by employing α-shapes, but needs for an explicit
description of the boundary of the domain in the form of a triangulation or
planar straight line graph [106,74,109,25,26,73].

For Laplace-type of NN interpolations, it was initially claimed [102] that
they were interplant even on non-convex domains, but in [30] it was proved
that this interpolation was only node-wise and that some counter-examples
could be found. An alternative method was proposed in this last reference to
impose exactly essential boundary conditions by employing a planar straight
line graph describing the boundary.

If we restrict ourselves to the case of local max-ent approximation, in [6]
a demonstration is included that proves that the method possesses a weak
Kronecker delta property, i.e., for convex domains, the value of shape functions
associated to interior nodes vanishes on the boundary. Thus imposing the exact
value of the nodal displacement with Lagrange multipliers, for instance, will
suffice to verify essential boundary conditions straightforwardly, very much like
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Fig. 8 Evolution of the family of α-shapes of a cloud of points representing a wave breaking
on a beach. Different shapes for different α values (Sα=0 or cloud of points (a), S0.5 (b),
S1.0 (c), S2.0 (d), S3.0 (e) and S∞ (f)) are depicted.

in finite elements. This is in general not true for non-convex domains, however.
In [61] this approach was later generalized to arbitrary order of consistency.
See Fig. 9 for an example of quadratic max-ent shape function on the boundary
of the domain verifying Kronecker delta property.
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Fig. 9 Interpolating max-ent quadratic function on the boundary of the convex hull of the
data sites. A discontinuity on the derivative appears at the node location in this case.

2.3 Numerical integration

As mentioned before, only formulations based upon weak forms of the govern-
ing equations are being covered in this review, since collocation methods are,
in principle, not so well suited for the simulation of forming processes. In this
framework, numerical integration plays a fundamental role for the accuracy of
the results. In general, meshless formulation do not employ polynomial shape
functions, and since quadrature formulas were initially designed to integrate
such functions, an error is unavoidable. In addition, to perform numerical
integration an integration cell should be chosen, and these do not generally
conform with the support of shape functions (as is trivially the case in finite
elements, where the integration cell arises naturally as the intersection of the
element’s shape functions support). This provokes a second source of error.

Historically, the first attempt to overcome problems related to numerical
integration errors was to try to conform integration cells to shape function
support, as in [41,39,38,63,7,8], for instance. In general, none of these methods
completely overcome the mentioned deficiencies, due to the presence of the
second source of error mentioned earlier: the non-polynomial character of the
approximation.

The most important advancement in the numerical integration of meshless
methods arose with the development of the so-called Stabilized Conforming
Nodal Integration (SCNI) by J. S. Chen [23]. In essence, this method is based



18 Eĺıas Cueto, Francisco Chinesta

on assuming a modified strain field at each node:

ε̃hij(xI) =

∫
Ω

εij(x)Φ(x;x− xI)dΩ,

where ε represents the Cauchy strain tensor and Φ is a distribution function,
that is usually taken as:

Φ(x;x− xI) =
{ 1
AI

if x ∈ ΩI
0 otherwise

with ΩI the Voronoi cell associated to node I (other approaches in the def-
inition of the area associated to each node are equally possible) and AI the
corresponding area of this cell. With this definition, the strain smoothing leads
to:

ε̃hij(xI) =

∫
Ω

1

2

(∂uhi
∂xj

+
∂uhj
xi

)
Φ(x;x− xI)dΩ

By the divergence theorem, it can be obtained

ε̃hij =
1

2AI

∫
ΓI

(uhi nj + uhj ni)dΓ, (7)

ΓI being the boundary of the Voronoi cell associated to node I. By introducing
shape functions into Eq. (7), a matrix expression is obtained in the form:

ε̃h(xI) =
∑

J∈NN(I)

B̃J(xI)uI ,

where NN(I) represents the set of nodes neighboring the point xI . The ap-
proximation to the weak form of the problem leads to a stiffness matrix and
a force vector, in the absence of body forces, that can be expressed as:

KIJ =

NP∑
m=1

B̃
T

I (xm)CB̃J(xm)V nm,

f I =

Nnb∑
m=1

φ(xm)t(xm)V n−1m ,

where V nm denotes the volume in dimension n of the Voronoi cell associated to
node m. Nnb represents the number of nodes in the natural boundary.

This nodal quadrature scheme has rendered excellent results when applied
to the EFGM [23]. This technique is also very well suited for its application
within the NEM, since most of the geometrical entities appearing in its com-
putation (Voronoi cells, circumcenters, etc.) are in fact previously obtained in
the NE shape function computation and can be easily stored with important
computational saving.

Also specially noteworthy is the fact that SCNI leads to a truly nodal
implementation of the Natural Element method (or whatever method it is
applied to), which means that no recovery of secondary variables must be
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Fig. 10 Division of a hollow cylinder [63] into Voronoi cells. Note that concave regions need
for an additional triangulation to intersect Voronoi cells, defined on the convex hull of the
node cloud.

performed, nor nodal averaging, like in the traditional version of the Finite
Element method or in previous non-linear versions of the NEM [55]. In Fig.
10 an example of application of this technique is shown over the geometry of
a hollow cylinder [63]. It can be noticed how a Voronoi cell must be computed
around each node and a quadrature scheme stablished on the boundary of it,
usually by performing a division on triangles.

Surprisingly or not, W. Quak [93,94] found that by applying SCNI to stan-
dard finite elements very good results were obtained in terms of accuracy for
very distorted meshes. In this reference, a bending test was simulated with
five different clouds of nodes, see Fig. 11. It was found that finite elements
provided very competitive results, comparable to those of max-ent approxi-
mations, and much better than EFG methods. Nowadays there is a plethora
of nodal integration techniques developed for finite elements that has provided
them with the best characteristics of meshless methods in terms of robustness
to mesh distortion [92,45,20,76].

3 Examples of application

Once meshless methods acquired an important maturity, their application to
forming process simulation became almost straightforward, as will be seen.
There have been many applications in the field of solid (bulk) forming pro-
cesses, as well as in fluid mechanics, but slightly less in sheet metal forming,
for reasons that will become clearer later on. In this section a revision is made
on the different applications that can be envisaged for an advantageous appli-
cation of meshless methods.

3.1 Bulk forming processes

Bulk forming processes is maybe the most natural application of meshless
methods to the field of forming, and one of the first where they were applied
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Fig. 11 Distortion test performed with Stabilized Conforming Nodal Integration.

[21,1,5]. One of the most classical formulations when dealing with processes
like aluminum extrusion, for instance, is to assume that, since plastic strains
are much larger than elastic ones, one can neglect them and employ the so-
called flow formulation (see [112] [110] [111] [82], just to cite some of the
first and more recent works using this assumption) to assume that aluminum
behaves like a non-Newtonian fluid, i.e.,

ε̇ = f(σ).

By assuming a rigid-viscoplastic constitutive law, and a von Mises plasticity
criterion, one arrives at

σ = 2µd− pI, with µ =
σy

3d
,

where

d =

√
2

3
d : d

is the effective strain rate. In particular, in [1,5] it was assumed that the
aluminum yield stress varied according to a Sellars-Tegart law:

σy(d) = Smarcsinh
[[(d1

A

)
e

Q
RT

] 1
m

]
with d1 = max{d, d0}, (8)

and a coupled thermo-mechanic model was implemented. The key ingredient
in this model was to employ an updated Lagrangian framework to describe
flow kinematics, i.e., an explicit update of the geometry is achieved through

xn+1
I = xnI + vnI∆t,
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and where the velocity field v is obtained after a consistent linearization of
the variational problem. Since no loss of accuracy is produced by ‘mesh’ dis-
tortion, this very simple approach to many forming processes produces very
appealing results for many forming processes like aluminum extrusion (already
mentioned, but also in [3,49]), friction stir welding [2], forging [99], casting [1],
laser surface coating [58], machining [28], and many others.

Many practical aspects of forming simulation were studied in [4]. In partic-
ular, aspects related to computational cost and accuracy were deeply studied.
Natural element and finite element methods were compared and, noteworthy,
it was found than the computational cost of NEM was higher, particularly
if Sibson shape functions are used. However, since we deal with highly non-
lineal applications, this computational cost is obscured by the time spent in
obtaining consistent tangent stiffness matrices in the Newton-Raphson loop.

In Fig. 12(a) geometry of an extrusion test is show (only one half of the
domain is simulated by applying appropriate boundary conditions). At this lo-
cation, equivalent strain rate contour plots for finite element, Sibson-NEM and
Laplace-NEM, respectively. Note how finite element approximation produces
an artificial stress concentration near the symmetry plane, where nothing can
provoke this spurious stress level, that can only be due to mesh distortion.
On the contrary, NEM (both Sibson and Laplace approximations) produced
excellent results, with no apparent spurious stress concentrations.

Specially noteworthy is the ability of meshless methods to accurately re-
produce the process of porthole extrusion. Due to the particular geometrical
conditions of the dies necessary to obtain hollow profiles, porthole extrusions
needs for a simulation strategy able to take into account the process of mate-
rial separation and welding through extrusion. In [50] a deep comparison of FE
and NEM techniques was performed for the porthole die extrusion of AA-6082
and compared with experimental results. In Fig. 13 a comparison is made with
different die geometries in which different results can be noticed. In the model,
it was assumed that a proper welding necessitated of a prior level of pressure
within the die chamber. A nodal implementation of NEM allowed to track the
pressure history at nodal positions, thus enabling to know if a proper welding
had been achieved. In Fig. 13 blue nodes represent lack of true welding after
the porthole, whereas red nodes indicate a good process. It can be noticed
that only the geometry represented in the middle figure produces good quality
profiles due to its particular geometry. The rightmost figure, despite its good
apparent geometry, shows that no proper welding is achieved (note the blue
nodes all along the geometry of the extrudate). Under internal pressure, it is
expected that this welding will open again, as shown by experimental results.

3.2 Sheet metal forming

The corps of literature of meshless methods devoted to sheet metal forming
is considerably smaller than that of bulk forming. In some way it is natural,
since meshless methods do not employ any connectivity dictated by the user



22 Eĺıas Cueto, Francisco Chinesta

Z

X

Y

(a)

Y

X

Z

d

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(b)

Y

X

Z

d

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(c)

Y

X

Z

d

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(d)

Fig. 12 Contour plot of the second invariant of the strain rate tensor at the location
indicated in (a). (b) FEM, (c) Sibson, (d) Laplace results.

to define a “mesh”. Therefore, shells, that constitute a manifold geometry in
three-dimensional space, are difficult to reproduce by a method based solely
on a cloud of nodes.

Among the first works devoted to sheet metal forming one can cite [105]
and [79]. In both a kind of solid-shell approach was employed, i.e., several
nodes were placed through the thickness direction of the shell. Very few works
were devoted to true shell formulations. Maybe [97] can be considered as the
first one, up to our knowledge. In all these references, since no connectivity
is established, and in order to avoid computations of distances between nodes
in secant directions (instead of in directions tangent to the manifold), a nodal
spacing, h,

It was not until very recently that a sound basis has been established for
the proper simulation of shells with meshless methods [85], in this case by
employing max-ent approaches, although the method is completely general.
Briefly speaking, the proposed method is based upon the assumption that a
shell is actually a manifold in geometrical terms, i.e., each point of a shell



Meshless methods for the simulation of material forming 23

Fig. 13 Porthole die extrusion under different die geometries. Red nodes indicate a good
quality in the welding of aluminum after the porthole, whereas blue nodes indicate defects.
Under these assumptions, only the central geometry will provide an appropriate quality
in the extruded profile. The rightmost geometry, despite its apparent good geometry, will
provide a profile that will open once it is subjected to internal pressure.

resembles locally an Euclidean (flat) space. Therefore, in order to perform a
consistent meshless analysis of shells, it is necessary to locally learn its manifold
structure, by identifying its locally flat principal directions. This is done on
a node-by-node basis by employing non-linear principal component analysis
(PCA) techniques [103].

3.3 Fluid forming processes

Fluid forming processes involve a great variety of situations, ranging from
casting [106,5] to mould filling [84], from Resin Transfer Moulding [54] to spin
coating processes [34,33,35], where a plethora of different models for polymers,
among other materials, could be taken into account [24]. As in the case of bulk
forming processes, meshless methods allow for an updated Lagrangian descrip-
tion of fluid flows easily [84]. This is particularly noteworthy when free surface
flows are present, and can be of little help if not. However, nodal implemen-
tations can help in designing efficient algorithms when variables depending to
history are to be taken into account.
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To exemplify how this affects the simulation of fluid flows, let us restrict
to Navier-Stokes equations, for instance:

∇ · σ + ρb = ρ
dv

dt
= ρ

(
∂v

∂t
+ v∇ · v

)
, (9a)

∇ · v = 0, (9b)

σ = −pI + 2µD. (9c)

The weak form of the problem associated to Eqs. (9a), (9b) and (9c) is:∫
Ω

2µD : D∗ dΩ−
∫
Ω

pI : D∗ dΩ = −
∫
Ω

ρb · v∗ dΩ+

∫
Ω

ρ
dv

dt
· v∗ dΩ, (10)

and ∫
Ω

∇ · v p∗ dΩ = 0,

where “:” denotes the tensor product twice contracted and b the vector of
volumetric forces applied to the fluid. D∗ represents and admissible variation
of the strain rate tensor, whereas v∗ represents equivalently an admissible
variation of the velocity.

The second term in the right-hand side of Eq. (10) represents the inertia
effects. Time discretization of this term represents the discretization of the
material derivative along the nodal trajectories, which are precisely the char-
acteristic lines related to the advection operator. Thus, assuming known the
flow kinematics at time tn−1 = (n− 1)∆t, meshless methods allow to proceed
easily as follows, by virtue of the updated Lagrangian framework:∫

Ω

ρ
dv

dt
v∗ dΩ =

∫
Ω

ρ
vn(x)− vn−1(X)

∆t
v∗ dΩ, (11)

where X represents the position at time tn−1 occupied by the particle located
at position x at present time tn, i.e.:

x = X + vn−1(X)∆t.

So we arrive at∫
Ω

2µD : D∗ dΩ −
∫
Ω

pI : D∗ dΩ −
∫
Ω

v · v∗

∆t
dΩ =

= −
∫
Ω

ρb · v∗ dΩ −
∫
Ω

ρ
vn−1 · v∗

∆t
dΩ, (12)

and ∫
Ω

∇ · v p∗ dΩ = 0.

where the superindex in all the variables corresponding to the current time
step has been dropped for clarity.
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The most difficult term in Eq. (12) is the second term of the right-hand
side. The numerical integration of this term depends on the quadrature scheme
employed [59].

If traditional Gauss-based quadratures on the Delaunay triangles are em-
ployed, it will be necessary to find the position at time tn−1 of the point
occupying at time tn the position of the integration point ξk (see Fig. 14):∫

Ω

ρ
vn−1 · v∗

∆t
dΩ =

∑
k

ρ
vn−1(Ξk) · v∗(ξk)

∆t
ωk, (13)

where ωk represents the weights associated to integration points ξk, and Ξk

corresponds to the position occupied at time tn−1 by the quadrature point ξk,
see Fig. 14.

v ( )
n-1

Xv ( )
n

x

Fig. 14 Determination of the position of quadrature points at time step tn−1.

On the contrary, if some type of nodal integration, as in [63], is employed,
this procedure becomes straightforward, with the only need to store nodal
velocities at time step tn−1.

In [72] a Lagrangian method that employs Natural Neighbor interpolation
to construct the discrete form of the problem was presented. In that case,
however, an implicit three-step fractional method was employed to perform
the time integration. This approach needs for a stabilization if small time
increments are chosen. See [72] for more details. In that reference, however,
the method is truly a particle method, since nodes posses volume and mass
associated to them.

If free-surface flows are considered, it is again of utmost importance to
employ any technique for the reconstruction of the geometry of the evolv-
ing domain. While most meshless approaches do not employ any particular
technique, thus provoking results depending on the shape functions’ support,
shape constructors have been employed in a number of works [84,59,72,71,19,
68]. α-shapes [43,44,31] are perhaps the most widely used shape constructors
in this context. However, it is well known that this technique usually fails in
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the presence of holes or merging flows during the simulation, unless a very fine
nodal cloud is employed. In [51] an improved α-shape method is developed
that takes into account not only geometrical features of the cloud of points,
but also the history of velocity field in order to anticipate merging flows, the
appearance of holes, etc, to a higher degree of accuracy. This method has ren-
dered excellent results in the simulation of free-surface flows and also in the
simulation of fluid-structure interactions [53].

Particularly noteworthy is the ability of meshless methods to construct
node-based approaches for fluids with complex constitutive equations [52].
Multiscale methods arising from kinetic theory [67] are a clear example of
this. In these models, a constitutive equation of the type

σ = −pI + τ + 2ηD,

where τ represents an extra-stress contribution coming from the micro-scale.
To obtain this extra-stress contribution, kinetic theory provides also the equa-
tion governing the evolution of the probability distribution function ψ at the
micro-level. This equation is known as the Fokker-Planck equation:

Dψ

Dt
= − ∂

∂X
· {Aψ}+

1

2

∂

∂X

∂

∂X
: {Cψ}, (14)

where A represents a vector describing the drift exerted by the fluid on the
function ψ, andC is a symmetric, positive-definite matrix accounting for brow-
nian effects in the model. D/Dt represent material derivative. The expression,
finally, that relates the obtained configuration state with its enforced state of
stress is known as the Kramers formula:

τ =

∫
g(X)ψdX = 〈g(X)〉

where the brackets 〈·〉 denote an ensemble average over all the molecular con-
formational space at a physical point, and g is some function of the configu-
ration state, depending on the particular model considered.

The stochastic approach to these problems makes use of the equivalence of
the Fokker-Planck Eq. (14) to the following Itô’s stochastic differential equa-
tion [67]:

dX = Adt+B · dW (15)

where
C = B ·BT

andW represents a Wiener process. Eq. (15) applies along individual molecule
trajectories.

Meshless methods allow to attach molecule ensembles to the nodes, allow-
ing for the integration of Eq. (15) by the method of characteristics, along the
nodal paths straightforwardly [32]. The integration is performed by means of
the so-called Euler-Maruyama scheme:

Xj
n+1 = Xj

n +A(Xj
n, tn)∆t+B(Xj

n, tn) ·∆W j
n (16)
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Fig. 15 Evolution of the velocity field in the die swelling flow of an entangled polymer.

where n refers to the current time step and j to the individual molecule being
integrated.

For instance, in [32] an study is made by means of natural elements of the
swelling behavior of an entangled polymer modeled by a Doi-Edwards fluid.
Four snapshots of the velocity field are shown in Fig. 15. Elastic effects are
notorious after the outlet of the channel. A minor loss of symmetry in the flow
is noticed due mainly to the statistical noise. Despite the very low number of
realizations per node, the statistical noise remains surprisingly low.

In [52], for instance, it is shown how meshless methods provide an approxi-
mation to the swelling flow of non-newtonian flows that improves the accuracy
of existing finite element approximations.
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4 Conclusions

Meshless methods arose in the middle nineties as a promising alternative to
finite elements where the process of generation of complex meshes constitutes
a major issue or where mesh distortion provoke loss of accuracy in the results.
Meshless methods provide a very flexible alternative for these cases, although
all the problems they presented initially needed for a very active research ac-
tivity during more than a decade. Today, some twenty years after, meshless
methods have overcome most of their initial limitations and constitute nowa-
days an appealing alternative in many fields. Noteworthy, material forming
simulation is one of such fields.

During this review it has been highlighted how meshless methods are now
able to provide a very competitive alternative to finite element simulation
in many fields, from bulk forming to complex fluid flows (and perhaps to a
lesser extent in sheet metal forming). Their main ability is perhaps to provide a
very convenient way of performing updated Lagrangian descriptions of forming
processes. This type of description is helpful when dealing with bulk forming,
for instance, or when free-surface flows are present.

Noteworthy, all the research activity generated by meshless methods has
helped to improve also the properties of finite elements. It has been shown,
for instance, how finite elements with stabilized conforming nodal integration
provide very competitive results at a fraction of the computational cost of
meshless methods. All this research activity is today, after some 20 years,
helping us to understand why finite elements, originated some sixty years ago,
are still among us, probably for many years to come.
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