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Abstract In recent times a growing interest has arose on the development of
data-driven techniques to avoid the employ of phenomenological constitutive
models. While it is true that, in general, data do not fit perfectly to existing
models, and present deviations from the most popular ones, we believe that
this does not justify (or, at least, not always) to abandon completely all the
acquired knowledge on the constitutive characterization of materials. Instead,
what we propose here is, by means of machine learning techniques, to develop
correction to those popular models so as to minimize the errors in constitutive
modeling.

Keywords: Machine learning; Data-driven computational mechanics; Plas-
ticity; Model learning.

1 Introduction

Plenty of effort has been dedicated throughout history to create very accu-
rate models. As an example, the reader may think about all different models
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formulated, for instance, in hyperelasticity. These include the classical Saint-
Venant, Neo-Hookean, Ogden [1], Arruda and Boyce [2], Holzapfel and Gasser
[3], to name but a few. Another field in which plenty of constitutive models
have been developed is plasticity, where we can highlight the classical models
by Tresca, Von Misses [4] or Hill [5], among others.

However, we also know that no model is perfect: it is always subjected to
certain limiting hypothesis, experimental noise, etc. Indeed, even if you could
calibrate a model perfectly well, no guarantee is given that for another set of
experiments, different from the calibration ones, the model is going to provide
you a perfect result.

It has been argued that constitutive models are of a lower epistemic level
than other, more fundamental, equations. This last group includes equilib-
rium and compatibility, for instance. This reasoning is at the origin of the
so-called data-driven computational mechanics approach. In essence, this ap-
proach tries to substitute phenomenological, always imperfect models by ex-
perimental data. These techniques employ a variety of methods to determine,
in essence, the stress tensor corresponding to a given strain state. Thus, for
instance, works by M. Ortiz and coworkers employ nearest neighbor interpola-
tion [6,7], while in [8–12] the authors employ different manifold techniques to
define the constitutive manifold of a given material, i.e., a low-dimensional rep-
resentation of the constitutive equation based solely on data. Liu and coworkers
[13] employ clustering techniques, while Montans et al. employ spline approx-
imation to the strain density functional in a hyperelastic context [14,15] .

These approaches can be embedded in an even more general context. Sev-
eral works have been devoted to unveil governing equations from data [16–18].
These may include laws in the form of partial differential equations, for in-
stance [19–21].

The main aim of this work is to provide an alternative route by enhancing
or correcting existing, well-known, models with information coming from data,
thus performing a sort of data-driven correction. In this first work a special
effort is put on the correction of plastic yield functions, while work in progress
adresses more complex scenarios involving hardening and damage.

The proposed data driven correction technique is conceptually simple.
Imagine that our departure point is a given, well-known parametric model
M(p). It is important to keep in mind that we are looking for an enhance-
ment or correction of the previous model based on the available experimental
results. Therefore, a discrepancy model D(c), which applies to the first model,
needs to be defined. So to speak, reality, R, is approximated as

R =M(p) +D(c)
∣∣
p
,

where p represents the set of parameters governing the model and c represents
the set of parameters needed to define the necessary correction.

Since our measurement capabilities will in general be constrained to some
experimentally observable quantities, both our objective reality and the cor-
rection to the model will be restricted to these experimental settings. In other
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words,

R
∣∣
s
≈M(p) +D(c)

∣∣
p,s
.

It is worth to mention that the way we define the observables s could have
an important impact over the calibration of the set of correction parameters, c.
We assume that a set of experiences is defined such that the entire parametric
space c could be determined.

The outline of the paper is as follows. In Section 2 we present the developed
methodology with the help of a toy problem. Section 3 introduces a sparse
sampling technique able to describe the error surface with a minimum number
of control points. In Section 4 the numerical results are presented, showing the
performance of the proposed methodology.

2 Problem Statement

In the present work, we will try to capture the plastic yield function of a
particular material with the help of a well known plasticity model and try to
develop the necessary corrections based on data. Recall that a plastic yield
function can be seen as a hypersurface living in the stress space, σ ∈ R6.
Typically, this surface is parameterized using a finite set of parameters (p)
given by the physics-based model,M(p). Moreover, it will depend also on the
correction or discrepancy model D(c). Therefore, our reality R, in the form of
a general, yet unknown, plastic yield function, can be written as

R = FY (σ;p, c) = 0.

For the sake of simplicity and ease of representation, but without loosing
generality, we will constraint ourselves to the plane stress hypothesis. There-
fore, our plastic yield function is defined in a three dimensional space cor-
responding to the three active stress components, σxx, σyy, and τxy. This
three-dimensional stress state is easily expressed in spherical coordinates as

σxx =R(α, β) cos(α) sin(β),

σyy =R(α, β) sin(α) sin(β),

τxy =R(α, β) cos(β),

since the plastic yield function is often a convex closed surface. Here, R(α, β)
defines the radius in spherical coordinates for any possible angle. Therefore, a
parameterization R(α, β;p) directly determines the shape of FY .

Let us assume that reality, R, is perfectly described by a Barlat Yld2004-
18p yield function [22,23], shown in Fig. 1, so that R = FB

Y . Assume that
this model has never been defined, so that we need to approximate reality —
known indirectly through experimental results— by employing a well-known,
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Fig. 1 Different views of Barlat Yld2004-18p plastic yield function. Color map represents
the value of τxy .

yet inexact model. For this purpose we have chosen a quadratic Hill plastic
yield function

M(p) = FH
Y (σxx, σyy, τxy;F,G,H,N)

= Fσ2
yy +Gσ2

xx +H(σxx − σyy)2 +Nτ2xy − σ2
0 .

As it can be noticed, this yield criterion presents a parameterization based on
four coefficients, i.e., |p| = 4 and p = {F,G,H,N}.

Both Hill’s and Barlat’s models have been chosen to represent a well-
known model that does not fit exactly to reality, and to govern the reality,
respectively. This choice purely arbitrary, and its sole purpose is to show that
a model can effectively be corrected so as to fit experimental evidence.

Fig. 2 depicts the shape of a quadratic Hill yield criterion with F = 2.1,
G = 1.8, H = 0.7, and N = 1.9. As it can be noticed, convexity is fulfilled and
it defines a smooth closed surface in the stress space.

The discrepancy model D(c) is assumed to provide a correction to the
Hill model so as to satisfy the Barlat Yld2004-18p model, from which the
(synthetic) experimental data were obtained. To construct this discrepancy
model, in the absence of any knowledge about the sought Barlat model, we
chose to employ an as general as possible parameterization. We defined a set of
eight control points distributed along the plane τxy = 0 —corresponding to a
bi-axial experiment—, plus another degree of freedom relative to the maximum
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Fig. 2 Different views of the quadratic Hill plastic yield function. Color map represents the
value of τxy . F = 2.1, G = 1.8, H = 0.7 and N = 1.9 were taken.

shear points defined along the line σxx = 0, σyy = 0 —thus giving a pure shear
experiment—. Hence, |c| = 9. Obviously, more control points could be added,
if more precision is sought. The method does not present any limitation in this
sense.

Interpolation between all degrees of freedom is done by means of natural
neighbor interpolation, which provides C1-continuous shape functions, except
from the data points, where it is simply continuous [24]. Fig. 3 depicts the
sensitivity of perturbing one degree of freedom in D(c) on the quadratic Hill
yield function. Note that the maximum of the perturbation is achieved where
the degree of freedom is placed and the magnitude is smoothly decreasing
towards the original yield surface.

Remark. Convexity of the resulting corrected yield surface can be enforced
by generating many points on the corrected yield surface and then considering
their convex hull.

A general expression for the error caused by the adoption of a corrected
poor model (in this case represented by Hill’s criterion) with respect to the
experiments could be

Es(c) =

|s|∑
s=1

∫
ts

∫
xs

||εsM+D(x, t, c)− εsR(x, t)||dxdt,

where xs is the region of the solid in which measurements are performed and
ts represents the time interval of duration of the experiment. In this particular
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Fig. 3 Perturbed quadratic Hill plastic yield function by moving only one degree of freedom
of D(c). Color map represents the magnitude of the perturbation. F = 2.1, G = 1.8, H = 0.7,
and N = 1.9.

case, we chose to measure the error in the strain field, but we could have done
it with the displacement field as well. It is worth noting that, at this stage,
if the poor model is already calibrated, the only parametric space that could
vary is the one related to the discrepancy model, c.

3 Reconstruction of the error response surface by sparse sampling

3.1 Sparse approximation in high-dimensional spaces

The objective of this procedure is to build a response surface for the error
ES(c) so as to characterize the parametric space based on the existing set of
experiments. Once the response surface is built, the global minimum of the
error response surface will provide the point c in the parametric space which
is closest to reproduce the set of experiments.

Since the reference solution is known—it is provided by Barlat’s model—
it can be convenient to use it to check if our minimization problem in the
kinematic variables also implies a good correction in the model. Certainly, this
good correction is closely related with the good definition of the experiments.

At this point, several options could be adopted to reconstruct this response
surface. Even though any non-structured interpolation technique based on
Delaunay triangularization can be used, it will suffer when the dimensionality
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of the parametric space increases. In this particular case, a non-linear sparse
identification technique called Sparse Proper Generalized Decomposition (s-
PGD) is used [25]. s-PGD strongly relies on the separation of variables to
circumvent the problem of high dimensional spaces. Indeed its main objective
is to capture the whole response surface using as few points as possible.

In brief, the s-PGD technique seeks to obtain a sparse regression of a para-
metric function—in our case, Es(c)—by assuming a separate representation
of the sought regression, say `(c),∫

I
w∗(c) [`(c)− Es(c)] dc,

where I represents the phase space in which c evolves and w∗ a suitable test
function.

The main ingredient of the s-PGD technique relies on the assumption of a
separate form for the sought approximation, i.e.,

`(c) ≈ `M (c) =

M∑
k=1

Xk
1 (c1)Xk

2 (c2) · · ·Xk
nparam

(cnparam).

This type of separate approximation has been tested in up to one hundred
dimensions without any major difficulty, nor need of supercomputing facilities.
The interested reader can consult [26] for more details.

In turn, the test function w∗ is chosen as formed by a sum of Dirac delta
functions collocated at the sampling points,

w∗(c) = `∗(c)

P∑
i=1

δ(ci),

where ci represents one of the P sampling points in the parametric space. Of
course, if we are looking for a new term k in the separated representation, the
test function will look like

`∗(c) = (Xk
1 )∗(c1)Xk

2 (c2) · · ·Xk
nparam

(cnparam)

+Xk
1 (c1)(Xk

2 )∗(c2) · · ·Xk
nparam

(cnparam) + . . .

+Xk
1 (c1)Xk

2 (c2) · · · (Xk
nparam

)∗(cnparam).

The precise form of the approximating functions Xk
j (cj) is found by re-

sorting to a greedy algorithm followed by a fixed point linearization scheme,
since we look for the precise form of products of functions, thus leading to
a non-linear problem. To avoid Runge’s phenomenon, that is, spurious oscil-
lations in the approximated one-dimensional functions based on data-points
that do not correspond to the Gauss-Lobatto-Chebyshev ones, interpolation
based on kriging is retained.The interested reader will find every detail of the
s-PGD methodology in [25]. Kriging possesses some interesting features. Since
it is based on the fundamental assumption of data being Gaussian, it provides
an easy filtering of noise, by giving the best linear unbiased prediction of the
intermediate values.
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3.2 Line search in high-dimensional spaces

The s-PGD algorithm provides a set of one-dimensional functions or, more
commonly, modes which are able to reproduce a given function ` in the high
dimensional space when they are combined as

`(c1, c2, . . . , cD) =

M∑
k=1

D∏
d=1

Xk
d (cd).

Function ` is stored in a separated format, which has demonstrated to be
very convenient in terms of memory consumption. However, sometimes the
local extremes of ` are required, as in this case. Even if the simplest option
could be to reconstruct the response surface `(c1, c2, . . . , cD) in the high di-
mensional space, the memory requirements will increase exponentially with
the dimensionality of the problem. In other words, if each mode is approx-
imated by means of a finite element mesh of, say, 10 degrees of freedom, a
problem defined in dimension D implies to store 10D nodal values.

In this case, we made an adaptation of the so-called line search mini-
mization algorithm so that the consequent search directions coincide with the
cartesian axes, thus exploiting the separated representation format.

Let us assume that the i-th dimension is going to be minimized. Conse-
quently, the other coordinates are freezed at some value within their corre-
spondent intervals of definition, i.e., ĉd for d 6= i. By doing that, the problem
reduces to a minimization problem in a one dimensional space:

ĉi = min
ci

M∑
k=1

( D∏
d 6=i

Xk
d (ĉd)

)
Xk

i (ci).

When this minimization problem is finished, the search direction is updated to
dimension i = i + 1, repeating the same procedure. When the ĉd coordinates
do not change noticeably after one iteration for each dimension, the line search
algorithm is finished.

To sum up the properties of the cartesian line search:

– There is no need to reconstruct the function `(c1, c2, . . . , cD) in the high
dimensional space, circumventing memory issues related to the storage.

– The global minimization problem is transformed into a set of one-dimen-
sional minimization problems which are very efficient because all minimiza-
tion directions coincide which the directions in which the solution has been
separated.

– There is no guarantee that the obtained minimum is the global minimum of
the function. In order to circumvent that problem, the algorithm is initial-
ized at different starting positions, selecting the final point that presents
the lower value of the function. This problem may appear in functions living
in a high-dimensional space which do not have a certain level of regularity.
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Fig. 4 Different views of M(p1) plastic yield function. The color map represents the mis-
match between theM(p1) criterion and the Barlat Yld2004-18p, and thus R−M(p1) = D,
the objective function to be captured by our discrepancy model. EFY

(M(p1)) = 1.57.

4 Numerical Results

4.1 Squared coupons

4.1.1 Test description

Two different quadratic Hill criterions have been used as a starting point in our
discrepancy model. The first one, M(p1), is defined by F1 = 2.1, G1 = 1.8,
H1 = 0.7 N1 = 1.9, while the second one, M(p2) is defined by F2 = 2.3,
G2 = 2.0, H2 = 0.8 N2 = 1.7. While M(p1) is already quite close to Barlat’s
criterion, with an error EFY

(M(p1)) = 1.57, the second one presents an error
EFY

(M(p2)) = 24.9. This could correspond, so to speak, to the case of a
poorly calibrated poor model. Fig. 4 depicts the point-wise difference between
the M(p1) criterion and the Barlat Yld2004-18p projected on the M(p1)
surface. Fig. 5, in turn, presents the same error for the model M(p2).

Regarding the set of experiments s necessary to calibrate the discrepancy
model, we have chosen to use a set of simple tests in a coupon of size Ω =
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Fig. 5 Different views ofM(p2) plastic yield function. The color map represents the point-
wise difference between the M(p2) criterion and the Barlat Yld2004-18p. EFY

(M(p2)) =
24.9.

[0, 1]× [0, 1]. These will be defined by the following set of boundary conditions,

ux(0, y) = 0,

uy(x, 0) = 0,

σ(1, y)n = t1,

σ(x, 1)n = t2.

Hence, varying both tractions t1 and t2, different regions of the stress space
inside the coupon are explored. Indeed, 40 different experiments have been
included in order to create Es(c), so that |s| = 40.

4.1.2 Construction of the error response surfaces

In order to build the response surfaces Es(M(p1); c) and Es(M(p2); c), 1000
simulations, randomly sampling the parametric space c, have been accom-
plished for each modelM(p1) andM(p2). Each realization in the parametric
space follows a uniform distribution from [−0.1, 0.1] in the M(p1) case and
[−0.15, 0.15] in the M(p2) case, since we expect the need for a major correc-
tion.

As can be noticed in Fig. 6 the obtained response surface for M(p1)
presents around 8% of mean relative error. This error could be decreased easily
if more sample points are added to the s-PGD algorithm.
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Fig. 6 Error in the reconstruction Es(M(p1) + D; c) using half of the points in the data
base for training.

4.1.3 Error minimization and obtention of the sought correction

Once the response surface has a continuous and separated representation, the
minimum is searched by employing a line search in each one of the separated
directions. The initial point at which the line search algorithm is started is
changed randomly to ensure the global character of the minimum.

Fig. 7 shows the error when the yield surface M(p1) is corrected with the
obtained discrepancy model. Note that the final reconstructed error EFY

(M(p1)+
D), has been reduced with respect to the EFY

(M(p1)) error, passing from 1.57
to 1.27. This is equivalent to a 19% of improvement thanks to the data driven
correction for this particular case.

Fig. 8 shows the error when the yield surface M(p2) is improved with the
data driven correction. In this particular case, the final reconstructed error
EFY

(M(p2) +D) has been reduced as well from 24.9 to 4.63. Therefore, some
81% of improvement has been obtained in this particular case.

4.2 Coupon subject to bending loads

In this example a bar with both ends clamped, in which a uniform vertical
negative distributed load is acting along both top and bottom sides.

Fig. 9 (top) shows the cumulated strain error between Barlat’s and Hill’s
M(p2) yield functions. The bottom figure shows the error between Barlat’s
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Fig. 7 Different views of M(p1) + D plastic yield function. The color map represents the
mismatch between theM(p1)+D criterion and the Barlat Yld2004-18p. EFY

(M(p1)+D) =
1.27.

and the corrected Hill’s yield functions. As it can be noticed, the error in
the strain field is reduced when considering the correction. However, this error
does not vanish, since the correction does not reproduce perfectly well Barlat’s
criterion for the considered sampling. It asymptotically decreases, however,
when more data points are considered.

In light of the results, the importance of data driven corrections is higher
when the model is less accurate, since few data produce important improve-
ment.

5 Conclusions

In recent times a lot of attention has been paid to the development of ma-
chine learning techniques able to unveil governing equations from data. This
is specially important for constitutive equations that, unlike other more epis-
temologically sound equations—like equilibrium, for instance—are often phe-
nomenological and inexact. Their precise expression is found by data fitting,
leading very often to poor fitting to the experimental results.

Unlike previous approaches, we believe that it is important not to discard
all the existing knowledge concerning constitutive equations (particularly plas-
tic yield functions, for which an extensive corps of literature exists). Instead
of learning models from scratch, we believe that it will be much more effi-
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Fig. 8 Different views of M(p2) + D plastic yield function. The color map represents the
mismatch between theM(p2)+D criterion and the Barlat Yld2004-18p. EFY

(M(p2)+D) =
4.63.

cient and appealing to try to correct existing models in light of the obtained
experimental results and the observed discrepancies.

In this paper we have developed a method for the correction of plasticity
models with the help of experimental data that makes use of sparse iden-
tification techniques in high-dimensional spaces. Particularly, we employ the
sparse-PGD method [25], that has rendered excellent results for the exam-
ples considered herein. In order to circumvent the problem of approximating
a function in the high dimensional space, it is important to make use of ade-
quate interpolation techniques, which are able to provide us with a reasonable
estimation of the response surface.

Noteworthy, results obtained numerically from a Barlat Yld2004-18p yield
function were approximated by assuming a Hill model and then obtaining, in
a completely automated fashion, a suitable correction.

The presented method paves the way for the development of a completely
general, hybrid constitutive modeling methodology for the obtaining of accu-
rate constitutive models by summing up the best of both worlds: all the ex-
perience accumulated in the last century with constitutive modeling of solids
and the best of machine learning.



14 Rubén Ibáñez et al.

Fig. 9 Cumulated strain error between Barlat’s and Hill’s models (top) and between Bar-
lat’s and Hill’s plus data correction (bottom).
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10. Rubén Ibañez, Emmanuelle Abisset-Chavanne, Jose Vicente Aguado, David Gonzalez,
Elias Cueto, and Francisco Chinesta. A manifold learning approach to data-driven
computational elasticity and inelasticity. Archives of Computational Methods in Engi-
neering, 25(1):47–57, Jan 2018.
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12. David González, Francisco Chinesta, and Eĺıas Cueto. Thermodynamically consistent
data-driven computational mechanics. Continuum Mechanics and Thermodynamics,
May 2018.

13. M.A. Bessa, R. Bostanabad, Z. Liu, A. Hu, Daniel W. Apley, C. Brinson, W. Chen, and
Wing Kam Liu. A framework for data-driven analysis of materials under uncertainty:
Countering the curse of dimensionality. Computer Methods in Applied Mechanics and
Engineering, 320:633 – 667, 2017.
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for isotropic, compressible materials. Computational Mechanics, 59(1):73–92, Jan 2017.

15. Erica De Rosa, Marcos Latorre, and Francisco J. Montáns. Capturing anisotropic con-
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