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SUMMARY

This work addresses the recurrent issue related to the existence of reduced bases related to the
solution of parametric models defined in evolving domains. In this first part of the work we address the
case of decoupled kinematics, i.e., models whose solution does not affect the domain in which they are
defined. The chosen framework considers an updated Lagrangian description of the kinematics, solved
by using natural neighbor Galerkin methods within a non-incremental space-time framework that can
be generalized for addressing parametric models. Examples are included showing the performance and
potentialities of the proposed methodology.
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1. Introduction

1.1. On the difficulty of simulating evolving domains

Evolving domains introduce many numerical difficulties. Firstly, when using a fixed mesh the
domain evolution must be captured by using an appropriate technique (e.g. VOF, level sets, or
any similar technique). The resulting advection terms must be efficiently stabilized by using, in
turn, an adequate technique (SUPG, DG, ...). Numerous works have addressed such questions
during the last decades see, for instance, [8] and references therein.
Another possibility consists in tracking the domain whose geometry evolves with the material

velocity, in an (updated) Lagrangian approach. This approach simplifies the treatment of
advection terms that now result in a simple material derivative. The main drawback is, however,
that meshes become rapidly too distorted implying the need for frequent remeshing and the
associated field projection between old and new meshes. A particularly elegant analysis of the
difficulties associated with this approach to the problem can be found in [15]. Intermediate
procedures have been proposed in the framework of ALE methods alleviating partially the
issues of fixed and moving meshes [8]. However, the determination of the optimal velocity of
the mesh is a tricky problem.
Some years ago new discretization techniques were proposed whose accuracy proved to

be independent of the nodal distribution used to approximate the different fields involved
in the models. These techniques were called meshless or meshfree methods, even if some of
them employ a background mesh to construct the functional approximation or even to perform
numerical integration. This designation is justified by the fact that the approximation accuracy
does not depend on the relative position of the nodes. As a result, remeshing can be avoided
even in the case of large distortions of the background mesh.
Despite the chosen framework for the description of the kinematics, it is well known in the

reduced order modeling community, that the determination of an efficient set of reduced basis
for problems defined in an evolving domain is a difficult task. This is caused, no doubt, because
the deformation of the domain very much complicates the concept of snapshot, which is crucial
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PGD FOR EVOLVING DOMAINS 3

in understanding the overall behavior of the system, and in determining the set of reduced
basis itself [20].
In this work, among many different possibilities, we have chosen the Natural Element Method

(NEM), widely described in [7] and references therein, to approximate the kinematics in an
updated Lagrangian framework. NEM overcomes FEM remeshing needs by employing natural
neighbor approximation instead of piece-wise polynomials to construct shape functions in a
Galerkin setting. Thus, within the NEM framework one can proceed with the original cloud
of nodes moving according to material velocity during the whole simulation, even in the case
of very large geometrical transformations. This is not a crucial choice in the development that
follows (many other meshless methods exist that allow for an updated Lagrangian description
of kinematics), albeit NEM presents some very interesting characteristics that will be analyzed
below [1].
In what follows we consider a model defined in a domain that at time t = 0 occupies the

region Ω0 ⊂ R
3. The different fields in this domain are approximated from a cloud of Nn nodes

located at positions x̃0
i , i = 1, . . . , Nn. The material domain evolves in time, Ω(t) representing

its configuration at time t. We assume that this evolution is defined by a given, decoupled,
velocity field v(x ∈ Ω(t), t ∈ I ⊂ R+). Nodes move with the material velocity, and because the
meshless behavior of the NEM approximation, all the fields are approximated in the updated
domain Ω(t) by using the original cloud of nodes. No addition or deletion of nodes is considered,
even if it is perfectly possible in a NEM framework. At time t nodal positions will be noted
by x̃t

i, i = 1, . . . , Nn.
Hereafter we assume, without loss of generality, that the model, defined in the evolving

domain Ω(t), involves the unknown field u(x ∈ Ω(t), t ∈ I). We focus on the possibility
of determining a reduced basis approximation for such field in the context of the proper
generalized decomposition (PGD) framework [3] [14] [5] [6][2][18] [9]. In this work a strategy
able to compute transient solutions in evolving domains is proposed. This strategy falls within
a non-incremental framework originally proposed in a different context by Ladeveze [13].
Moreover, it will be shown how efficiently parametric models defined in evolving domains
can be solved. Here, the model parameter, say the thermal conductivity k of the thermal
model here addressed, could be introduced as an extra-coordinate in the model, and then a
multidimensional representation of the unknown field u(x ∈ Ω(t), t ∈ I, k ∈ ℑ) will be found.

1.2. Reduced order modeling of parametric models: the case of fixed domains

In this section, as an introduction, we summarize the PGD-based model reduction strategy
for fixed domains. Let us consider the following parametric heat transfer equation:

∂u

∂t
− k∆u− s = 0, (1)

with homogeneous initial and boundary conditions. Enforcement of non-homogeneous initial
and boundary conditions was deeply analyzed in [10].
Here u = u(x, t, k) ∈ Ω× I×ℑ, and the source term s is assumed constant for simplicity. In

the PGD framework, the conductivity k is viewed as a new coordinate defined in the interval
ℑ, rather than as a parameter. Thus, instead of solving the thermal model for different,
discrete, values of the conductivity parameter, the strategy developed in [19] and also in
[11] aims at solving at once a more general, multidimensional, problem. The price to pay is
precisely an increase of the problem dimensionality. However, since the complexity of the PGD
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4 AMMAR, CUETO, CHINESTA

technique scales only linearly (and not exponentially) with the space dimension, considering
the conductivity as a new coordinate still allows to efficiently obtain an accurate solution. We
review here, precisely, the PGD approach to standard parametric problems.
The weak form related to Eq. (1) reads: find u(x, t, k) such that

∫

Ω×I×ℑ

u∗ ·

(

∂u

∂t
− k ·∆u− s

)

dx · dt · dk = 0, (2)

for all test functions u∗ selected in an appropriate functional space.
The PGD solution is sought iteratively in the form [3]:

u (x, t, k) ≈

N
∑

i=1

Xi (x) · Ti (t) ·Ki (k) . (3)

Let us assume that the n-th term of the PGD approximation is already known:

un (x, t, k) =

n
∑

i=1

Xi (x) · Ti (t) ·Ki (k) . (4)

Computation of the n + 1-th term Xn+1 (x) · Tn+1 (t) · Kn+1 (k), which we write as
R (x) · S (t) ·W (k) for simplicity,

un+1 = un +R (x) · S (t) ·W (k) . (5)

begins by assuming the simplest choice for the test functions u∗ used in Eq. (2):

u∗ = R∗ (x) · S (t) ·W (k) + R (x) · S∗ (t) ·W (k) +R (x) · S (t) ·W ∗ (k) . (6)

With the trial and test functions given by Eqs. (5) and (6) respectively, Eq. (2) is a non-
linear problem that must be solved by means of a suitable iterative scheme. In our earlier
papers [3] and [4], we used Newton’s method. Simpler linearization strategies can also be
applied, however. The simplest one is an alternating direction, fixed-point algorithm, which
was found remarkably robust in the present context. Each iteration consists of three steps that
are repeated until convergence, that is, until reaching the fixed point. The first step assumes
S (t) and W (k) known from the previous iteration and computes an update for R (x) (in this
case the test function reduces to R∗ (x) · S (t) ·W (k)). From the just updated R (x) and the
previously used W (k), we can update S (t) (with u∗ = R (x) · S∗ (t) · W (k)). Finally, from
the just computed R (x) and S (t), we update W (k) (with u∗ = R (x) · S (t) · W ∗ (k)). This
iterative procedure continues until reaching convergence. The converged functions R (x), S (t)
and W (k) yield the new functional product of the current enrichment step: Xn+1 (x) = R (x),
Tn+1 (t) = S (t) and Kn+1 (k) = W (k). The explicit form of these operations is described
below.

1.2.1. Computing R (x) from S (t) and W (k): We consider the weak form of equation (1):
∫

Ω×I×ℑ

u∗ ·

(

∂u

∂t
− k ·∆u− s

)

dx · dt · dk = 0, (7)

Here, the trial function is given by

u (x, t, k) =

n
∑

i=1

Xi (x) · Ti (t) ·Ki (k) +R (x) · S (t) ·W (k) . (8)
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Since S and W are known from the previous iteration, the test function reads

u∗ (x, t, k) = R∗ (x) · S (t) ·W (k) . (9)

Introducing (8) and (9) into (7) yields

∫

Ω×I×ℑ

R∗ · S ·W ·

(

R ·
∂S

∂t
·W − k ·∆R · S ·W

)

dx dt dk =

= −

∫

Ω×I×ℑ

R∗ · S ·W ·Rn dx dt dk, (10)

where Rn stands for the residual at enrichment step n:

Rn =

n
∑

i=1

Xi·
∂Ti

∂t
·Ki −

n
∑

i=1

k ·∆Xi · Ti ·Ki − s. (11)

Since all functions depending time and conductivity have been already determined, we can
integrate Eq. (10) over I ×ℑ. With the following notations,

























w1 =
∫

ℑ

W 2dk s1 =
∫

I

S2dt r1 =
∫

Ω

R2dx

w2 =
∫

ℑ

kW 2dk s2 =
∫

I

S · dS
dt
dt r2 =

∫

Ω

R ·∆R dx

w3 =
∫

ℑ

W dk s3 =
∫

I

S dt r3 =
∫

Ω

R dx

wi
4 =

∫

ℑ

W ·Ki dk si4 =
∫

I

S · dTi

dt
dt ri4 =

∫

Ω

R ·∆Xi dx

wi
5 =

∫

ℑ

kW ·Ki dk si5 =
∫

I

S · Ti dt ri5 =
∫

Ω

R ·Xi dx

























, (12)

Eq. (10) reduces to

∫

Ω

R∗· (w1 · s2 · R− w2 · s1 ·∆R) dx =

= −

∫

Ω

R∗·

(

n
∑

i=1

wi
4 · s

i
4 ·Xi −

n
∑

i=1

wi
5 · s

i
5 ·∆Xi − w3 · s3 · s

)

dx. (13)

Eq. (13) defines in weak form an elliptic steady-state boundary value problem for the
unknown function R that can be solved by using any suitable discretization technique (finite
elements, finite volumes, . . . ). Another possibility consists in coming back to the strong form
of Eq. (13):

w1 · s2 ·R− w2 · s1 ·∆R =

= −

(

n
∑

i=1

wi
4 · s

i
4 ·Xi −

n
∑

i=1

wi
5 · s

i
5 ·∆Xi − w3 · s3 · s

)

, (14)

that can be solved by using any classical collocation technique (finite differences, SPH, . . . ).
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1.2.2. Computing S (t) from R (x) and W (k): In the present case, the test function is written
as

u∗ (x, t, k) = S∗ (t) · R (x) ·W (k) , (15)

and the weak form becomes
∫

Ω×I×ℑ

S∗ ·R ·W ·

(

R ·
∂S

∂t
·W − k ·∆R · S ·W

)

dx dt dk =

= −

∫

Ω×I×ℑ

S∗ ·R ·W ·Rn dx dt dk. (16)

Integrating over Ω×ℑ gives
∫

I

S∗·

(

w1 · r1 ·
dS

dt
− w2 · r2 · S

)

dt =

= −

∫

I

S∗·

(

n
∑

i=1

wi
4 · r

i
5 ·

dTi

dt
−

n
∑

i=1

wi
5 · r

i
4 · Ti − w3 · r3 · s

)

dt. (17)

Equation (17) represents the weak form of the ODE defining the time evolution of the
field S that can be solved by using any stabilized discretization technique (SU, Discontinuous
Galerkin, . . . ). The strong form of Eq. (17) reads

w1 · r1 ·
dS

dt
− w2 · r2 · S =

= −

(

n
∑

i=1

wi
4 · r

i
5 ·

dTi

dt
−

n
∑

i=1

wi
5 · r

i
4 · Ti − w3 · r3 · s

)

. (18)

Equation (18) can be solved by using backward finite differences, or higher order Runge-
Kutta schemes, among many other possibilities.

1.2.3. Computing W (k) from R (x) and S (t): The test function is now given by

u∗ (x, t, k) = W ∗ (k) ·R (x) · S (t) , (19)

and the weak form becomes
∫

Ω×I×ℑ

W ∗ · R · S·

(

R ·
∂S

∂t
·W − k ·∆R · S ·W

)

dx dt dk =

= −

∫

Ω×I×ℑ

W ∗ ·R · S·Rn dx dt dk. (20)

Integration over Ω× I yields
∫

ℑ

W ∗· (r1 · s2 ·W − r2 · s1 · k ·W ) dk =

= −

∫

ℑ

W ∗·

(

n
∑

i=1

ri5 · s
i
4 ·Ki −

n
∑

i=1

ri4 · s
i
5 · k ·Ki − r3 · s3 · s

)

dk. (21)
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Equation (21) does not involve any differential operator. The corresponding strong form
reads

(r1 · s2 − r2 · s1 · k) ·W = −

(

n
∑

i=1

(

ri5 · s
i
4 − ri4 · s

i
5 · k

)

·Ki − r3 · s3 · s

)

. (22)

This is actually an algebraic problem, which is hardly a surprise since the original equation (1)
does not contain derivatives with respect to the parameter k. Introduction of the parameter
k as an additional model coordinate does not increase the cost of a particular enrichment
step. It does however necessitate more enrichment steps, i.e. more terms (higher N) in the
decomposition (3).

Remark 1. The just described procedure assumes that Ω does not depend on time in order to
decouple the space and time problems.

Remark 2. We have seen that at each enrichment step the construction of the new functional
product in Eq. (3) requires non-linear iterations. If mi denotes the number of iterations needed
at enrichment step i, the total number of iterations involved in the construction of the PGD
approximation is m =

∑i=N

i=1 mi. In the example above, the entire procedure thus involves the
solution of m three-dimensional problems for the functions Xi(x), m one-dimensional problems
for the functions Ti(t) and m algebraic systems for the functions Ki(k). In general, m rarely
exceeds ten. The number N of functional products needed to approximate the solution with
enough accuracy depends on the solution regularity. All numerical experiments carried to date
reveal that N ranges between a few tens and one hundred. Thus, we can conclude that the
complexity of the PGD procedure to compute the approximation (3) is of some tens of 3D
steady-state problems (the cost related to the 1D and algebraic problems being negligible with
respect to the 3D problems). In a classical approach, one must solve for each particular value
of the parameter k a 3D problem at each time step. In usual applications, this often implies
the computation of several millions of 3D solutions. Clearly, the CPU time savings by applying
the PGD can be of several orders of magnitude.

2. Separated representation of models defined in evolving domains

In order to show how the just explained strategy can be extended to problems defined in
evolving domains, we come back to a non-parametric problem, for the sake of simplicity in the
exposition (the procedure below can straightforwardly be extended to parametric problems as
in the previous section), and consider the advection diffusion equation defined in a domain
Ω(t) that evolves with a prescribed velocity field v(x, t), x ∈ Ω(t) and t ∈ I. Without loss of
generality we assume homogeneous initial and boundary conditions. The issue related to the
enforcement of non homogeneous boundary conditions was deeply addressed in [10].

The weak form of the problem, in this case, reads: find u(x, t) such that

∫

I

∫

Ω(t)

u∗ ·

(

Du

Dt
− k ·∆u− s

)

dx · dt = 0 (23)

holds for every test function u∗ defined in an appropriate Hilbert space. The source term is
considered depending on the space and time coordinates, i.e. s(x, t).

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–28
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By integrating by parts, the weak form writes:
∫

I

∫

Ω(t)

(

u∗ ·
Du

Dt
+ k · ∇u∗ · ∇u− u∗ · s

)

dx · dt = 0 (24)

The approximation of the field u(x, t) is constructed from nodal values ut
i ≡ u(x̃t

i, t) by
utilizing a natural neighbor (NN) interpolation:

u(x ∈ Ω(t), t) ≈

i=Nn
∑

i=1

N t
i (x) · u

t
i = Nt ·Ut (25)

where the upper-index t associated to the shape functions N t
i indicates that these shape

functions where defined from the nodal positions x̃t
i in Ω(t).

As mentioned before, although it is by no means the only possible choice, NN interpolation
has remarkable properties that make their use in this context very convenient [7]. Undoubtedly,
one of them is the Kroenecker delta property that states:

N t
i (x̃

t
j) = δij (26)

that, together with the exact interpolation on boundaries, makes it possible to easily enforce
Dirichlet boundary conditions.
In what follows we analyze separately the different terms in Eq. (24).

2.1. Diffusive term

We consider the diffusive term in Eq. (24):

D =

∫

I

∫

Ω(t)

k · ∇u∗ · ∇u dx · dt (27)

If we define a matrix Bt containing the derivatives of the shape functions N t
i :

Bt =







dNt
1

dx

dNt
2

dx
· · ·

dNt
n

dx
dNt

1

dy

dNt
2

dy
· · ·

dNt
n

dy
dNt

1

dz

dNt
2

dz
· · ·

dNt
n

dz






(28)

the diffusive term can be written as:

D =

∫

I

∫

Ω(t)

k ·U∗
T

·BtT ·Bt ·Ut dx · dt =

=

∫

I

k ·U∗
T

·

(

∫

Ω(t)

BtT ·Bt dx

)

·Ut dt =

∫

I

k ·U∗
T

·G(t) ·Ut dt (29)

Because Ω(t) is known ∀t, we can evaluate the integral

Gk =

∫

Ω(tk)

Btk
T

·Btk dx (30)

at different times tk, k = 1, . . . , Q.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–28
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Following the spirit of Karhunen-Loeve transform or proper orthogonal decompositions, see
[12] [16] [17], from these integrals we could define a matrix G

G = (G1 G2 · · · GQ) (31)

that, after applying a singular value decomposition (SVD), gives

G(t) =

∫

Ω(t)

BtT ·Bt dx ≈

j=m1
∑

j=1

F d
j (t) ·E

d
j (32)

with m1 < Q and m1 < Nn.
Thus, the diffusive term can be advantageously written as :

D =

∫

I

∫

Ω(t)

k ·U∗
T

·BtT ·Bt ·Ut dx · dt =

=

∫

I

k ·U∗
T

·





j=m1
∑

j=1

F d
j (t) ·E

d
j



 ·Ut dt (33)

2.2. Advective term

We consider now the term involving time derivatives:

A =

∫

I

∫

Ω(t)

u∗ ·
Du

Dt
dx · dt. (34)

The material derivative Du
Dt

writes when using a fixed reference system

Du

Dt
=

∂u

∂t
+ v · ∇u. (35)

However, when the reference system follows matter, the advective term can be discretized
along the characteristic lines according to:

Du

Dt
≈

u(x, t)− û(x, t)

∆t
(36)

where
û(x, t) = u(x− v ·∆t, t−∆t) (37)

represents the root of the characteristic line at the previous time step, and hence the advantages
of using an updated Lagrangian frame of reference.
Thus, if the time interval I is decomposed in P time steps of length ∆t, i.e. I = [0, P ·∆t],

Eq. (34) reduces to:

A ≈

p=P
∑

p=1

∫

Ω(tp)

u∗ · (u(x, tp)− û(x, tp)) dx (38)

that is composed of two terms:

A1 ≈

p=P
∑

p=1

∫

Ω(tp)

u∗ · u(x, tp) dx (39)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–28
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and

A2 ≈

p=P
∑

p=1

∫

Ω(tp)

u∗ · û(x, tp) dx (40)

Considering the approximation given by Eq. (25) it results

A1 ≈

p=P
∑

p=1

U∗
T

·

(

∫

Ω(tp)

Ntp
T

·Ntp dx

)

·Utp =

p=P
∑

p=1

U∗
T

·M(tp) ·U
tp (41)

Since Ω(t) is known ∀t, we can easily evaluate the integral

Mk =

∫

Ω(tk)

NtTk ·Ntk dx (42)

at different times tk, k = 1, . . . , Q.
Again, from these integrals we can define a matrix M

M = (M1 M2 · · · MQ) (43)

that after applying a singular value decomposition (SVD) allows writing

M(t) =

∫

Ω(t)

NtT ·Nt dx ≈

j=m2
∑

j=1

F a
j (t) ·E

a
j (44)

with m2 < Q and m2 < Nn.
Thus, the term A1 reads:

A1 ≈

p=P
∑

p=1

U∗
T

·





j=m2
∑

j=1

F a
j (tp) ·E

a
j



 ·Utp (45)

Now, we come back to the second contribution A2. Firstly we define the approximation of
û(x, t):

û(x ∈ Ω(t), t) ≈

i=Nn
∑

i=1

N̂i(x) · u
t−∆t
i = N̂ ·Ut−∆t (46)

from which the integral A2 now reads

A2 ≈

p=P
∑

p=1

U∗
T

·

(

∫

Ω(tp)

Ntp
T

· N̂ dx

)

·Utp−∆t =

p=P
∑

p=1

U∗
T

· M̂(tp) ·U
tp−∆t (47)

Because Ω(t) is known ∀t, we can evaluate the integral

M̂k =

∫

Ω(tk)

NtTk · N̂ dx (48)

at different times tk, k = 1, · · · , Q.
From these integrals we could define a matrix M̂

M̂ =
(

M̂1, M̂2, · · · , M̂Q

)

(49)
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that by applying a singular value decomposition (SVD) allows writing

M̂(t) =

∫

Ω(t)

NtT · N̂ dx ≈

j=m3
∑

j=1

Fu
j (t) ·E

u
j (50)

with m3 < Q and m3 < Nn.
Thus, the term A2 reads:

A2 ≈

p=P
∑

p=1

U∗
T

·





j=m3
∑

j=1

Fu
j (tp) ·E

u
j



 ·Utp−∆t (51)

2.3. Source term

We consider the source term in Eq. (24):

S =

∫

I

∫

Ω(t)

u∗ · s(x, t) dx · dt (52)

By approximating the source term from:

s(x ∈ Ω(t), t) ≈

i=Nn
∑

i=1

N t
i (x) · s

t
i = Nt · St (53)

the source term in the weak form of the problem can be written as:

S =

∫

I

∫

Ω(t)

U∗
T

·NtT ·Nt · St dx · dt =

=

∫

I

U∗
T

·

(

∫

Ω(t)

NtT ·Nt dx

)

· St dt =

∫

I

U∗
T

·M(t) · St dt (54)

which, considering the previous developments, results in:

S =

∫

I

∫

Ω(t)

U∗
T

·NtT ·Nt · St dx · dt =

=

∫

I

U∗
T

·





j=m2
∑

j=1

F a
j (t) ·E

a
j



 · St dt (55)

By applying again a singular value decomposition St can be expressed in a separated form:

St ≈

l=L
∑

l=1

Cl(t) ·Dl (56)

leading to:

S =

∫

I

U∗
T

·





j=m2
∑

j=1

F a
j (t) · E

a
j



 ·

(

l=L
∑

l=1

Cl(t) ·Dl

)

dt (57)
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3. Building-up the separated representation of the model solution

Once the problem has been stated in a separated form, by applying SVD to every term in
its weak form, the technique here proposed proceeds by constructing a separated, space-time,
representation for the solution, u = u(x, t). In the mentioned separated representation, the
model reads:

k=P
∑

p=1

U∗
T

·





j=m2
∑

j=1

F a
j (tp) ·E

a
j



 ·Utp−

−

p=P
∑

p=1

U∗
T

·





j=m3
∑

j=1

Fu
j (tp) · E

u
j



 ·Utp−∆t+

+

∫

I

k ·U∗
T

·





j=m1
∑

j=1

F d
j (t) ·E

d
j



 ·Ut dt−

−

∫

I

U∗
T

·





j=m2
∑

j=1

F a
j (t) ·E

a
j



 · St dt = 0 (58)

Assuming that the model solution accepts a separated space-time representation, one could
look for an a priori separated representation of Ut:

Ut ≈

i=N
∑

i=1

Ti(t) ·Xi (59)

For constructing such an approximation we proceed by computing a term of the finite sum
at each iteration. Thus, we assume at iteration n that the n first terms of the sum have been
already calculated, from which we can write the n-th order approximation of Ut

Ut ≈

i=n
∑

i=1

Ti(t) ·Xi (60)

At the following iteration, n+1, we are looking for the new functional product Tn+1(t)·Xn+1.
For the sake of simplicity functions Tn+1(t) and Xn+1 will be noted by Υ and R respectively,
where the dependence on t of Υ is omitted for the sake of clarity.
Thus, the (n+ 1)-th order approximation reads:

Ut ≈

i=n
∑

i=1

Ti(t) ·Xi +Υ ·R (61)

To compute both functions Υ and R we consider Eq. (58), where the trial function is given
by (61) and the test function by:

U∗ = Υ∗ ·R+Υ ·R∗ (62)

Since the resulting problem is non-linear, because of the product of both unknown functions
Υ and R, a linearization is therefore compulsory. The simplest one consists, as explained
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before, of a fixed point, alternating directions, strategy that computes R by assuming known
Υ, then Υ from the just updated R. Both steps are repeated until reaching the fixed point of
both Υ and R.

In what follows we are detailing both steps.

3.1. Computing the space function R

When Υ is assumed known, the test function U∗ reduces to U∗ = Υ · R∗. In this case the
integral form writes:

p=P
∑

p=1

R∗
T

·Υ(tp) ·





j=m2
∑

j=1

F a
j (tp) · E

a
j



 ·

(

i=n
∑

i=1

Ti(tp) ·Xi +Υ(tp) ·R

)

−

−

p=P
∑

p=1

R∗
T

·Υ(tp) ·





j=m3
∑

j=1

Fu
j (tp) · E

u
j



 ·

(

i=n
∑

i=1

Ti(tp−1) ·Xi +Υ(tp−1) ·R

)

+

+

∫

I

R∗
T

· k ·Υ(t) ·





j=m1
∑

j=1

F d
j (t) · E

d
j



 ·

(

i=n
∑

i=1

Ti(t) ·Xi +Υ(t) ·R

)

dt−

−

∫

I

R∗
T

·Υ(t) ·





j=m2
∑

j=1

F a
j (t) ·E

a
j



 ·

(

l=L
∑

l=1

Cl(t) ·Dl

)

dt = 0 (63)

where tp−1 = tp −∆t.

By using a simple numerical quadrature, the previous equation becomes:

p=P
∑

p=1

R∗
T

·Υ(tp) ·





j=m2
∑

j=1

F a
j (tp) · E

a
j



 ·

(

i=n
∑

i=1

Ti(tp) ·Xi +Υ(tp) ·R

)

−

−

p=P
∑

p=1

R∗
T

·Υ(tp) ·





j=m3
∑

j=1

Fu
j (tp) · E

u
j



 ·

(

i=n
∑

i=1

Ti(tp−1) ·Xi +Υ(tp−1) ·R

)

+

+

p=P
∑

p=1

R∗
T

· k ·Υ(tp) ·





j=m1
∑

j=1

F d
j (tp) ·E

d
j



 ·

(

i=n
∑

i=1

Ti(tp) ·Xi +Υ(tp) ·R

)

·∆t−

−

p=P
∑

p=1

R∗
T

·Υ(tp) ·





j=m2
∑

j=1

F a
j (tp) ·E

a
j



 ·

(

l=L
∑

l=1

Cl(tp) ·Dl

)

·∆t = 0 (64)

Because of the arbitrariness of R∗, after developing all the calculations, Eq. (64) results in
a linear system:

H ·R = Z (65)

from which we can update vector R.
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3.2. Computing the time function Υ(t)

When R is assumed known, the test function U∗ reduces to U∗ = Υ∗ ·R. In this case is easy
to verify that the discrete form reads:

p=P
∑

p=1

Υ∗(tp) ·R
T ·





j=m2
∑

j=1

F a
j (tp) · E

a
j



 ·

(

i=n
∑

i=1

Ti(tp) ·Xi +Υ(tp) ·R

)

−

−

p=P
∑

p=1

Υ∗(tp) ·R
T ·





j=m3
∑

j=1

Fu
j (tp) ·E

u
j



 ·

(

i=n
∑

i=1

Ti(tp−1) ·Xi +Υ(tp−1) ·R

)

+

+

p=P
∑

p=1

Υ∗(tp) ·R
T · k ·





j=m1
∑

j=1

F d
j (tp) · E

d
j



 ·

(

i=n
∑

i=1

Ti(tp) ·Xi +Υ(tp) ·R

)

·∆t−

−

p=P
∑

p=1

Υ∗(tp) ·R
T ·





j=m2
∑

j=1

F a
j (tp) · E

a
j



 ·

(

l=L
∑

l=1

Cl(tp) ·Dl

)

·∆t = 0 (66)

Since we are assuming homogeneous initial condition, this results in Υ(t0) = 0.
Then, the arbitrariness of Υ∗(tp), ∀p ≥ 1 implies:

RT ·





j=m2
∑

j=1

F a
j (tp) · E

a
j



 ·

(

i=n
∑

i=1

Ti(tp) ·Xi +Υ(tp) ·R

)

−

−RT ·





j=m3
∑

j=1

Fu
j (tp) ·E

u
j



 ·

(

i=n
∑

i=1

Ti(tp−1) ·Xi +Υ(tp−1) ·R

)

+

+RT · k ·





j=m1
∑

j=1

F d
j (tp) · E

d
j



 ·

(

i=n
∑

i=1

Ti(tp) ·Xi +Υ(tp) ·R

)

·∆t−

−RT ·





j=m2
∑

j=1

F a
j (tp) · E

a
j



 ·

(

l=L
∑

l=1

Cl(tp) ·Dl

)

·∆t = 0, (67)

that after making the indicated calculation results in a simple linear equation for each tp:

Υ(tp) = ap ·Υ(tp−1) + bp, ∀p ≥ 1 (68)

4. Numerical test

In this section we consider a numerical example consisting of a solid workpiece occupying at
t = 0 the domain Ω0 = (−0.5, 0.5) × (0, 5). The piece is being compressed from its upper
face. The domain evolves consequently to take intermediate configurations Ω(t) until reaching
its final geometry at time t = 1.28. The tool of unit length (−0.5, 0.5) is compressing the
workpiece at a constant compression velocity. Assuming known the geometry evolution Ω(t)
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we are solving the thermal model defined in Ω(t) in an non-incremental way. We consider the
following initial and boundary conditions:







u(x ∈ Ω0, t = 0) = 1
u(x ∈ Γc(t), t) = 0
∇u(x ∈ Γf (t), t) · n = 0

(69)

where Γc(t) and Γf (t) represent the parts of the boundary of Ω(t), Γ(t) ≡ ∂Ω(t), in contact
with the tool or the work plane y = 0 and the free boundary respectively.
After applying the strategy described in the previous section, N = 15 modes were found to

be enough for representing the whole thermal history u(x ∈ Ω(t), t):

Ut ≈

i=15
∑

i=1

Ti(t) ·Xi (70)

Functions Ti were computed only at times tp and Xi consists of a vector containing the
nodal values related to any nodal distribution x̃t

j in Ω(t).
For the sake of clarity we defined functions Gi(t) by interpolating Ti(tp) values and defined

functions Fi(x ∈ Ω0) by interpolating values in Xi on the initial configuration Ω0. Fig 1 depicts
the five most significant space modes Fi, i = 1, . . . , 5; as well as Gi(t), i = 1, . . . , 15.
Now, we are in the position of assigning vectors Xi to nodes x̃t

j related to the configuration
Ω(t) and then to reconstruct the solution in Ω(t). Figure 2 depicts the reconstructed
temperature field in Ω(t) for six different time instants.
Figure 3 depicts, in turn, the error of the approximation for different number of terms in

the approximation (ranging from 10 to 30) versus the incremental, standard, finite element
solution of the problem.

5. Towards parametric modeling in evolving domains

The extension of the previously introduced technique to the case of parametric models on
evolving domains is straightforward. To this end we should come back to section 3 and consider
the parametric dependency of u on k, looking for the separated representation:

Ut
k ≈

i=N
∑

i=1

Ti(t) ·Ki(k) ·Xi (71)

For constructing such an approximation we proceed by computing a term of the finite sum
at each iteration. Thus, we assume at iteration n that the n first terms of the sum have been
already calculated, from which we can write the n-order approximation of Ut

k

Ut
k ≈

i=n
∑

i=1

Ti(t) ·Ki(k) ·Xi (72)

Now, at the next iteration n+1 we look for the new functional product Tn+1(t)·Kn+1 ·Xn+1.
For the sake of simplicity functions Tn+1(t), Kn+1 and Xn+1 will be noted by Υ, W and R

respectively, where the dependence on t of Υ, and on k of W is omitted for the sake of clarity.
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Figure 1. Space and time functions involved in the separated representation of u(x ∈ Ω(t), t).
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Figure 2. Reconstructed temperature field u(x ∈ Ω(t), t) at six different instants.
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Figure 3. Error in the approximation for different number of terms in the sum. A standard, incremental
finite element solution has been taken as reference.

Thus, the (n+ 1)-th order approximation reads:

Ut
k ≈

i=n
∑

i=1

Ti(t) ·Ki(k) ·Xi +Υ ·W ·R (73)

For computing functions Υ, W and R we consider Eq. (58) where the trial function is given
by (73) and the test function by:

U∗ = Υ∗ ·W ·R+Υ ·W ∗ ·R+Υ ·W ·R∗ (74)

Since the resulting problem is non-linear because of the product of the three unknown
functions Υ,W andR a linearization is compulsory. The simplest one consists of the fixed point
alternating directions strategy presented above. By generalizing the procedure widely described
in section 3 we can compute the parametric and non-incremental separated representation. In
the next section we consider the parametric solution of the problem solved in section 4.

6. Numerical test involving parametric modeling

In this section we consider the problem analyzed in section 4 where the material conductivity
k is now considered as a model extra-coordinate taking values in the interval k ∈ ℑ = (0, 1).
The strategy is now a mere combination of those applied for parametric problems in steady
domains, and that for standard problems in evolving domains.
Fig 4 depicts the four most significant space modes Fi, i = 1, . . . , 4, where again Fi refers

to the interpolation defined from values in Xi on the initial configuration Ω0.
Fig. 5 depicts the most significant functions depending on time and on conductivity.
Finally, Fig. 6 depicts the temperature field reconstructed at the final geometry Ω(t = 1.28)

for different values of the thermal conductivity. It can be noticed that the higher the
conductivity the faster is the cooling process induced by the lower and constant temperatures
enforced on the tool and working plane surfaces in contact with the workpiece.
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Figure 4. Four most significant space functions involved in the separated representation of u(x ∈
Ω(t), t, k).

7. conclusionsIn this paper a novel strategy for a priori construction of reduced bases for problems defined in
evolving domains is presented. The main challenge in this class of problems derives precisely
from the deformation of the problem domain, which prevents the direct application of classical,
a posteriori, techniques such as proper orthogonal decomposition, to obtain appropriate
reduced basis. The evolving nature of the domain obscures the concept of snapshot of the
system state, requiring specific treatments .

However, it has been demonstrated that a combination of an updated Lagrangian approach
for the description of domain’s kinematics and a PGD-based obtention of the set of reduced
basis in a separated space-time (possibly space-parameters-time) representation gives a very
convenient way of constructing reduced basis. These basis can be advantageously employed
to simulate complex problems at a very reduced CPU cost, as proven in the vast corps of
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Figure 5. Most significant functions depending on the space and conductivity involved in the separated
representation of u(x ∈ Ω(t), t, k).

literature devoted to this end.
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Figure 6. Reconstructed temperature field u(x ∈ Ω(t = 1.28), t, k) for different values of the thermal
conductivity k.
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