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Abstract

We present a general strategy for the modeling and simulation-based control of soft
robots. Although the presented methodology is completely general, we restrict ourselves
to the analysis of a model robot made of hyperelastic materials and actuated by cables
or tendons. To comply with the stringent real-time constraints imposed by control
algorithms, a reduced-order modeling strategy is proposed that allows to minimize the
amount of online CPU cost. Instead, an offline training procedure is proposed that
allows to determine a sort of response surface that characterizes the response of the
robot. Contrarily to existing strategies, the proposed methodology allows for a fully
non-linear modeling of the soft material in a hyperelastic setting as well as a fully
non-linear kinematic description of the movement without any restriction nor
simplifying assumption. Examples of different configurations of the robot were analyzed
that show the appeal of the method.

Introduction 1

Originally, soft robots are born from a biological inspiration, to reproduce some living 2

being’s compliance, see [1] [2] [3]. There exists a wide spectrum of application fields of 3

soft robotics as well as the crowd of engineering issues they raise, in terms of design, 4

fabrication and control. Examples exist of pneumatically actuated soft robots, such 5

as [4], and thus without any type of “skeleton”, as well as hydraulic ones [5]. Maybe the 6

biggest family of soft robots is the one actuated by cables or tendons, [1]. But the main 7

concern with the design, modeling and control of this type of robots is clearly motivated 8

by the passage from a discrete to infinite number of degrees of freedom. In other words, 9

the difference with classical, rigid robots is the same that exists between rigid solids and 10

deformable, continuum solids. Therefore, one major difficulty arises when one tries to 11

model the relationship between the actuators and the effectors, since this response is 12

often highly non-linear, on one side, and is required under severe feedback restrictions 13

(real time), on the other. 14

Contact with other objects during motion also poses major difficulties to the 15

problem at hand. This is so since contact is a highly non-linear problem, governed by 16

Kuhn-Tucker conditions [6]. It was not until very recently that an inverse method of 17

control based on simulation and considering contact has been presented in [7]. In this 18

paper we propose a methodology that abandons completely existing strategies based on 19
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real time (usually, finite element-based) simulation nor employs any kinematical 20

assumption that eventually allows to simplify the problem. 21

Indeed, the presented methodology is based upon the offline construction of a 22

response function for the robot. This response function or computational vademecum is 23

stored in memory as a finite sum of products vectors with a minimum amount of 24

memory and re-constructed online with negligible computational cost [8]. Therefore, our 25

proposal is based in evaluating the response of the robot rather than simulating the 26

response of the robot. 27

In fact, our proposed methodology is aimed at describing the control problem as an 28

inverse problem arising from a parameterized partial differential equation (PDE), and 29

thus is amenable to generalization to virtually any type of soft robot. As will be noticed 30

throughout the paper, our strategy allows for an efficient inverse determination of the 31

necessary parameters (here, the forces in the actuators) given stress or pressure 32

limitations at the effectors after contact. Simple Levenberg-Marquardt algorithms 33

provide results compliant with the desired interactive rates (from some 30 to 130 Hz in 34

our experiments with code prototypes). 35

1 Related work 36

As mentioned before, the passage from discrete to continuum makes modeling and 37

simulation of soft robots an intricate procedure that strongly depends on the considered 38

type of robot. In order to overcome the infinite-dimensional configuration space of 39

continuum mechanics, recent approaches try to follow the tradition of the fathers of 40

strength of materials disciplines, i.e., to establish some kinematic assumptions that help 41

to alleviate the complexity of the problem. Thus, for instance, in [9], a procedure is 42

established in which piecewise constant curvature is assumed for each of the segments of 43

a pneumatic actuator. Similarly, in [10], a pressure-volume relationship is constructed 44

for a soft, hydraulically-actuated robot able to transverse a cannula. This is also the 45

approach followed in [11], where the Cosserat rod theory was applied to modeling a soft 46

robot arm driven by cables, similar to the one considered here. However, in sharp 47

contrast with the approach followed herein, in that work a linear visco-elastic 48

(Kirchhoff-Saint Venant) model is considered, which can lead to severe inconsistencies 49

(particularly, crushing under compression) [12]. 50

A second group of techniques employs finite element modeling under real-time 51

constraints. To fulfill these constraints, usually some simplifying assumptions are made. 52

In [13], for instance, FEM is employed to characterize an octopus-like soft robot guided 53

by cables and springs. This concept is further generalized in [14] to coin the concept of 54

eRobotics, i.e., a virtual testbed for the design, modeling and simulation-based control of 55

soft robots. 56

The work of C. Duriez and coworkers is maybe the most relevant concerning 57

real-time finite element simulation for control of soft robots, see [15] [7] [16]. In his work, 58

although non-linear, explicit finite element methods are used, some severe simplifications 59

are taken into account. For instance, given the impossibility of performing inverse 60

analysis in the displacement space, due to the high number of degrees of freedom, they 61

opt by doing it in the actuation and contact variables. Linear elasticity under the 62

corotational FE framework is employed at a first step. In sharp contrast with these 63

assumptions, in our method general hyperelastic laws can be employed at no extra cost. 64

As a result of this first step, the model in [15] could eventually violate the contact 65

restrictions. In parallel, a second problem is solved in which a linear relationship 66

between the actuations and the contact forces is solved. The deformed configuration of 67

the robot would thus be the sum (linear superposition) of the unconstrained motion of 68

the robot and the constraints motivated by contact. Forces in the actuators are thus 69
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obtained by juxtaposition of both problems, despite the (theoretical) non-linearity of 70

both and the lack of fulfillment of the superposition principle. 71

Despite these limitations, the work by Duriez and coworkers, see the original one 72

in [15] and a very recent update in [7], is perhaps the most sophisticated method based 73

on the finite element method. This proves the inherent difficulty of the problem at hand. 74

2 Method 75

The method we present here is aimed at overcoming the mentioned simplifications 76

motivated by the complexity (and the high number of degrees of freedom) of standard 77

finite element approaches to modeling and control of soft robots. The goal is to consider 78

a model of the robot as general as possible, and to that end we chose a tendon-driven 79

finger, which under similar forms appears in different references, see [11] [13] [15], 80

among others. No particular assumption is made on the linearity of the constitutive 81

equation of the matrix, and the control strategy is also extensible to any robot whose 82

control can be set as an optimization problem arising from a parametrized partial 83

differential equation (PDE). 84

2.1 Abstract setting 85

We formulate the problem of control of the soft robot as the fast evaluation of the 86

response of the system, whose output of interest is expressed as some linear functional 87

of a field variable (typically, the displacement field), that is the solution of a 88

parametrized partial differential equation (PDE). This evaluation must be also bounded 89

in terms of error for the strategy being of practical interest, of course. 90

To better describe our approach, consider without loss of generality, a model robot 91

inspired by the Clemson manipulator (essentially, a tendon driven continuum 92

manipulator) [17]. A similar robot has been considered recently in [7], for instance. The 93

robot can be composed by one or more segments, each of them actuated by four tendons 94

(steel cables), see Fig. 1. The tendons are attached to a rigid plate (represented in grey 95

in Fig. 1) placed at the end of the actuator, so as to transmit their tension and provoke 96

bending. 97

The response of the robot, still without considering contact, will then typically take 98

the form of a function 99

u = u(x,µ), (1)

where u represents the vector-valued field of displacements at any point x of the volume 100

Ωt = Ω(t) occupied by the robot. Here, µ ∈ Rnpar represents a vector of npar parameters 101

governing the behavior of the robot. For the tendon-driven manipulator in Fig. 1, these 102

parameters will be the forces in both tendons, i.e., µ = [F1, F2]. For other types of soft 103

robots such as pneumatic ones, these parameters could be pressures at different points 104

of the robot Ω, for instance. 105

The just mentioned displacement field given in Eq. (1) will be the solution of the
equilibrium equations for the robot, i.e.,

∇P +B = 0 in Ω0

where B represents the volumetric forces applied to the body and P the first 106

Piola-Kirchhoff stress tensor. Ω0 = Ω(t = 0) represents the undeformed configuration of 107

the robot. The solution is subjected to the following boundary conditions 108

u(X) = ū on Γu,

PN = t on Γt
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Fig 1. Schematic description of the tendon-driven manipulator considered in this work,
along with its dimensions. Left, cross section of the segment with the position of the
tendons. Right, dimensions of the segment. Due to symmetry, and to avoid degenerate
solutions, we consider that only two tendons can be actuated at a time. These are
represented in red. Other possible configurations can be obtained by just rotating
around the x-axis the solution obtained for this particular one. Actuating the four
tendons at the same time could produce, for instance, a pure compressive stress state
that would produce a shortening of the finger, something useless, in general.

Γu and Γt represent the essential (Dirichlet) and natural (Neumann) portions of the
boundary Γ = ∂Ω of the robot. N is the unit vector normal to Γ = ∂Ω0 and t̄ is an
applied traction. To complete the problem, some relationship between kinematic
variables (displacements, strain) and dynamic variables (stresses) must be assumed.
Here, it is assumed that the material is composed by a neo-Hookean, and thus
hyperelastic, material, see [12], although any other hyperelastic constitutive law could
be considered without any difficulty. Its strain energy density function is defined as

W = C1(I1 − 2) +D1(J − 1)2.

Here, we take C1 and D1 are constants, characteristic of the particular material 109

employed. I1 represents the first invariant of the isochoric part of the right 110

Cauchy-Green deformation tensor and J is the determinant of the gradient of 111

deformation tensor. 112

Therefore, as can readily be noticed, the problem greatly simplifies if we are able to 113

compute offline the response of the system, Eq. (1), and to evaluate it online, rather 114

than simulate it by standard finite elements, for instance. Under this rationale, we call 115

direct problem the straightforward obtention of the displacement field —or any related 116

quantity of interest (QoI) given by a linear functional `o(u) such as the displacement at 117

the end effector, for instance—, given the values of the parameters, µ. Generally, 118

however, control strategies will involve inverse problems, i.e., given the desired QoI, find 119

the right values of the parameters µ that provide it. 120

Solving in real time the inverse problem will pose, unless artificial linearity 121

assumptions are made, very stringent requirements to the control strategy. In general, 122

despite the nowadays capabilities of modern computers or even deployed systems that 123

could be installed, this is still out of reach for realistic models of soft robots. 124

2.2 Reduced order modeling of the soft robot 125

Although many different model order reduction (MOR) techniques exist (see, for 126

instance, some recent reviews in [18], [19], [20], [21], [22], to name but a few), their main 127
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characteristic is to provide a model with a minimal number of degrees of freedom with 128

also minimal loss in accuracy. This accuracy is often compared to what is called 129

full-order models, i.e., detailed finite element models of the system of interest, in our 130

case. 131

To achieve this, MOR techniques employ different methods for generating an affine 132

or separated representation of the unknowns, viz. the displacement filed in our model 133

problem: 134

u(x,µ) ≈
nDOF∑
i=1

Fi(x) ◦G1
i (µ1) ◦G2

i (µ2) ◦ . . . ◦Gnpar
i (µnpar), (2)

where “◦” appears here as the Hadamard entry-wise product of vectors (Matlab “∗.” 135

product), given the vectorial character of the displacement field. Functions Fi and Gi 136

are actually expressed in a finite element mesh and must be determined so as to provide 137

the model with a minimal number of degrees of freedom nDOF. Many MOR methods 138

employ a learning phase in which snapshots of the full-order model for different 139

parameter values are computed. Then, an a posteriori analysis of these snapshots 140

provides the optimal functions Fi and Gi. Since they are expressed in a finite element 141

mesh of low dimension, their storage in memory and subsequent reconstruction of the 142

solution (2) for a given value of the parameters µ is straightforward. Among these 143

methods one can cite the plethora of techniques based on Proper Orthogonal 144

Decomposition (POD) [23] [24] [18] or the Reduced Basis technique [20] [25]. 145

Proper Generalized Decompositions (PGD), however, compute these functions a 146

priori, and thus without the need of any learning campaign [26] [27]. To that end, PGD 147

methods employ a greedy algorithm to compute each term in the sum (2). Within each 148

loop i in this greedy algorithm, the usual procedure to obtain the (nodal values of) the 149

functions Fi and Gi, given the non-linear character of the product, is to employ Newton 150

iterations or, more commonly, simple fixed-point alternating directions algorithms. 151

Standard finite element approximations to the displacement field u(x,µ) are usually 152

out of reach, due to the high dimensional space in which it lives. Indeed, the phase 153

space of the problem, given that x ∈ R3 and that, in general, µ ∈ Rnparam , will be 154

defined in R3nparam . The number of degrees of freedom of a finite element mesh in a 155

high-dimensional space is known to grow exponentially with the number of dimensions, 156

and therefore will render the method useless for a moderate number of parameters 157

nparam. However, reduced-order models keep the number of degrees of freedom 158

moderate. From Eq. (2) we observe that the total complexity of the problem scales 159

linearly (and not exponentially) with the dimension of the phase space. 160

Finally, the number of terms in the separate representation of the solution, nDOF, 161

can be chosen as a function of the desired level of accuracy. A vast literature exists 162

about error estimation in this context, see for instance, [20], [28], [29], [30], [31], [32]. 163

3 Control strategy 164

Once the response of the robot has been adequately characterized by means of the 165

precise form of Eq. (2), a robotic hand or gripper formed by three of these “fingers” is 166

envisaged. Different control strategies can be set up. Here, our aim is to be able to 167

handle delicate, fragile objects without breaking them nor letting them fall. 168

3.1 Control prior to contact 169

Of course, the first part of the control strategy, in the absence of contact, is to position
the end effectors of each of the three fingers at a desired location. This is a simple
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example of an inverse problem mentioned before, that can be expressed as the
minimization of a functional

µ = [F1, F2] = arg min
µ∗=[F∗

1 ,F∗
2 ]

J (F1, F2),

with J (F1, F2) = ‖u(x0, µ)− u0‖, and u0 the desired position at the end effector, 170

located at x0 in the reference configuration. In this case we choose µ∗ ∈ [0, 100]2 N. 171

3.2 Control after contact 172

We assume that some tactile device has been embedded in the finger such as, for 173

instance, a TakkTile one [33]. This type of devices provide with the contact pressure 174

once it has occurred. The pressure at the tactile device should have been expressed in 175

separated form as well: 176

p(F1, F2, d) ≈
mmod∑
i=1

P 1
i (F1) · P 2

i (F2) ·Hi(d), (3)

with d the distance from the finger at rest to the contact plane, tangent to the solid at 177

the contact point. Since the robot has actually no information on the relative position 178

of the object to handle, this value is obtained as the position of the finger, recorded 179

once the tactile device has informed about a non-null contact pressure. With Eq. (3) 180

the pressure contact is therefore fully characterized in a reduced-order fashion. The 181

object to handle is assumed to have an admissible stress value σ, not to be reached. 182

The control strategy will be composed, therefore, by the following steps: 183

1. We approach the fingers in normal direction —by applying, say, force F1— until 184

the tactile sensor detects contact. At this moment we determine d = d∗ by 185

employing Eq. (3). 186

2. From now on, assuming a certain pressure to hold the object without breaking, 187

pobj < σ, the forces in the finger will be those that minimize the functional 188

µ = [F1, F2] = arg min
µ∗

L(µ), (4)

with L(µ) = ||p(F1, F2, d
∗)− pobj||. 189

This minimization procedure can be accomplished by the Levemberg-Marquardt
algorithm, for instance, by noting that the necessary sensitivities can be computed as

∂L
∂F1

=
∂

∂F1

(
p(F1, F2, d

∗)− pobj
)2

=2

(
mmod∑
i=1

P 1
i (F1) · P 2

i (F2) ·Hi(d
∗)− pobj

)

·

(
mmod∑
i=1

∂P 1
i (F1)

∂F1
· P 2

i (F2) ·Hi(d
∗)

)
.

Since the separated functions P 1
i , P 2

i , Hi are actually approximated in a finite 190

element sense, our method stores only vectors containing the nodal values of these 191

functions. These vectors are then multiplied or differentiated in a finite element sense 192

with great speed and a minimum consumption of CPU time. The true advantage of our 193

method resides actually in the separated form of the variables, displacement and 194

pressure, at the end effector. 195
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4 Experiments and results 196

4.1 Model of the finger 197

Each finger is assumed to be composed by one or more modules (segments) like the one 198

depicted in Fig. 1. The rubber part of the finger is assumed to be composed by a 199

neo-Hookean material with C1 = 1.9MPa and D1 = 2.43 · 10−7Pa−1. These values 200

correspond to typical values of rubber-like materials. Each segment has been meshed by 201

employing linear hexahedral finite elements. The mesh is shown in Fig. 2. It is 202

composed by 10 000 linear hexahedral elements and therefore slightly more than 30 000 203

degrees of freedom. 204

(a)

(b)

Fig 2. Finite element model of the finger segment. Top: discretization of the rubber
envelope. Bottom: steel tendons and end plate.

Fig. 3 shows different configurations of the finger composed by one single segment 205

under different actuator conditions. Similarly, Fig. 4 represents different configuration 206

once contact has occurred. It is worth noting that this figure exemplifies the way of 207

determining the h distance between the robot at rest and the object, and therefore how 208

to particularize Eq. (3) to obtain the response surface of the pressure field for each 209

particular configuration. 210

An extension of the model for a more sophisticated robot can be achieved by 211

composing two segments, controlled by eight tendons, see Fig. 5. In Fig. 6 different 212

PLOS 7/15



(a) (b)

(c) (d)

Fig 3. Different configurations of the finger segment. (a) F1 = 100N , F2 = 100N ; (b)
F1 = 50N , F2 = 100N ; (c) F1 = 100N , F2 = 0N ; (d) F1 = 10N , F2 = 100N . The
legend corresponds to S11, the first component of the second Piola-Kirchhoff stress
tensor. Symmetric configurations can be obtained by actuating the tendons situated at
opposite positions.

configurations of this robot are shown, for different robot-to-object distance, d. As an 213

obvious consequence, the number of degrees of freedom in the control algorithm increase. 214

Results below will show, however, that the proposed methodology is able to cope with 215

them under real-time constraints. 216

4.2 Results 217

4.2.1 One-segment robot 218

We first performed a battery of tests on the robot constructed with one segment (and 219

therefore four tendons). Starting at 10 000 randomly spaced initial positions, we 220

computed the time to obtain the necessary forces at the two active tendons to reach the 221

contact surface of the object and apply the necessary pressure, i.e., to solve the problem 222

defined by Eq. (4). These results were obtained by employing Matlab 2017a, running on 223

a Mac Pro computer with four Intel Xeon E5 processors running at 3.5 GHz and are 224

reported in Table 1. 225

Table 1. Results of the experimental campaign for the one-segment robot.

Sample size Average time Std dev Min Max
10000 7.1605 ms 1.2538 ms 5.4805 ms 31.0749 ms

To verify the accuracy of the reduced-order strategy, we compared the results 226

obtained by the control strategy with those obtained with a direct numerical simulation 227
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(a)

(b)

(c)

(d)

Fig 4. Different configurations of the finger segment after contact. (a) F1 = 100N ,
F2 = 0N , d = 5mm; (b) F1 = 100N , F2 = 100N , d = 5mm; (c) F1 = 100N , F2 = 0N ,
d = 1mm; (d) F1 = 100N , F2 = 100N , d = 31mm (no contact is observed in this
particular configuration). The legend corresponds to S11, the first component of the
second Piola-Kirchhoff stress tensor. Symmetric configurations can be obtained by
actuating the tendons situated at opposite positions.

in which we introduce the forces in the tendons provided by the control algorithm. 228

Errors in L2-norm for the displacement field and in L∞-norm for pressure were 229

obtained. For the displacement field, the error found was on the order of eL2 ≈ 0.01%. 230

For the pressure, this error raised to something between 3 and 5%, see Fig. 7. 231

4.2.2 Two-segment robot 232

A similar experimental campaign was accomplished for the two-segment robot. In this 233

case, the only difference with the previous section is the size of the parametric space. In 234

this case, tests were performed again on a Mac Pro 6,1 computer equipped with 235

Quad-core Intel Xeon E5 at 3.5, running Matlab R2017a on a single thread. In this 236

framework, the proposed strategy was able to provide results at mean values of some 30 237
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m. (b) Three-dimensional representation of a bi-segmental finger. Both segments Ω1

and Ω2 are separated by the medial steel plate Γ1. The distal steel plate Γ2 is at the tip
of the finger. The long tendon is assumed to slide freely through the medial plate Γ1.

ms. Errors in the predicted pressure values, however, were slightly higher for one case, 238

which can be solved nevertheless by augmenting the number of terms in Eq. (2). See 239

Fig. 8 for more details on the results. The 13% error reported for one particular 240

configuration suggests maybe the need for subsequent refinements in the meshing of the 241

parametric space, particularly around this region. The rest of the tested values showed 242

very limited errors, below 5%. 243

4.3 Discussion 244

The just presented results have been obtained with a model that employed 10000 245

elements to discretize the rubber matrix of each segment of the robot. The parametric 246

space was discretized by employing only four elements along each dimension, which is 247

obviously a rough discretization that can be much improved. To further improve a 248

reduce model, two alternative routes exist. These are summarized in the following 249

scheme: 250

un
h(x,µ) un=∞

h (x,µ) = uh

un
h=0(x,µ) u(x,µ)

eMOR

eFEM eFEM

eMOR

e

251

where h refers here to finite element size and n to the number of terms in the MOR 252

approximation, see Eq. (2). It can be noticed how the sources of error in the solution of 253

the model are two-fold. On one side, the size of the finite element mesh. Of course, the 254

finer the mesh, the better the results, and hence the error coined as eFEM. On the other, 255

the truncation of the sum in Eq. (2), adds a new source of error, here coined as eMOR. 256

Both sources of error could ideally be separated if we take a reference solution with 257

either a zero-sized mesh, or an infinite number of terms in the MOR solution. Both 258

contribute to the total error of the reduced model, e. 259

Therefore, in order to improve the results, if needed, or, equivalently, minimize the 260

error, two strategies arise: to reduce the mesh or to add more terms to the MOR 261
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(a)

(b)

(c)

(d)

Fig 6. Different configurations of the finger segment after contact, when only a pair of
tendons is actuated. (a) Fs = 100N , Fl = 100N , d = 5mm; (b) Fs = 100N , Fl = 0N ,
d = 16mm; (c) Fs = 0N , Fl = 100N , d = 20mm; (d) Fs = 100N , Fl = 100N ,
d = 31mm. The legend corresponds to S11, the first component of the second
Piola-Kirchhoff stress tensor. Symmetric configurations can be obtained by actuating
the tendons situated at opposite positions.

approximation. In the literature, several methods exist to estimate the error and give a 262

precise indication on how to proceed, see, for instance, [28], [32], [20]. But it is 263

important to notice that, for a sufficiently high number of terms in the MOR approach, 264

the model reproduces the finite element solution. Therefore, sometimes it is simply 265

nonsense to continue augmenting the number of terms in the MOR approximation, 266

Eq. (2), since the error could be governed by a rough finite element mesh. 267
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(a) d = 1 mm (b) d = 12.5 mm (c) d = 21.3 mm

Fig 7. Verification of the control strategy for the one-segment robot. We took pobj = 1
N and obtained the necessary forces in the tendons by solving Eq. (4). With these force
values, we then ran a direct numerical simulation whose results are shown. Errors in
pressure for each of the three shown cases are 5% for (a) and 2% for (b) and (c).

(a) d = 21 mm (b) d = 1 mm (c) d = 31 mm

Fig 8. Verification of the control strategy for the two-segment robot. We took pobj = 1
N and obtained the necessary forces in the tendons by solving Eq. (4). With these force
values, we then ran a direct numerical simulation whose results are shown. Errors in
pressure for each of the three shown cases are 4% for (a) and 13% for (b) and 0.3% for
(c).
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