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Abstract

Sparse model identification by means of data is specially cumber-
some if the sought dynamics live in a high dimensional space. This
usually involves the need for large amount of data, unfeasible in such
a high dimensional settings. This well-known phenomenon, coined as
the curse of dimensionality, is here overcome by means of the use of
separate representations. We present a technique based on the same
principles of the Proper Generalized Decomposition that enables the
identification of complex laws in the low-data limit. We provide ex-
amples on the performance of the technique in up to ten dimensions.



1 Introduction

In recent years there has been a growing interest in incorporating data-driven
techniques into the field of mechanics. While almost classical in other do-
mains of science like economics, sociology, etc., big data has arrived with
important delay to the field of computational mechanics. It is worth noting
that, in our field, the amount of data available is very often no so big, and
therefore we speak of data-driven techniques instead of big-data techniques.

Among the first in incorporating data-driven technologies to the field
of computational mechanics one can cite the works of Kirchdoerfer et al.
[1, 2], or the ones by Brunton et al. [3] [4] [5]. Previous attempts exist,
however, to construct data-driven identification algorithms, see for instance
[6] [7]. More recently, the issue of compliance with general laws like the
ones of thermodynamics has been also achieved, which is a distinct feature
of data-driven mechanics [8]. Other applications include the identification of
biological systems [9] or financial trading [10], to name but a few.

The problem with high dimensional systems is that data in these systems
is often sparse (due precisely to the high dimensional nature of the phase
space) while the system has, on the contrary, low dimensional features—at
least very frequently—. Based on this, a distinction should be made between
methods that require an a priori structure of the sampling points and others
which do not require such a regularity.

Regarding the methods that need a rigid structure in the sampling points,
the Non Intrusive Sparse Subspace Learning (SSL) method is a novel tech-
nique which has proven to be very effective [11]. The basic ingredient be-
hind such a technique is that the parametric space is explored in a hierar-
chical manner, where sampling points are collocated at the Gauss-Lobato-
Chebychev integration points. Also, using a hierarchical base allows to im-
prove the accuracy adding more hierarchical levels without perturbing the
previous ones. To achieve such hierarchical property, just the difference at
a given point between the real function minus the estimated value, using
the precedent hierarchical levels, is propagated. For more details about the
method, the reader is referred to [11]. However, in the high-dimensional case,
this technique shows severe limitations, as will be detailed hereafter.

On the other hand, non-structured data-driven techniques are commonly
based on Delaunay triangularization techniques, providing an irregular mesh
whose nodes coincides with the sampling points. Afterwards, depending on
the degree of approximation inside each one of the Delaunay triangles, it



gives rise to different interpolation techniques, i.e. linear, nearest, cubic,
natural, among other techniques are commonly used. Apart from techniques
that depend on a given triangularization, it is worth to mention Kriging
interpolants as an appealing technique to provide response surfaces from non-
structured data points. The key ingredient behind such technique is that each
sampling point is considered as a realization of a random process. Therefore,
defining a spatial correlation function allows to infer the position of unknown
points just like providing confidence intervals based on the distance to the
measured points. Nevertheless, the calibration of the correlation matrix has
an important impact in the performance of the method itself.

Kriging also possesses a very interesting property: it is able to efficiently
filter noise and outliers. Therefore, it is expected that it also could help us
in problems with noise in the data.

However, in high dimensional settings, all of the just mentioned tech-
niques fail to identify the nature of the system due precisely to the curse of
dimensionality. A recent alternative for such a system could be Topological
Data Analysis (TDA), which is based on the use of algebraic topology and
the concept of persistent homology [12]. A sparse version of this technique
also exists [13].

Hence, if a competitive data-driven identification technique is desired,
such a technique should meet the following requirements:

e Non-structured data set: this characteristic provides versatility to the
method. Indeed, when evaluating the response surface requires a lot
of computational effort, recycling previous evaluations of the response
surface, which do not coincide with a given structure of the data, may
be very useful. In addition, the SSL technique establishes sampling
points at locations in the phase space with no physical meaning in an
industrial setting.

e Robustness with respect to high dimensionality: triangularization-based
techniques suffer when dealing with multidimensional data just because
a high dimensional mesh has to be generated. Nevertheless, the sepa-
ration of variables could be an appealing technique to circumvent the
problem of generating such a high dimensional mesh.

o Clurse of dimensionality: all previous techniques suffer when dealing
with high dimensional data. For instance, the SSL needs 2P sampling
points just to reach the first level of approximation. Thus, when dealing



with high dimensional data (D > 10 uncorrelated dimensions) plenty
of sampling points are required to properly capture a given response
surface.

In what follows we present a method based on the concept of separate
representations to overcome the curse of dimensionality. Such separate repre-
sentation has previously been employed by the authors to construct a priori
reduced-order modeling techniques, coined as Proper Generalized Decom-
positions [14] [15] [16] [17] [18] [19] [20]. This will give rise to a sparse
Proper Generalized Decomposition (s-PGD in what follows) approach to the
problem. We then analyze the just developed technique through a series of
numerical experiments in Section 4, showing the performance of the method.
Examples in up to ten dimensions are shown. The paper is completed with
some discussions.

2 A sparse PGD (s-PGD) methodology

2.1 Basics of the technique

In this section we develop a novel methodology for sparse identification in
high dimensional settings. For the ease of the exposition and, above all,
representation, but without loss of generality, let us begin by assuming that
the unknown objective function f(z,y) lives in R? and that is to be recovered
from sparse data. As in previous references, see for instance [21], we have
chosen to begin with a Galerkin projection, in the form

/Q w2, y) (ulz,y) — f(e,y)) dedy =0, (1)

where Q0 C R? stands for the—here, still two-dimensional-—domain in which
the identification is performed and w*(z,y) € C°(Q) is an arbitrary test
function. Finally, u(z,y) will be the obtained approximation to f(x,y), still
to be constructed. In previous works of the authors [8] as well as in other
approaches to the problem (e.g., [21]), this projection is subject to additional
constraints of thermodynamic nature. In this work no particular assumption
is made in this regard, although additional constraints could be imposed to
the minimization problem.



Following the same rationale behind the Proper Generalized Decomposi-

tion (PGD), the next step is to express the approximated function v (z, y) ~
u(z,y) as a set of separate one-dimensional functions,
M
uM(z,y) = X @)YH(y). (2)
k=1

The determination of the precise form of functional pairs X*(z)Y*(y),
k=1,...,M, is done by first projecting them on a finite element basis and
by employing a greedy algorithm such that, once the approximation up to
order M — 1 is known, the new M-th order term

uM(,y) = uM )+ XM@Y () = 3 XR@)YRE) + XY (@)Y (),

is found by any non-linear solver (Picard, Newton, ...).

It is well-known that this approach produces optimal results for elliptic
operators (here, note that we have in fact an identity operator acting on u) in
two dimensions, see [14] and references therein. There is no proof, however,
that this separate representation will produce optimal results (in other words,
will obtain parsimonious models) in dimensions higher than two. In two
dimensions and with w* = u* it provides the singular value decomposition of
f(x,y) [15]. Our experience, nevertheless, is that it produces almost optimal
results in the vast majority of the problems tested so far.

It is worth noting that the product of the test function w*(z,y) times the
objective function f(x,y) is only evaluated at few locations (the ones cor-
responding to the experimental measurements) and that, in a general high
dimensional setting, we will be in the low-data limit necessarily. Several op-
tions can be adopted in this scenario. For instance, the objective function can
be first interpolated in the high dimensional space (still 2D in this introduc-
tory example) and then integrated together with the test function. Indeed,
this will be the so-called PGD in approzimation [15], commonly used when
either f(x,y) is known everywhere and a separated representation is sought
or if f(z,y) is known in a separated format but a few pairs M are needed
for any reason. Under this rationale the converged solution wu(z,y) tries to
capture the already interpolated solution in the high dimensional space but
in a more compact format. As a consequence, the error due to interpolation
of experimental measurements on the high dimensional space will persist in
the final separate identified function.



In order to overcome such difficulties, we envisage a projection followed
by interpolation method. However since information is just known at P
sampling points (z;,¥;), ¢ = 1,..., P, it seems reasonable to express the test
function not in a finite element context, but to express it as a set of Dirac
delta functions collocated at the sampling points,

w*(z,y) = u*(z,y) Z O(ws, i)

giving rise to
[ ) (o) = 1,90 ddy
= [ o) 3 Sl ) (uli) = ) dedy =0

The choice of the test function w*(z,y) in the form dictated by Eq. (3) is
motivated by the desire of employing a collocation approach while maintaning
the symmetry of standard Bubnov-Galerkin projection operation.

2.2 Matrix form

Let us detail now the finite element projection of the one-dimensional func-
tions X*(z), Y*(y), k =1,..., M, (often referred to as modes) appearing in
Eq. (2). Several options can be adopted, ranging from standard piecewise
linear shape functions, global non-linear shape functions, maximum entropy
interpolants, splines, kriging, etc. Regarding the kind of interpolant to use,
an analysis will be performed in the sequel. Nevertheless, no matter which
precise interpolant is employed, it can be expressed in matrix form as

k
Qg

ZNk af = [Nf(z)...Ny(@)] | ¢+ | =(Np)Ta",  (4)

k
QN



; st
YHy) =D N = [Nf(y) ... Nyw)] | & | = (Np'BY, (5)
s

é‘? and BJ’?, j = 1,..., N, represent the degrees of freedom of the

chosen approximation. We employ N¥ as the most usual nomenclature for
the shape function vector. It is important to remark that the approximation
basis could even change from mode to mode (i.e., for each 7). For the sake
of simplicity we take the same number of terms for both X*(z) and Y*(y),
namely, N.

By combining Eqs. (1)-(5) a non linear system of equations is derived,
due to products of terms in both spatial directions. An alternate direction
scheme is here preferred to linearize the problem, which is also a typical
choice in the PGD literature. Note that, when computing modes X (z),
the variation in the other spatial direction vanishes, Y*(y) = 0, and vice
versa.

where «

In order to fully detail the matrix form of the resulting problem, we first
employ the notation “®” as the standard tensorial product (i.e., b&c = b;c;),
and define the following matrices

A =N @ N,
kl _ WJk 4
AM=NFo N,
kl _ Nk 4
CH = NF o N,

For the sake of simplicity but without loss of generality, evaluations of the
former operators at point (z;,y;) are denoted as

A3 = Ni(w;) ® Ny (@),
kt k 4

Ayi = Ny(yl) ® Ny (yl)a
k¢ k j

Egs. (6)-(7) below show the discretized version of the terms appearing in the
weak form, Eq. (1), when computing modes in the x direction. Again, M
stands for the number of modes in the solution u(x,y) while P denotes the



number of sampling points.

P

[ ) S s wute.y)dady

=1
M P
k=1 i=1

P

[ ) S 8 iy = 3 (o) ()T CHBY) . (1)

=1 =1
Hence, by defining

P
M, = Z((bM)TAZ]/\j[MbM)A%M’

P

P
f, = flany)CHYpY,

allows to write a system of algebraic equations
M,a" =f, — m,. (8)

Exactly the same procedure is followed to obtain an algebraic system of
equations for b™. This allows to perform an alternating directions scheme
to extract a new couple of XM (x) and Y (y) modes.

This formulation has several aspects that deserve to be highlighted:

1. No assumption about f(x,y) has been made other than assuming known
its value at sampling points. Indeed, both problems of either inter-
polating or making a triangulation in a high dimensional space are
circumvented due to the separation of variables.

2. The operator M, is composed of P rank-one updates. Meaning that
the rank of such operator is at most P. Furthermore, if a subset of
measured points share the same coordinate x;, the entire subset will
increase the rank of the operator in one unity.
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3. The position of the sampling points will constraint the rank of the
PGD operators. That is the reason why, even if the possibility of
having a random sampling of points is available, it is always convenient
to perform a smart sampling technique such that the rank in each
direction tends to be maximized. Indeed, the higher the rank of the
PGD operator is, the more cardinality of a and b can be demanded
without degenerating into an underdetermined system of equations.

There are plenty of strategies to smartly select the position of the sam-
pling points. They are based on either knowing an a priori error indicator or
having a reasonable estimation of the sought response surface. Certainly, an
adaptive strategy based on the gradient of the precomputed modes could be
envisaged. However, the position of the new sampling points will depend on
the response surface calculated using the previous sampling points, making
parallelization difficult. That is the reason why latin hypercube is chosen in
the present work. Particularly, latin hypercube tries to collocate P sampling
points in such a way that the projection of those points into x and y axis are
as far as possible.

2.3 Choice of the 1D basis

In the previous section, nothing has been specified about the basis in which
each one of the one-dimensional modes was expressed. In this subsection, we
will use an interpolant based on Kriging techniques. Simple Kriging has been
used throughout history in order to get relatively smooth solutions, avoiding
spurious oscillations characteristic of high order polynomial interpolation.
This phenomena is called Runge’s phenomenon. It appears due to the fact
that the sampling point locations are not chosen properly, i.e., they will
not be collocated, in general, at the Gauss-Lobato-Chebychev quadrature
points. Kriging interpolants consider each point as a realization of a Gaussian
process, so that high oscillations are considered as unlikely events.

Hence, by defining a spatial correlation function based on the relative
distance between two points, D(z; — x;)=D;;, an interpolant is created over
the separated 1D domain,



where A\(x — ;) is a weighting function which strongly depends on the defi-
nition of the correlation function, and the «; coefficients are the nodal values
associated to the x; Kriging control points. Note that these control points
are not the sampling points. We have chosen this strategy so as to allow us to
accomplish an adaptivity strategy that will be described next. In the present
work, these control points are uniformly distributed along the 1D domain.
Although several definitions of the correlation function exist, a Gaussian dis-
tribution is chosen as
1 (w5—24)?

Dij = D(IZ — Ij) = e 202 5
oV 2w

where o is the variance of the Gaussian distribution. Several a priori choices
can be adopted to select the value of the variance based on the distance
between two consecutive control points, e.g., 0 = hy/(z;41 — z;)?. The mag-
nitude of h should be adapted depending on the desired global character of
the support. To ensure the positivity of the variance, h should be in the
interval |0, +o0|.

Let us define now a set of C' control points

P _ [P P cp
xP = [of, 2, .. 2],
and the P sampling points
Sp _ [P 5P sp
xP = [z, x3’, . . x P

Let us define in turn a correlation matrix between all control points and a
correlation matrix between the control points and the sampling points as

€T = D(a? — a),

Cii " =D(x — ")
Under these settings, we define a weighting function for each control point
and for each sampling point as

A _ (ccp—cp)—lccp—sp’
where A(z" — 2P) = A;

J i
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If we reorganize the terms in the same way that we did in the previous
section to have a compact and close format of the shape function N*  we
arrive to

k

N ay
XH(a) = 3 NE ok = [NB@) N | 5| = (N
i=1 afv

where each shape function is given by:

B VEEY + Ay
N v

Figs. 1-2 depict the appearance of the simple Kriging interpolants using 7
control points uniformly distributed along the domain, for h =1 and h = %,
respectively. It can be highlighted that both the Kronecker delta (i.e., strict
interpolation) and partition of unity properties are satisfied for any value
of h. Moreover, it is worth noting that the higher the variance the corre-
lation function has, the more global the shape functions are. Furthermore,
it is known that 99 per cent of the probability of a Gaussian distribution is
comprised within a interval of [m — 30, m + 30|, being m the mean value
of the distribution. This issue explains perfectly well why the support of
each Gaussian distribution takes 2 elements for the case where h = % In-
deed, the shape of the interpolants is quite similar to standard finite element
shape functions, but with a Gaussian profile. The remaining 1 per cent of
probability is comprised in the small ridges happening in the middle of the
elements.

In light of these results, a family of interpolants based on Kriging can be
easily created just selecting the value of the variance within the correlation
function. Therefore, globality of the support can be easily adjusted always

under the framework of the partition of unity.

2.4 Modal adaptivity strategy

In a standard PGD framework, the final solution is approximated as a sum
of M modes or functional products, see Eq. (2). Each one of the separated
modes must be projected onto a chosen basis to render the problem finite
dimensional. A standard choice is to select the same basis for each one of

the modes:
N'=N°=... =N",

11



Figure 1: Kriging shape functions using o = +/(x;11 — 2;)? for 7 control
points uniformly distributed along the 1D domain.

Figure 2: Kriging shape functions using o = %\/(xiﬂ — x;)? for 7 control

points uniformly distributed along the 1D domain.
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Despite of the fact that this choice seems reasonable, when dealing with
non-structured sparse data, it may not be such. In the previous section we
proved that the rank of the separated system strongly depends on the distri-
bution of the data sampling. Therefore, the cardinality of the interpolation
basis must not exceed the maximum rank provided by the data sampling.
Indeed, this constraint, which provides an upper bound to build the interpo-
lation basis, only guarantees that the minimization is satisfied at the sam-
pling points, without saying anything out of the measured points. Hence, if
sampling points are not abundant, in the limit of low-data regime, high oscil-
lations may appear out of these measured points. These oscillations are not
desirable since the resulting prediction properties of the proposed method
could be potentially decimated.

In order to tackle this problem, we take advantage of the residual-based
nature of the PGD. Indeed, the greedy PGD algorithm tries to enrich a
solution composed by M modes,

M

uMzy) = XH@)YH(y),

k=1

just by looking at the residual that accounts for the contribution of the
previous modes, as shown in Eq. (8).

Therefore, an appealing strategy to minimize spurious oscillations out of
the sampling points is to start the PGD algorithm looking for modes with
relatively smooth basis (for instance, Kriging interpolants with a few control
points). Therefore, an indicator in order to make an on-line modal adaptive
strategy is required. In the present work, we use the norm of the PGD
residual,

R% = %\/; (f (@i, yi) — uM (g, yi))2>
where P is the set of P measured points and f(z,y) is the function to be
captured.

In essence, when the residual norm stagnates, a new control mesh is de-
fined, composed by one more control point and always uniformly distributed,
following

ARM — RM _RM-1 ¢

By doing this, oscillations are reduced, since higher-order basis will try to
capture only what remains in the residual. Here, €, is a tolerance defining the

13



resilience of the sPGD to increase the cardinality of the interpolation basis.
The lower ¢, is, the more resilient the method is to increase the cardinality.

To better understand the method, we will quantify the error for two set
of points: the first set is associated to the sampling points, P,

$s7ys — uM(z,,y;))°
73' #P Z 2 )

=~ f(@s,ys)

where f(xs,ys) is assumed not to vanish and where £ also includes points
other than the sampling points. This is done in order to validate the algo-
rithm, by evaluating the reference solution—which is a priori unknown in a
general setting—at points different to the sampling ones,

%7% UM<xS7yS))2
Ee = # Z 2 :

seL x& ys)

Since the s-PGD algorithm minimizes the error only at the sampling
points P it is reasonable to expect that Ep < &

2.5 A preliminary example

To test the convergence of the just presented algorithm, we consider
fi(z,y) = (cos(3mx) + sin(37y))y* + 4,

that presents a quite oscillating behavior along the = direction, whereas the
y direction is quadratic. We are interested in capturing such a function in
the domain Q, = Q, = [—1,1].

Figs. (3)-(4) show the errors £p and &, in identifying the function f;(z,y).
In this case, we consider two distinct possibilities: no modal adaptivity at
all, and a modal adaptivity based on the residual, respectively. Several as-
pects can be highlighted. The first one is that Ep (asterisks) decreases much
faster when there is no modal adaptivity. This is expected, since we are
minimizing with a richer basis since the very beginning, instead of starting
with smooth functions like in the residual based approach. However, even
if the minimization in the sampling points is well achieved, when no modal
adaptivity is considered, the error out of the sampling points may increase
as the solution is enriched with new modes. Nevertheless, the residual-based

14



Figure 3: &, (points) and Ep (asterisk) versus the number of modes for
fi(z,y), #P =100, #L£ = 1000. No modal adaptivity.

modal adaptivity alleviates this problem. As it can be noticed, starting with
relatively smooth functions drives the solution out of the sampling points to
be smooth as well, avoiding the problem of high oscillations appearing out
of the sampling points.

3 A local approach to s-PGD

It is well-known that, as in POD, reduced basis or, in general, any other
linear model reduction technique, PGD gives poor results—in the form of
a non-parsimonious prediction—when the solution of the problem lives in a
highly non-linear manifold. Previous approaches to this difficulty included
the employ of non-linear dimensionality reduction techniques such as Locally
Linear Embeddings [22], kernel Principal Component Analysis [23] [24] or
isomap techniques [25]. Another, distinct, possibility, is to employ a local
version of PGD [18], in which the domain is sliced so that at every sub-region
PGD provides optimal or nearly optimal results. We explore this last option
here for the purpose of sparse regression, although a bit modified, as will be
detailed hereafter.

The approach followed herein is based on the employ of the partition of
unity property [26] [27]. In essence, it is well-known that any approximat-
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Figure 4: &, (points) and Ep (asterisk) versus the number of modes for
fi(z,y), #P = 100, #L = 1000. Modal adaptivity based on the residual,
e,=1le-2.

ing function (like finite element shape functions, for instance) that forms a
partition of unity can be enriched with an arbitrary function such that the
resulting approximation inherits the smoothness of the partition of unity and
the approximation properties of the enriching function.

With this philosophy in mind, we proposed to enrich a finite element
mesh with an s-PGD approximation. The resulting approximation will be
local, due to the compact support of finite element approximation, while
inheriting the good approximation properties, already demonstrated, of s-
PGD. In essence, what we propose is to construct an approximation of the

type

u(z,y) = Y Niw,y)us+ Y > Nelz,y) Y Xp(@)Y; (y),

i€l PELenr €L, k

/

f;“:(r:ff,y)
where Z represents the node set in the finite element mesh, Z.,, the set
of enriched nodes, u; are the nodal degrees of freedom of the mesh, Z, is
the number of finite elements covered by node p shape function’s support
and XJ(x) and Y (z) functions are the k-th one-dimensional PGD modes
enriching node p, that in fact constitute an enriching function f(z,y).

16



Of course, as already introduced in Egs. (4) and (5), every PGD mode is
in turn approximated by Galerkin projection on a judiciously chosen basis.
In other words,

M
y) &> Nl yui+ Y Y Nelz,y) Y (NF)Tal(NETDBE (9)
1€l PEZenr €€Lp k=1

with a]; and b’; the nodal values describing each one-dimensional PGD mode.

In this framework, the definition of a suitable test function can be done
in several ways. As a matter of fact, the test function can be expressed as
the sum of a finite element and a PGD contribution,

* % *
U =Upgy T Upeps

so that an approach similar to that of Eq. (3) can be accomplished.
An example of the performance of this approach is included in Section
4.4.

4 Numerical results

The aim of this section is to compare the ability of sparse model identifica-
tion for different interpolation techniques. On one hand, the performance of
standard techniques based on Delaunay triangulation such as linear, nearest
neighbor or cubic interpolation is compared. Even though these techniques
are simple, they allow to have a non-structured sampling point set since they
rely on a Delaunay triangulation. On the other hand, the results are com-
pared to the Sparse Subspace Learning (SSL) [11]. The convergence and
robustness of this method is proven to be very effective since the points are
collocated at the Gauss-Lobato-Chebychev points. However, two main draw-
backs appear considering this method. The first one is that there is a high
concentration of points in the boundary of the domain, so that this quadra-
ture is meant for functions that vary mainly along the boundary. Indeed,
if the variation of the function appears in the middle of the domain, many
sampling points will be required to converge to the exact function. The sec-
ond one is that the sampling points have to be located at specific points in
the domain. The s-PGD method using simple Kriging interpolants will be
compared as well.
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Figure 5: & of fi(x,y) varying #P for different identification techniques.
4L = 1000.

The numerical results are structured as follows: first two synthetic 2D
functions are analyzed; secondly, two 2D response surfaces coming from a
thermal problem and a Plastic Yield function are reconstructed; finally, a
10D synthetic function is reconstructed by means of the s-PGD algorithm.

4.1 2D synthetic functions

The first considered function is f;(z,y), as introduced in the previous section.
Fig. 5 shows the reconstruction error (£.) of fi(z,y) for different sampling
points. As it can be noticed, the s-PGD algorithm performs well for a wide
range of sampling points. Nevertheless, the SSL method is the one presenting
the lower error level when there are more than 150 sampling points.

A second synthetic function is defined as

fo(x,y) = cos(3zy) + log(z + y + 2.05) + 5.

This function is intended to be reconstructed in the domain €, = Q, =
[—1,1]. It was chosen in such a way that it is relatively smooth in the center
of the domain, whereas the main variation is located along the boundary of
the domain. Indeed, this function is meant to show the potential of the SSL
technique.

18



Figure 6: & of fy(x,y) varying #P for different identification techniques.
4L = 1000.

Fig. 6 shows the reconstruction error of the fo(x,y) function for different
interpolation techniques. As it can be noticed, both SSL and s-PGD methods
are the ones that present the best convergence properties. If the number of
points is increased even more, the SSL method is the one that presents the
lowest interpolation error. They are followed by linear and natural neighbor
interpolations. Finally, the nearest neighbor method is the one presenting
the worst error for this particular case.

4.2 2D response surfaces coming from physical prob-
lems

Once the convergence of the methods have been unveiled for synthetic func-
tions, it is very interesting to analyze the power of the former methods by
trying to identify functions that are coming from either simulations or mod-
els popular in the computational mechanics community. Indeed, two func-
tions will be analyzed: the first one is an anisotropic Plastic Yield function,
whereas the second one is a solution coming from a quasi-static thermal
problem with varying source term and conductivity.

Fig. 7 shows the Y1d2004-18p anisotropic plastic yield function, defined

19



by Barlat et al. in [28]. Under plane stress hypothesis, this plastic yield
function is a convex and closed surface defined in a three-dimensional space.
Therefore, the position vector of an arbitrary point in the surface can be
easily parameterized in cylindrical coordinates as R(6,0,,). The R(f,0,,)
function for the Y1d2004-18p is shown in Fig. 8, where anisotropies can be
easily seen. Otherwise, the radius function will be constant for a given o,,,.

Figure 7: Barlat’s Y1d2004-18p function under plane stress hypothesis.

Fig. 9 shows the error in the identification of the Barlat’s plastic yield
function Y1d2004-18p. As it can be noticed, the s-PGD technique outper-
forms the rest of techniques. Indeed, the s-PGD is exploiting the fact that
the response surface is highly separable.

As mentioned above, the second problem is the sparse identification of
the solution of a quasi-static thermal problem modeled by

V- (n(x, )V (u(z,t))) = f(t), in Q, x Q, =[-1,1] x [-1,1], (10)
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Figure 8: R(6,0,,) function for Barlat’s Y1d2004-18p yield function.

Figure 9: &, of R(0, 0,,) varying #P for different sparse identification tech-
niques. #L£ = 1000. ¢, = 5-107%.
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Figure 10: Quasi-static solution to the thermal problem wu(x,t).

where conductivity varies in space-time as

n(x,t) = (14 10 abs(z) + 10z?) log(t + 2.5) u(l,t) =2 (11)
f(z,t) = 10 cos(3nt) u(—1,t) =2, (12)

and the source term varies in time. Homogeneous Dirichlet boundary con-
ditions are imposed at both spatial boundaries and no initial conditions are
required due to quasi-stationarity assumptions.

Fig. 10 shows the evolution of the temperature field as a function of space
time for the set of Egs. (10)-(12). It can be noticed how the variation of the
temperature throughout time is caused mainly due to the source term. How-
ever, conductivity modifies locally the curvature of the temperature along
the spatial axis. Symmetry with respect the x = 0 axis is preserved due to
the fact that the conductivity presents a symmetry along the same axis.

Fig. 11 shows the performance of each one of the techniques when trying
to reconstruct the temperature field from certain sampling points. As can
be noticed, the s-PGD in conjunction with Kriging interpolants is the one
that presents the fastest convergence rate to the actual function, which is
considered unknown. It is followed by linear and natural interpolations. The
SSL method presents a slow convergence rate in this case, due to the fact
that the main variation of the function u(z,t) is happening in the center of
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Figure 11: & of u(x,t) varying #P for different identification techniques.
#L£ =1000. ¢, =2.5-1073.

the domain and not in the boundary.

4.3 A 10D multivariate case

In this subsection, we would like to show the scalability that s-PGD presents
when dealing with relatively high-dimensional spaces. Since our solution is
expressed in a separated format, an N dimensional problem (N D) is solved as
a sequence of N 1D problems, which are solved using a fixed-point algorithm
in order to circumvent the non-linearity of the separation of variables.

The objective function that we have used to analyze the properties of the
s-PGD is defined as

1 N N N
fg([tl,l‘g,...,ZEN) = 2+ gZZL’z +HZEZ+HZL’127
i=1 i=1 i=1

with N = 10 in this case.

Fig. 12 shows the error convergence in both sampling points (Ep, aster-
isks) and points out of the sampling (&, filled points). The £ data set was
composed by 3000 points, the P data subset for the s-PGD algorithm was
composed by 500 points. The number of points required to properly capture
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Figure 12: &, (points) and &p (asterisk) versus the number of modes for
fa(z1, 29, ..., 2N), #P = 500, #L = 3000. Modal adaptivity based on the
residual, €, = le — 3.

the hyper-surface has increased with respect to the 2D examples due to the
high dimensionality of the problem. Special attention has to be paid when
increasing the cardinality of the interpolant basis without many sampling
points, because the problem of high oscillations outside the control points
may be accentuated.

4.4 An example of the performance of the local s-PGD

The last example corresponds to the sparse regression of an intricate surface,
that has been created by mixing three different Gaussian surfaces so as to
generate a surface with no easy separate representation (a non parsimonious
model, if we employ a different vocabulary). The appearance of this synthetic
surface is shown in Fig. 13.

The sought surface is defined in the domain Q = [0, 1]?, which has been
split into the finite element mesh shown in Fig. 14. Every element in the
mesh has been colored according to the number of enriching PGD functions,
ranging from a single one to four. The convergence plot of this example as a
function of the number of PGD modes added to the approximating space is
included in Fig. 15.
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Figure 13: A synthetic surface generated by superposition of three different
Gaussians, that is to be approximated by local s-PGD techniques.

Figure 14: Finite element mesh for the example in Section 4.4. All the
internal nodes have been enriched.
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Figure 15: Convergence plot for the example in Section 4.4.

5 Conclusions

In this paper we have developed a data-based sparse reduced-order regres-
sion technique under the Proper Generalized Decomposition framework. This
algorithm combines the robustness typical of the separation of variables to-
gether with properties of collocation methods in order to provide with par-
simonious models for the data at hand. The performance of simple Kriging
interpolation has proven to be effective when the sought model presents some
regularity. Furthermore, a modal adaptivity technique has been proposed in
order to avoid high oscillations out of the sampling points, characteristic of
high order interpolation methods when data is sparse.

For problems in which the result lives in a highly non-linear manifold, a
local version of the technique, that makes use of the partition of unity prop-
erty, has also been developed. This local version outperforms the standard
one for very intricate responses.

The s-PGD method has been compared advantageously versus other ex-
isting methods for different example functions. Finally, the convergence of
s-PGD method for a high dimensional function has been demonstrated as
well.

Although the sparsity of the obtained solution could not seem evident
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for the reader, we must highlight the fact that the very nature of the PGD
strategy a priori selects those terms in the basis that play a relevant role
in the approximation. So to speak, PGD algorithms automatically discard
those terms that in other circumstances will be weighted by zero. Sparsity,
in this sense, is equivalent in this context to the number of sums in the PGD
separated approximation. If only a few terms are enough to reconstruct the
data—as is almost always the case—, then sparsity is guaranteed in practice.

Sampling strategies other than the latin hypercube method could be ex-
amined as well. This, and the coupling with error indicators to establish
good stopping criteria, constitute our effort of research at this moment. In
fact, the use of reliable error estimators could even allow for the obtention
of adaptive samplings in which the cardinality of the basis could be different
along different directions.
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