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1. Introduction

Model Order Reduction — MOR - techniques allow nowadays solving under real-time constraints
complex models. Intense research activities allowed reaching at present a certain maturity in the do-
main of model order reduction. Among the numerous references the interested reader can refer to some
review papers and books [9,10,12,13], covering three major MOR technologies: POD (Proper Orthogonal
Decomposition), RB (Reduced Basis) and PGD (Proper Generalized Decomposition).

Proper Orthogonal Decomposition (POD) is a general technique for extracting the most significant
characteristics of a system’s behavior and representing them in a set of “POD basis vectors”. These basis
vectors then provide an efficient (typically low-dimensional) representation of the key system behav-
ior, which proves useful in a variety of ways. The most common use is to project the system governing
equations onto the reduced-order subspace defined by the POD basis vectors. This yields an explicit
POD reduced model that can be solved in place of the original system. The POD basis can also provide
a low-dimensional description in which to perform parametric interpolation, infill missing or “gappy”
data, perform model adaptation or define hyper-reduction procedures [28]. There is an extensive litera-
ture and POD has seen broad application across fields. Some review of POD and its applications can be
found in [29,5].

Another family of model reduction techniques lies in the use of Reduced Basis constructed by com-
bining a greedy algorithm and “a posteriori” error indicators. As for the POD, the Reduced Basis method
requires some amount offline work, but then the reduced basis model can be used online for solving dif-
ferent models with control of the solution accuracy, because the availability of error bounds. When the
error is unacceptably high, the reduced basis can be enriched by invoking a greedy adaption strategy
[26,27).

Separated representations, at the heart of the so-called Proper Generalized Decomposition methods
are considered when solving at-hand partial differential equations by employing procedures based on
the separation of variables. Then they were considered in quantum chemistry for approximating multi-
dimensional quantum wave-function. In the 80s, Pierre Ladeveze proposed the use of space-time sep-
arated representations of transient solutions involved in strongly nonlinear models, defining a non-
incremental integration procedure [19,20]. Later, separated representations were employed for solving
multidimensional models suffering the so-called curse of dimensionality [1,2] as well as in the context
of stochastic modeling [25]. Then, they were extended for separating space coordinates making possible
the solution of models defined in degenerated domains, e.g. plate and shells [6] as well as for address-
ing parametric models where model parameters were considered as model extra-coordinates, making
possible the offline calculation of the parametric solution that can be viewed as a metamodel or a com-
putational vademecum, to be used online for real time simulation, optimization, inverse analysis and
simulation-based control [8,10].

1.1. Separated representations

Within the PGD framework four kind of separated representations have been widely considered:
(i) Space-time separated representations that allowed the construction of efficient incremental and non-
incremental integrators.

Within the standard finite element method a space-time solution u(x,t), x € Q C RiandteZcC
IR, of a transient problem is approximated from

M

u(x, ) ~ Zu(xi,t)Ni(x), (1)

i=1
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(ii)

where M is the number of nodes employed for interpolating the unknown field, located at posi-
tions x;, and N;(x) the so-called shape functions. Because the interpolative property of the shape
functions, the approximation coefficients correspond to the nodal value of the approximated field,
u(x;,t). Thus, in general, when solving a nonlinear problem, at least a linear system of size N must
be solved at each time step. When considering P time steps (P can reach several millions) the com-
plexity grows very fast.

When considering POD-based model order reduction, the solution is projected into the reduced
basis composed of functions {¢(x), - -, pr(x)} extracted from some collected snapshots of the prob-
lem solution, with in general R <M, and consequently the solution approximation reads

R
UG~ ) &), (2)
i=1
that requires the solution of linear systems of size R instead the ones of size M characteristic of
finite element solutions. The use of reduced basis implies in many cases impressive computing
time savings.

Approximations (1) or (2) imply a finite sum of time-dependent coefficients and space-functions.
The last are assumed known, they consists of the usual finite element shape functions or the modes
extracted by applying for example the Proper Orthogonal Decomposition — POD -. A step forward
could consists in assuming space functions also unknown and computing both, time and space
functions on the fly. In this case the approximation reads

N
u(x, 1)~ ) Ti(0)Xi(x). (3)

=1

Because both functions involved in the approximation (3) are unknown, it defines a nonlinear
problem whose solution requires an appropriate linearization strategy. The interested reader can
refer to [11] and the references therein for additional details on the separated representation con-
structor.

Expression (3) evidences that the solution procedure requires the solution of about N problems,
with N < M and N ~ R (in fact a bit more because the nonlinearity induced by separated rep-
resentations) involving the space coordinates (in general three-dimensional — 3D - and whose
associated discrete systems are of size M) for computing the space functions X;(x) and about N
one-dimensional — 1D — problems for calculating the time-functions T;(t). Due to the fact that the
computing cost related to the solution of 1D problems is negligible with respect to the solution of
3D problems, the resulting computational complexity reduces drastically, scaling with N instead
of P.

Space separation allowed addressing multi-physics problems defined in degenerated geometries in
which at least one of its dimensions remains much smaller that the other ones (e.g. beams, plates,
shells, laminates, ...) or processes involving additive layers (e.g. automated tape placement, 3D
printing or additive manufacturing).

If domain Q can be decomposed as QQ = Q, x Qy x (2, the solution u(x,y,z) could be approxi-
mated by using the separated representation

N
u(x9,2)~ ) Xi(x)Yi(y)Zi(2), (4)

i=1

that allows calculating the 3D solution from a sequence of 1D problems.
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For some geometries, as the ones associated to plates or shells, in-plane-out-of-plane separated
representation becomes specially suitable,

ux,y,2)~ ) Xi(x,9)Zi(2), (5)

1=

i=1

where the 3D complexity is reduced to the one characteristic of 2D problems, the ones related to
the calculation of in-plane functions X;(x,p).

(iii) Space-time-parameters separated representations allowed constructing the so-called computational
vademecums (also known as abacus, virtual charts, nomograms, ...) efficiently considered for mul-
tiple purposes: simulation, optimization, inverse analysis, uncertainty propagation and simulation-
based control, all them under the real-time constraint.

When the unknown field involves space, time and a series of parameters ..., yg, its associated
separated representation reads

[}

M(X,t,lxll,...,‘uo)%

[\/]z

X T [ [ ) (6)

i1 j=1

(iv) Separated representations of intrinsically multidimensional models involving differential operators
applying on time, space and a series of conformation coordinates cy, ..., c¢. In this case the solution
is approximated according to

N

C .
wx,t,cq,...,cc) & in(x)n(t)]_[cj(cj). (7)
j=1

i=1

1.2. Paper motivation

This work focusses on the separated representations previously discussed and contributes in two dif-
ferent ways. First, in general the calculation of functions involved in the finite sum representations is
performed on a given approximation basis. Thus, the possible multi-scale character of the individual
modes (functions involved in the finite sum) and/or the reconstructed solution (the finite sum itself), is
not addressed.

Even if today it is accepted within the PGD community that both the number of terms in the finite
sum, and the number of nodes used for discretizing each function involved in the former, are of major
relevance for ensuring accuracy, and even if different error estimators have been proposed in this con-
text [3,21,24], the multi-scale nature of both, the terms in the sum and the sum itself, remain almost
unexplored. An adaptive progressive PGD strategy was proposed in [15].

This work consider the use of a naturally multi-scale approach, a wavelet-based approximation tech-
nique, for approximating the different functions involved in the separated representation. Then, recom-
bining the different scales involved in these approximation allows to capture the multi-scale character of
the solution. Even if in our knowledge this kind of approximations was employed in a Galerkin setting
as referred later, its consideration within the PGD framework remains unexplored.

Next section revisits the PGD constructor and the wavelet-based multi-resolution analysis that will
be applied in Section 3 within the PGD constructor described above. Then Section 4 will illustrate some
potential applications of the proposed numerical technique.

4



2. Methods
2.1. PGD constructor at a glance

Consider the solution of the Poisson equation

Au(x,y) = f(x,9), (8)
in a two-dimensional rectangular domain ) = Q, xQ,, = (0,L)x (0, H). We specify homogeneous Dirich-
let boundary conditions for the unknown field u(x,y), i.e. u(x,y) vanishes at the domain boundary T.
Furthermore, we assume that the source term f is constant over the domain Q.

For all suitable test functions u”, the weighted residual form of (8) reads

*u  J*u )
W l=—+==-f|dxdy = 0. (9)
JQxey ( ox*  dy? d g

Our goal is to obtain a PGD approximate solution to (8) in the separated form

N
v)=) Xi(x)-Yi(p) (10)
i=1

We shall do so by computing each term of the expansion one at a time, thus enriching the PGD
approximation until a suitable convergence criterion is satisfied. Thus, at each enrichment step n (n >
1), we have already computed the n —1 first terms of the PGD approximation

n—1

X;(x (11)

M

i=1
We now wish to compute the next term X,,(x) - Y,,(v) to obtain the enriched PGD solution

W' (x,9) = 1" (5,9) + X, (x }:x Xu(%)- Yu(®) (12)

Both functions X,,(x) and Y, (y) are unknown at the current enrichment step #, and they appear in the
form of a product. The resulting problem is thus non-linear and a suitable iterative scheme is required.
We shall use the index p to denote a particular iteration. At enrichment step #n, the PGD approximation
u'"P obtained at iteration p thus reads

u"P(x,9) = 1" (0 y) + Xa(x)- Vi (9), (13)
and the algorithm proceeds by: (i) calculating X7 (x) from Y,ﬁk1 (v), then (ii) updating Y} (y) from the just-

computed X/ (x); and finally (iii) checking the convergence by evaluating || X% (x)- Y,f(y)—X,’;_1 (x)-Y,f_1 @I
In the first step, by introducing the approximate

u™P(x,y) = u”_l(x,y)+X5(x)-Y,f_l(y), (14)
as well as the weight function

* " -1
w(xy) = X0 Y (), (15)
into the problem integral form (9), after integrating in Q) it results

n—1

ZXp
X + "Xp)d = f ( 6?‘Xi)d +J X: &% dx, 16
LX ( P x Z%d ) R * (1)
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where the coefficients results from the integration in Q, of fonctions depending in the y-coordinate.
For more details the interested reader can refer to [11]. The above one-dimensional problem is then
discretized by using a standard mesh-based discretization technique, as for example the finite element
method.

Having thus computed X/ (x), we are now ready to proceed with the second step of iteration p, that
updates Y} () from the just-computed X}, (x). The procedure exactly mirrors what we have done above.
Indeed, we simply exchange the roles played by all relevant functions of x and y, starting from the
solution approximate

ZX Y)+Xi(x) - Yi (9), (17)

that finally leads to the one-dimensional problem involving the unknown field Y} (y)

2y P
f Y, - (ayd Y;
0, d

It is important to realize that the original two—d1mens1onal Poisson equation defined over O = ), x()
has been transformed within the PGD framework into a series of decoupled one-dimensional problems
formulated in O, and Q). The procedure can be generalized when considering D-dimensional problems.

As previously indicated functions X, (x) and Y,(y) are approximated using standard finite element
approximations or orthogonal polynomials (spectral approximations). Thus, in first approximation one
could expect that the accuracy of the computed solution should depend on the number of terms involved
in the finite sum N and the number of nodes M (or the polynomial degree) considered for approximating
the different functions involved in the finite sum, X,,(x) and Y, (y) in the previous case study.

In [11] authors considered the Poisson equation (8) on a two-dimensional rectangular domain Q) =
Q,xQy =(0,2)x(0,1) with f =1 that has as exact solution

n—-1

+ﬁ?yf) dy = JH }E;(z iy 0], )dy + Jﬂ Y,.&rdy.  (18)

}

Uy (%, V) = Z oy 64 )sin(m;x)sin(nny). (19)

4n? + m?2
nodd

Functions X;(x) and Y;(y) were sought on a uniform one-dimensional grid with M points. The solution
convergence (with respect to the exact one) was evaluated by using the error

() = ff exl,9) — () dx dy, (20)

where integrals were performed numerically and uM refers to the solution obtained using a finite sum
composed of N terms and the involved one-dimensional functions were approximated by using M nodes.
Figure 1 depicts the PGD error Ey(uy) as a function of the number of enrichment steps N for different
numbers M of discretization points. This figure proves that both M and N are relevant to ensure conver-
gence, and that both must be considered together, because for a given mesh, and independently of the
number of terms considered in the finite sum the error reaches a plateau. In the other sens, even a very
fine mesh is unable to capture the solution if the number of terms in the finite sum is insufficient.

2.2. Wavelet-based multi-resolution analysis and adaptive approximations

Multi-resolution analysis is based on the construction of a series of embedded subspaces V; C Vj,1,
VieZ,i.e.
0} C Vi CV;C Vi CLA(R), (21)

6



10-6¢ M =11
—7L
g 10 M =21
z =
\:’: 10-8
= M =41
K
1079¢ M =61
M =81
10~ 10¢ M =101
M =121
10711
0 2 4 N 8 10

Figure 1. PGD error EM(uAI\/][) as a function of the number of enrichment steps N for different numbers M of discretization points.

where each subspace is spanned by the integer translation of a single function, the scaling function ¢(x)
[16]. ‘ ‘

If ¢(x) € Vo, functions ¢ox = ¢(x — k) constitutes a basis of Vy, and functions ¢;x(x) = 2072 ¢p(21x — k)
defines a basis of subspace V;. Thus, the projection of function f(x) in V; reads

k=+oc0
Pif()= ) cjxpjxlx). (22)
k=—c0
The fact that V c V; allows writing
k=+0c0
$(x)= ) ap(2x-k), (23)
k=—c0

and because V; C Vj,1 we can define the orthogonal complement W;, such that

Vj+1 = Vj@Wj, (24)
with V; L W;. An important consequence is that
PHw, =1"m), (25)
jeZ
or
oo P W, = L2(R). (26)
jeN

Spaces W; are also spanned by the integer translation of a single function, the wavelet function ¥(x),
defining the bases at each scale: ¢; x = 2i724(2i x — k). Because W, C V;, we can write

k=+0c0

P = ) bep(2x—k). (27)
k=—c0

In what follows we are considering Daubechies wavelets [14] for approximating the different func-
tions involved in the separated representation of the problem solution. This choice is motivated by
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their compact support and regularity (approximation consistency). In opposition to usual approxima-
tion techniques, its use allows space and frequency localization, the last because its multiscale character
and the former by its compact support (in opposition to approximations based on Fourier polynomials).
The approximation is fully defined by the coefficients a; in Eq. (23). Coefficients by depend on a; from
be = (-1)Fay 4.

Coefficients aj results from the following conditions:

(i)

(ii)

(iii)

The normalization condition,

[oan=1, (28)
that taking into account Eq. (23) leads to
k=co
Z a = 2. (29)
k=—c0

The orthogonality condition between ¢(x) and its integer translates

f¢(x>¢<x—l> dx = 501 (30)

with o the Kroenecker delta function. Taking into account Eq. (23) the previous equation results
in

k=co

Z Ay ag42] = 2501, VieZ. (31)

k=—c0
If we consider a choice with A coefficients, the previous conditions only provide A//2+1 equations.
Thus, other N/2 — 1 conditions should be added in order to compute the A coefficients. One
common route consists in enforcing that the scaling function exactly represents polynomials of

order M =N/2,1i.e.

f(x)=a0+a1x+---+aM_1xM’1, (32)
that by using
k=oo
f@)=) caplx—k), (33)
k=—oo

and the fact that the wavelet function (x) is orthogonal to the scaling translates ¢(x—k), it results

k=00
F )= Y cldlx—k)p(x) =0, (34)
k=—c0
with -
(g(x) h(x)) = fg(x) hix) dx. (35)

By replacing f(x) by its expression (32) into Eq. (34) leads to
ao((x), 1)+ a1 (P(x), x) +apg (P(x), M) = 0, (36)
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that applies for any value of coefficients ag,--,a_;. Thus by choosing 4; =1 and a,, =0, Vm =1,
it results

(x),xy=0, 1=0,1,---,M—1, (37)
()

implying that the M first moments of the wavelet function vanish. This condition can be proved

being equivalent to
k=00
Z(—l)kakklzo, 1=0,1,--,M—1. (38)
k=—oc0
Now, all the conditions above allows determining the A coefficients that determines completely the
approximation.
In order to discretize the weak form of a given problem, one must have access to the scaling and
wavelet function and their derivatives at any point (in particular at the integration points considered for
evaluating the integrals involved in the problem weak form). For that purpose we start by considering

O(x) =agp(2x)+a;p(2x—1)+--+ay_1¢p(2x-N +1), (39)

or taking into account that the support of scaling function is [0, N], it results

O(1) = agp(2) +ayp(1) +ap(0)

) (40)
P(2) = aop(4) + a1 Pp(3) + arp(2) + azPp(1) + azp(0)

that defines an eigenvalue problem giving access to the value of the scaling function at the integers.
Now, in order to obtain its value at the so-called dyadic points we make use of

k=00
$(x/2)= ) axdp(x—k), (41)
k=—oc0
and from those we can compute ¢(x/4) and so on.

Now, for the derivatives we proceed in a similar manner by taking the derivative of Eq. (39) that allows
by following the same rationale and solving the associated eigenproblem to calculate the derivative at
the integer points, and from this the one at the dyadic points and so on.

Approximations based on wavelets have been successfully considered for discretizing partial differ-
ential equations, most of the time by using Galerkin formulations [4,16,17,18,23].

If for a while we consider the one-dimensional problem involving the unknown field u(x)

d du
- (K(x)%) =0, (42)
with x €[0,1], u(x=0) =0, u(x = 1) = 1 and the model parameter K(x) defined from

K if x €[0.15,0.85
K(x) — max [ ] , (43)
K, elsewhere

it is expected that the continuous field u(x) exhibits a discontinuity in its derivative at points x = 0.15
and x = 0.85, because of the fluxes continuity, i.e.

K(0.15—¢) du =K(0.15+¢€) du (44)
dx |y=0.15-¢ dX |x=0.15+¢



and similarly at x = 0.85, with € a small enough constant.
When using wavelet-based approximations the unknown field can be expressed at the lowest level by
using the scaling functions

u(x) =) coxplx—k) (45)
k

The problem solution (described later) consists of the set of coefficients cg ;. The solution at the next
level is written by combining both the scaling and wavelet function at the lowest level, i.e.

W' (x) =) corp(x—k)+) dosiplx—k), (46)
k

k

whose solution consists now of coefficients cg ; and d .

Because the multi-resolution property of the employed approximation, one expects that coefficients
dox become higher at locations k where the lowest level approximation u°(x) based on the use of the
lowest level scaling functions is not able to represent the solution with sufficient accuracy. Thus, we
could define a threshold value «, allowing to identify two sets S; and S} composed respectively by
integers k such that dg; < x and dg; > «.

Now, the next approximation level u?(x) is defined by adding to the previous one u'(x) only the
wavelet functions related to points in S} and the ones having a natural neighbor in Sf. The resulting
extended set is denoted by S;” and now the approximation u?(x) reads

W20 = (0)+ ) di (). (47)

keSy

After calculating coefficients d; j they are classified in sets S; and S5, and the adaptive approximation
continues.

Figure 2 depicts the evolution of the approximation basis on the left (with the red line the computed
solution), where points at the lowest level (blue ones) are related to the uniform lowest level approxi-
mation (based on the use of the scaling functions). Then, the second level, red points, are the ones in
S/, and so on. On the right (in Figure 2) the different contributions to the solution are depicted: u!(x)
(blue curve) as well as the adaptive contributions (for example red curve represents u?(x)— u'(x) whose
support is defined by S}).

0 0.2 0.5 08 1 0 01 03 05 08 1

Figure 2. Adaptive approximation strategy.

In the next section, wavelets approximations will be considered for discretizing PDE within the sepa-
rated representation format characteristic of PGD methods.

10



3. Multi-Scale Proper Generalized Decomposition

For the sake of simplicity, we consider the heat equation
V(K(x,)Vu(x,y)) = f(x, ) (48)

where K(x,v) represent the material conductivity assumed isotropic.

Problem (48) is defined in Q = Q, xQ, = (0,L) x (0, H) and where without loss of generality homoge-
neous Dirichlet boundary condition are enforced on the domain boundary I' = 9Q2.

The weak form related to Eq. (48) reads

J- Vu* - (KVu(x,y)+f(x,v))dxdy =0, (49)
Q,xQ

whose solution, as described in Section 1, is searched in the separated form

"y =) Xix)-Yily), (50)
i=1

that implies the alternative solution of two one-dimensional problems, the first for calculating X;(x) and

the second for calculating Y;(y), similarly to Eqs. (16) and (18).
When considering wavelet-based approximations, functions X;(x) and Y;(y) at the enrichment itera-
tion n and the nonlinear iteration p, involved in the one-dimensional problems of the PGD separated

representation constructor, are approximated according to:

2JO/ZZX”” (2fox—k)+ ZzJ”ZX”” (2/x-k)
j ]0
2]0/2ZYP" 2oy —k)+ sz/zzy”” 2/y k)
j ]0
210/2ZX*”¢ (2fox—k)+ sz/ZZX*”z,b (27x—k)
] jo , (51)
2]0/221/*”(1) 200y — k) + sz/zzy*”zp 2y k)
j= ]o
(x):2j0/2ZX]l:U’k (27ox—k)+ ZzJ/ZZXl (27x—k)
k J jo
y)ZZjO/ZZinO,k 2]0;{] k Zz]/ZZYI 2];{) k
k Jj=jo

where jj refers to the lowest level and where coefficients affecting the different scaling and wavelet
functions are the unknowns.

It is important to note that even if the approximates (51), as written, involve all the translations k at
each level j, the multi-resolution analysis allows considering, as previously discussed, only the wavelet
functions located at the regions in which they contribute to the solution improvement. Moreover, even if
the largest scale is assumed being the same for all the functions involved in the separated representation,
J for all them, in general each function at each level could involve a different number of scales.
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As previously described all these fonctions, as well as their derivatives, can be computed at dyadic
points, until approaching sufficiently the considered point. Thus, by injecting the previous approxi-
mates into the weak form of the one-dimensional problems resulting from the PGD discretization of Eq.
(49) and using an integration quadrature, the approximation coefficients can be obtained.

It is important to mention that Eq. (49) also involves the conductivity K(x,y) that should be separated.
For this purpose we proceed as described in our former works (e.g. [11]) by constructing its separated
representation

K
V)~ ) KK ) (52)
i=1

The separation could be performed by using a standard SVD — Singular Value Decomposition —. An-
other possibility consists in using the PGD (see Chapter 3 in [11]), that consists in solving the problem

K(x,y)-K(xy) =0, (53)
with )
R(xy)=) KHxK] (), (54)
i=1
whose integral form reads
K
| R R ) K3 o) axdy <o (55)
Q,xQ,y —

Again, this equation is solved by using the PGD constructor and now, because no regularity is needed
in the representation of the conductivity, the Haar’s wavelet is chosen, i.e. used for approximating func-
tions involved in the conductivity separated representation K(x) and Kly(y)

The main issue when considering the Daubechies and Haar representations of the temperature field
u(x,v) and the conductivity K(x,v), is that integrals in Eq. (49) involve the product of two or three scaling
and wavelet functions, of different nature (Daubechies and Haar) at different scales. This difficulty has
been circumvented by considering the technique proposed in [22] and revisited in Appendix A.

After solving the problem, that is, after computing the coefficients affecting the different scaling and
wavelet functions appearing in the approximation of functions involved the solution separated repre-
sentation, one realizes that each mode n <N, X,,(x) - Y,,(v), involves different levels. The Galerkin PGD
constructor does not allow associating modes to levels, each mode contains many levels of description
and each level of description is present in most of the PGD modes.

However, in order to extract multi-scale features of the solution, after having solved the problem,
one could proceed to re-ordering the modes by enforcing the first mode to contain the lowest level
contribution (zero level), the second mode the first level contribution and so on.

To better describe the re-ordering procedure we consider the solution approximation

N
") =) Xi(xYi(y), (56)
i=1

with

X;(x) =202 ) X! p(20x—k)+ 221/22)(’ (2/x k)
k

] =jo ) (57)

Yi(y) =22 vl p(2y—k)+ sz/zzyl (27y - k)
k

j=jo
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Solution (56) can be rewritten in the form

i
WMwy)=) Zikky) (58)
i=0
with |
Zo(x,p) = 2{210/2 ZX]’:O’kq)(ﬂOx—k) Qo2 Zngrk¢(210x—k)}, (59)
i=1 k k
N
Z1(x,y) = Z{z]’o/2 ijo,k¢(210x—k)-zfo/2 Zl/jl'o,kzp(zf'Oy—k)Jr
i=1 k k
jo/2 ;X}O,k%b(szx — k) . 2jo/2 ;Y;qub (21'0}, _ k)}, (60)

and so on. Here, each term Z;(x, y) contains a level of description, from the coarsest one to the finest one.

It is important to note that each term Z;(x, y) has a separated representation, a finite sum of functional
products, with one of the involved functions depending on the x-coordinate and the other on the y-
coordinate.

4. Numerical examples
4.1. The Poisson problem: convergence analysis

In order to check the proposed strategy we consider the problem discussed in Section 1, Eq. (8), with
f =1 and homogeneous boundary conditions whose exact solution, as previously discussed, is available.

Figure 3. Reconstructed solution and involved modes in each direction.

Figure 3 depicts the reconstructed solution and the associated modes in each direction. It was noticed
that the approximation of functions involved in higher modes (e.g. Xy(x) and Yy(y)) required higher
levels. The difference between the reconstructed and the exact solution is depicted in Fig. 4.
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Figure 4. Difference between the reconstructed solution and the exact one for different number of models considered in the
solution separated representation.

The convergence analysis considered increasing the number of models involved in the separated rep-
resentation for different levels in the modes approximation and the inverse, increasing the number of
levels for a fixed number of modes. The error is calculated using the L?>-norm. As expected, a strategy in-
creasing either the number of modes or the number of levels, rapidly reaches a plateau as Fig. 5 proves.
Only by increasing simultaneously both them the convergence rate can be maintained.

Modes Level

Figure 5. Convergence analysis with respect to the number of modes and levels.
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Figure 7. Contribution of different levels to each PGD mode.

Fig. 6 compares the first three PGD models X;(x)- Y;(y) and the re-ordered multi-scale modes, referred
as WPGD modes, Z;(x, ), according to the strategy described in the previous section.
Finally Fig. 7 illustrates the contribution of different levels to each PGD mode. It can be noticed that

the first PGD modes involve mainly lower levels whereas ginger levels contributes mainly to the last
PGD modes.

4.2. Multi-scale analysis

In this case study we consider a thermal problem (heat transfer equation) in the domain depicted in
Fig. 8 consisting of two phases with different thermal conductivities (both them assumed isotropic). As
discussed before, Daubechies wavelets with A/ = 6 are considered for approximating the functions com-
posing the different solution modes, i.e. functions X;(x) and Y;(y), while the separated representation of
the conductivity uses a Haar wavelet representation.

First, the conductivity is approximated at a fine enough level by using a Haar wavelet representation.
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Figure 8. Domain exhibiting two phases of different thermal conductivities.

Then, the solution is approximated at different levels using Daubechies wavelets. When considering fine
scales, as fine as the microstructure representation, the solution becomes locally representative of the
exact solution, whereas when considering coarser representations with respect to the microstructure
length scale, the last is considered in an averaged sense in the low-scale solution approximations. Figure
9 represents the solution when considering different representation levels of the solution.

Level 2 Level 3 Level 4
.‘ 0.03 0.3
) 0.2
0.0 0.2
0.01 01
0 0.1
-0.01 0 0
Level 5 Level 6 Level 7

0.4

0.4 0.4
0.2

0.2 0.2
0 0 0

Figure 9. Reconstructed solution for different approximation levels.

Finally Figs. 10 and 11 depict respectively the PGD modes X;(x)-Y;(y) and their associated multi-scale
re-ordered modes Z;(x,y) described in the previous section, where the multi-scale character is pointed
out, with higher frequencies appreciated at higher modes.

4.3. Parametric solutions

Until now separated representations were associated to the space coordinates x and y. However, as
discussed in Section 1, one appealing feature of separated representations concerns the solution of
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Figure 11. Multi-scale modes Z;(x,y) constructed from the wavelet-based PGD separated representation.

parametric models. In [10] the solution of parametric models within the PGD framework was widely
described. Thus, if one is interested in calculating the temperature in the domain Q) for any value of the
material conductivity K € Z C IR", the solution separated representation reads

N
u(x,K) ~ in(x) Ci(K), (61)

that injected in the problem integral form allows calculating functions X;(x) and C;(K). However, such
a procedure is too intrusive to be considered for calculating parametric solution when using an external
simulation code able to obtain the temperature field for a given value of the conductivity, that is u(x; K).

The last approach is based on an appropriate sampling of the parametric domain by choosing partic-
ular values of the conductivity grouped in the set K = {K;,Kj,---,Kg} and solving the problem for all
these values in order to obtain u(x;K;), Vi € K. Then, all these solutions can be adequately interpolated
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for defining the solution for any conductivity value K € [Ky, K]. This is the key idea behind surrogate
models, response surfaces, etc.

If we imagine for a while that we solved the problem at hand for the minimum and maximum values
of the conductivities, leading to u(x, K,,;,;) and u(x, K,,,,), the conductivity for any other value of the
conductivity K € [K,,;;, K;iax] can be linearly approximated according to

u(x, K) = u(x, Kyyin) N1 (K) + u(x, Ky )N2 (K), (62)

where the approximation functions in the parametric space N;(K) and N;(K) read

K-K,,;
Ni(K) = 0", (63)
Kmax_Kmin
and
Kppax — K
Ny(K)= ——max— = (64)
Kmax_Kmin

Finer approximations require finer samplings and the subsequent interpolation. The main difficulty
is how choosing these points to keep controlled the accuracy. In [7] authors proposed a non-intrusive
sparse subspace learning approach using hierarchical approximation bases.

Another possibility consists in taking advantage of the multi-resolution property of wavelet-based
approximations for controlling the sampling richness, that is, the number of elements in the set K.
Thus, one can control the convergence by analyzing the value of the associated coefficients related to the
wavelet functions. This appealling property is absent in usual polynomial approximations.

Using a wavelet representation of the parametric evolution employing spline-wavelets

B0 =59 (2x)+§(2x— 1)+ 3p(2x-2), (65)

has the advantage of recovering coefficients that correspond to the value of the approximated function
at its location.

Then, as soon as the solution is computed at two consecutive levels by approximating the paramet-
ric functions by using the scaling functions ¢;; and ;1 x respectively, their difference represents the
wavelet contribution that can be expressed in the wavelet basis ¢; x, and whose higher coefficients indi-
cate the locations at which sampling must be refined.

This procedure allowed to reduce significantly the number of sampling points, of some orders of
magnitude in some of our numerical experiments.

5. Conclusions

In this work we proved that separated representations involved in PGD solution procedures can be
combined with wavelet-based functional approximations for extracting the multi-scale behavior present
in the solutions.

Moreover, we proved that multi-resolution property inherent to wavelet representations allows defin-
ing simple adaptive procedures with multiple applications: model refinement or efficient sampling for
calculating parametric solutions.

The connection between multi-scale solution in complex microstructures and homogenization consti-
tutes a work in progress.
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Appendix A. Calculating integrals involving three functions at the same and at different levels

We consider the integral

d ,dy,d
= g 0 - 19 (e md (A1)
where d1,d2 and d3 refers to the derivative order. Integral (A.1) can be expressed as
T2 _ odi pd2 5ds J-m Y ap™ 2x-K) ) a2 (2x-21-1)) ap¢® (2x-2m-p)dx. (A.2)
% g P
By considering the change of variable y = 2x — k the previous expression reads
dy pdy od
rldrlndz d3 2 12222 3 Zﬂk z Z“PJ (Pd] )(pdz (y+k—21—r)q§d3 (y+k—2m—p)dy, (A.3)
kot P

that can be rewritten as
dynd
dy,da,ds _ 241 pd29d5 dl,dz,d3
o Z“k Z“r Z”P 2l+r—k,2m+p-k’ (A.4)

that defines an eigenproblem rank deficient. The rank deﬁciency is circumvented by adding the requires
number of extra equations [22].
Now we consider that the integral involves functions at different scales,

Q2
Qi J. ¢! () pT (y—m)$P (2p -1 dy, (A.5)
that can be rewritten as
Qi = f Y @2t (2p-k) ) a,229% (29 - 2m-r) % (2 - 1), (A.6)
Tk r

or

Qs — pdipd ) @ Zaf ¢ (2)p® (z+k—2m—1)pB (z+k—-1) =
7 —00

k
=2%2% Zﬂk Z“rr2m+r—k,l—k: (A.7)
k r

that results again in an eigenproblem.
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