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ABSTRACT2

Unveiling physical laws from data is seen as the ultimate sign of human intelligence. While there3
is a growing interest in this sense around the machine learning community, some recent works4
have attempted to simply substitute physical laws by data. We believe that getting rid of centuries5
of scientific knowledge is simply nonsense. There are models whose validity and usefulness is6
out of any doubt, so try to substitute them by data seems to be a waste of knowledge. While it is7
true that fitting well-known physical laws to experimental data is sometimes a painful process,8
a good theory continues to be practical and provide useful insights to interpret the phenomena9
taking place.10

That is why we present here a method to construct, based on data, automatic corrections to11
existing models. Emphasis is put in the correct thermodynamic character of these corrections, so12
as to avoid violations of first principles such as the laws of thermodynamics. These corrections are13
sought under the umbrella of the GENERIC framework [M. Grmela and H. Ch. Öttinger, Dynamics14
and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E15
56, 6620, 1997], a generalization of Hamiltonian mechanics to non-equilibrium thermodynamics.16
This framework ensures the satisfaction of the first and second laws of thermodynamics, while17
providing a very appealing context for the proposed automated correction of existing laws. In this18
work we focus on solid mechanics, particularly large strain (visco-)hyperelasticity.19

Keywords: Data-driven computational mechanics; hyperelasticity; model correction; GENERIC; machine learning20

1 INTRODUCTION

In a very recent paper about how construct machines that could eventually learn and think like humans,21
Lake et al. (2017) state that “machines should build casual models of the world that support explanations22
and understanding, rather than merely solving pattern recognition problems” and that “model building23
is the hallmark of human-level learning, or explaining observed data through the construction of causal24
models of the world”. Indeed, machine learning of physical laws could be seen as the ultimate form of25
machine intelligence, and this should be done, of course, from data.26

There is a very active field of research around this way of reasoning. For instance, in Brunton et al. (2016)27
a method is presented that operates on a bag of terms like sines, cosines, exponentials, etc., so as to find an28
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expression that is sparse (i.e., it incorporates few of theses terms) while still explaining the experimental29
data. Similar approaches include techniques to find reduced-order operators from data (Peherstorfer and30
Willcox, 2016, 2015) or the possibility to construct physics-informed machine learning (Swischuk et al.,31
2018; Raissi et al., 2017a,b).32

In the field of computational materials science, this approach seems to begin by the works of33
Kirchdoerfer and Ortiz (2016, 2017a). In it, and the subsequent works, they present a method in which34
the constitutive equation is substituted by experimental data, that could be possibly noisy (Kirchdoerfer35
and Ortiz, 2017b; Ayensa-Jiménez et al., 2018). In them, it is recognized that some equations (notably,36
equilibrium, compatibility) are of a higher epistemic nature, while constitutive equations—that are often37
phenomenological and, therefore, of lower epistemic value—could easily be replaced by data (Latorre and38
Montáns, 2014). The criterion is to establish a distance measure that indicates the closest experimental39
datum to be employed every time the constitutive law is called at the finite element integration point level.40

In some of our previous works, this approach is further generalized by defining the concept of constitutive41
manifold, a low-dimensional embedding for the stress-strain pairs, see Lopez et al. (2016). Thus, by42
alternating between stress-strain pairs that satisfy either equilibrium or the constitutive equation, the43
solution that satisfies the three families of equations is found, regardless of the non-linearity of the behavior.44
Several methods have been studied for the construction of this constitutive manifold (Ibañez et al., 2017).45

Another inherent difficulty in trying to machine learning models is that of the adequate level of description.46
Every physical phenomenon can be described at different levels of detail. In the case of fluid mechanics, for47
instance, these levels range from molecular dynamics to thermodynamics—in descending order of detail—.48
In between, different theories have been developed that take care of different descriptors of the phenomenon49
taking place: from the Liouville description to the Fokker-Planck equation, hydrodynamics, ... to name but50
a few of the different possibilities (Español, 2004). Thus, there should be a compromise between detail in51
the description and the resulting computational tractability of the approach. This is something very difficult52
to discern for an artificial intelligence.53

The risk of employing an approach based upon pure data regression is to violate—due to the inherent noise54
in data, for instance—some basic principles such as the laws of thermodynamics: conservation of energy,55
positive dissipation of entropy. Trying to avoid these possible inconsistencies, in González et al. (2018) we56
developed a data-driven method that operates under the framework of the GENERIC formalism (Grmela57
and Öttinger, 1997; Öttinger, 2005). The General Equation for Non-Equilibrium Reversible-Irreversible58
Coupling (GENERIC) constitutes a generalization of the Hamiltonian mechanics. Therefore, under the59
GENERIC umbrella, the equations satisfy basic thermodynamic principles by construction.60

Thus, the problem translates to finding—by means of data—the right expression of the particular61
GENERIC formalism for the system at hand (or its finite element approximation, if we work in a purely62
numerical framework). The resulting approximation is thermodynamically sound and very appealing from63
the numerical point of view. The stability of the GENERIC approach and its thermodynamic consistency—64
in particular, the conservation of symmetries in the formulation—has been thoroughly investigated in65
previous works, whose lecture is greatly recommended (Romero, 2009, 2010).66

However, even if the usual parameter fitting procedure from experimental data is often painful and,67
notably, gives poor fitting of the results in many occasions, we believe that well-known constitutive68
equations should not be discarded, thus waisting centuries of scientific discovery. Instead, we believe that it69
is interesting to simply correct those models that sometimes do not fit perfectly the results—sometimes70
locally, in a delimited region of the phase space—. This is the approach followed in Ibañez et al. (2018),71
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where corrections are developed to yield criteria so as to render them compliant (to a specified tolerance72
level) with the available experimental results. A similar approach has been pursued recently in Lam et al.73
(2017) for a study on the interaction of aircraft wings. In these approaches, the chosen level of description74
is defined by the (poor) model, so, in principle, no further decision needs to be taken, as will be discussed75
later on.76

The GENERIC formalism is valid for all levels of description, and could also help in deriving corrections77
from data that still maintain the thermodynamic properties of the resulting model. Hyperelastic models fall78
within Hamiltonian mechanics—i.e., they represent a purely conservative material—. However, rubbers79
or foams usually present some degree of viscoelasticity, for instance. In this framework, Hamiltonian80
mechanics will no longer be the right formalism to develop their constitutive equations. GENERIC should81
be preferred instead.82

In this paper we study how to learn these corrections from data. First, in Section 2 we review the basics83
of the GENERIC formalism, with an emphasis on hyperelastic and visco-hyperelastic materials. In Section84
3 we explain how to employ GENERIC to develop corrections to existing models from data, while in85
Section 4 we introduce, by means of an academic example in finite dimensions, the basic ingredients of our86
approach. This will be further detailed for visco-hyperelastic materials in Section 5. The paper ends with a87
discussion on the just developed techniques and the future lineas of research in Section 6.88

2 A REVIEW OF THE GENERIC FORMALISM

2.1 The basics89

The GENERIC formalism was introduced by Grmela and Öttinger (1997) in a seminal paper in an attempt90
to give a common structure for non-Newtonian fluid models. The establishment of such a model in the91
GENERIC framework starts by selecting appropriate state variables. This is not straightforward in a general92
case in which we have no prior information about the precise behavior of the system at hand. However, for93
most systems—and specially when we start from known models, as it is the case in this work—simple94
rules exist for the selection of such variables (Öttinger, 2005). Selecting mutually dependent variables does95
not constitute a problem, in fact, as most of the literature on GENERIC demonstrates. Let us call these96
variables zt = z(t) : I → S, z ∈ C1(0, T ], and emphasize their obvious time dependency in the interval97
I = (0, T ]. S represents the space in which these variables live, which depends obviously on the particular98
system under scrutiny. The final objective of the GENERIC model is to establish an expression for the time99
evolution of these variables, ż(t).100

The GENERIC equation takes, under these assumptions, the form101

żt = L(zt)∇E(zt)︸ ︷︷ ︸
Hamiltonian

+M (zt)∇S(zt)︸ ︷︷ ︸
Dissipative

, z(0) = z0. (1)

The first sum on the right-hand side term represent the Hamiltonian, or conservative, part of the behavior102
of the system. In it, the term L(zt) is the so-called Poisson matrix. The second sum is responsible for the103
dissipative behavior of the system, withM(zt) the so-called friction matrix. Here, E(zt) represents the104
total energy of the system, while S(zt) represents its entropy.105
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For Eq. (1) to give a valid description of any physical system, it must be supplemented with the so-called
degeneracy conditions:

L(z) · ∇S(z) = 0, (2a)

M (z) · ∇E(z) = 0. (2b)

Enforcing these conditions leads to the necessity of L(z) to be skew-symmetric and aM to be symmetric,106
positive semi-definite. If these conditions are met, then, it holds,107

Ė(z) = ∇E(z) · ż = ∇E(z) ·L(z)∇E(z) +∇E(z) ·M (z)∇S(z) = 0, (3)

which is, in fact, the equation of conservation of energy for the system. Additionally, these conditions108
ensure the satisfaction of109

Ṡ(z) = ∇S(z) · ż = ∇S(z) ·L(z)∇E(z) +∇S(z) ·M (z)∇S(z) ≥ 0, (4)

or, equivalently, the fulfillment of the second principle of thermodynamics.110

Noteworthy, Eq. (1) constitutes the most general framework to develop a valid constitutive equation
in the light of the principles of thermodynamics. A valid constitutive model must satisfy the GENERIC
equation, and any possible correction to it should not deviate the result from this framework. For a thorough
description of a long list of models under the GENERIC formalism, the interested reader can consult
Öttinger (2012). To exemplify the just introduced concepts, consider the simplest case of a conservative
mechanical system whose time evolution can be expressed, in the Hamiltonian framework, by resorting to
a description of the type żt = {qt,pt}, where qt represents the position and pt the momentum. In that
situation, the system is purely Hamiltonian and

L(z) =

[
0 1
−1 0

]
,

with no entropy evolution, i.e., M = 0. In this simple situation, L(z) turns out to be the canonical111
symplectic matrix and the GENERIC description of the system reduces to that of a Hamiltonian system.112

2.2 Hyperelasticity under the prism of GENERIC113

It is important to highlight the fact that, for hyperelastic materials, the expression

żt = L(zt)∇E(zt)

represents the usual hyperelastic problem under the Hamiltonian formalism (Romero, 2013). Indeed, if we
choose z(x, t) = [x(X, t),p(X, t)]>, where x = φ(X)—the deformed configuration of the solid—and
p represents the material momentum density, then,

ż =

[
ẋ

ṗ

]
= L∇E = L

[
∂E
∂x
∂E
∂p

]
.

The total energy of an elastic body Ω can be decomposed as

E = W +K,
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i.e., the sum of elastic and kinetic energies. Here, we assume a strain energy density potential w of the form

W =

∫
Ω
w(C) dΩ,

whereC represents the right Cauchy-Green deformation tensor. While, in general, the strain energy density
for an isotropic case would be of the form w = w(X,C, S), in the context of isotropic hyperelasticity—a
purely Hamiltonian case—, this dependence is often simply w = w(C). In turn, the kinetic energy will be

K =

∫
Ω

1

2ρ0
|p|2 dΩ.

In this framework, it is clear that

∂E

∂x
=
∂W

∂x
=∇X · P =∇X · [FS],

where P and S represent, respectively, the first and second Piola-Kirchhoff stress tensors and F is the
deformation gradient. Given that

p = ρ0V = ρ0
∂x

∂t
,

with V the material velocity and ρ0 the density in the reference configuration so that, finally,

ż =

[
ẋ
ṗ

]
= L∇E = L

[
∇X · P

p
ρ0

]
.

This implies that114

L =

[
03×3 I3×3

−I3×3 03×3

]
, (5)

which is fully compliant with the GENERIC framework, see Eq. (1). This model is readily seen as
equivalent to

ẋ =
p

ρ0
,

∇X · P = ṗ,

which correspond to the definition of the material momentum density and the equilibrium equation,115
respectively.116

Under this rationale, the possible viscous effects in the material would be described by the second sum in117
Eq. (1).118

REMARK. We have stated that, under the GENERIC formalism, an isotropic Hamiltonian or conservative119
hyperelastic model can be written in the formw = w(C) and therefore will not depend on S. This discussion120
is strongly related with that of the adequate level of description of the model. In fact, many hyperelastic121
models exist that depend on different parameters, that can influence its viscous behavior, for instance, see122
Mihai and Goriely (2017).123

Indeed, by introducing a new potential (entropy) in the formulation, what we are doing is to introduce124
ignorance on these details, while still taking into account their influence on the results. It is the same125
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process we face if we are not interested in tracking every molecule of a gas in a container but prefer instead126
a description based on macro-scale magnitudes such as pressure, volume, and temperature. The process127
of coarse-graining the description in a non-equilibrium setting makes it necessary to introduce a new128
potential that accounts for the neglected information: entropy (Pavelka et al., 2018; Español, 2004). Thus,129
in the correction procedure that we are about to introduce, there will be no need to add new variables to130
the model, but an adequate entropy potential to the formulation.131

The problem of constructing a valid constitutive model under the GENERIC point of view is therefore132
reduced to that of finding the particular structure of the terms L(z), E(z),M (z) and S(z). The classical133
approach is to do it analytically, as in Romero (2009, 2010), for instance, or Vázquez-Quesada et al. (2009);134
Español (2004), to name but a few of the examples in the literature. A different approach is to find the135
structure of these terms numerically, from data. This will be done possibly with the help of manifold136
learning techniques such as LLE (Roweis and Saul, 2000) or isomap (Tenenbaum et al., 2000), among137
others. It is the approach followed by the authors in González et al. (2018) and, in some sense, it is also138
the approach followed by Millán and Arroyo (2013) without even knowing the structure of GENERIC.139
This approach is also somehow related to the use of compositional rules to construct models (Grosse et al.,140
2012). This last reference shares with the approach herein the need of identifying the structure of several141
matrices that are then used to develop models—in that case, of phenomena that do not even obey the laws142
of physics, such as voting tendencies, for instance.143

3 CORRECTING MODELS IN A GENERIC FRAMEWORK

In this work we do not pursue to unveil models by means of GENERIC and experimental data. As explained144
in the introduction, we believe that is simply nonsense to discard models that have demonstrated to be145
useful for decades. In the case of hyperelasticity, these include, among a wide list of references, the works146
of Treloar (1975), Ogden (1984) or Holzapfel and Gasser (2000). These models, as analyzed before, already147
had a GENERIC structure.148

Purely hyperelastic materials are strictly conservative. However, soft living matter, for instance, that is149
often modeled under the hyperelastic theory, present some non-negligible viscous effects (Peña et al., 2011;150
Garcı́a et al., 2012). In that case, in the light of the GENERIC formalism, it is necessary to complement the151
model with a dissipative part, i.e., to determine the precise form ofM (z) and S(z).152

What we will do in this work, in fact, is to assume that an inexact model exists, so that a correction is
needed,

zcorr = zexp − zmod,

where “corr”, “exp” and “mod” stand, respectively, for correction, experimental and model. We will
develop a correction in the GENERIC framework so as to guarantee that the corrected model for the
experimental results will also have a GENERIC structure. To this end, we cast the correction in the form

żcorr = L∇E(zcorr) +M∇S(zcorr).

We do not consider a correction for L norM , since, in the light of the previous remark, L is assumed to
be identical to that of the model (we consider the same state variables). Since the correction of the model
could have an important influence on the form ofM—recall again the remark in the previous section, we
attribute to S the possible presence of fine-grained state variables that are not considered in the Hamiltonian
part of the model—, we discard any possibleM coming from the inexact model and instead re-compute it
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from scratch. With these assumptions, the resulting model that fits with the experimental results will have
the form

żexp = żmod + żcorr = L∇E(zcorr) +M∇S(zcorr) +L∇E(zmod),

so that, finally,
żexp = L

(
∇E(zcorr) +∇E(zmod)

)
+M∇S(zcorr),

which proves that the corrected model for zexp possesses a GENERIC structure with a correction in the153
Hamiltonian term.154

Consider that a set of nmeas experimental measurements Z = {zexp
0 , z

exp
1 , . . . ,z

exp
nmeas} is available. The

predictions of the inexact model are then subtracted from the experimental results. The final objective will
be therefore to obtain a discrete approximation

zcorr
n+1 − zcorr

n

∆t
= L DE(zcorr

n+1) + M(zcorr
n+1)DS(zcorr

n+1),

to the GENERIC structure of the discrepancy between data and experiments, by identifying DE(z), and155
possibly also M(z) and DS(z). DE and DS represent the discrete gradients (in a finite element sense).156

Therefore, the proposed algorithm will consist in solving the following (possibly constrained by the
degeneracy conditions) minimization problem within a time interval J ⊆ I:

µ∗ = {M,DE,DS} = arg min
µ

||z(µ)− zmeas||,

with zmeas ⊆ Z, a subset of the total available experimental results. See the discussion in González et al.157
(2018) about how to determine the right size of the sample set, the possibility of employing monolithic or158
staggered strategies, etc.159

In the next Section this procedure is exemplified with the help of an academic example in finite160
dimensions.161

4 AN INTRODUCTORY EXAMPLE

We first consider an example analyzed in Romero (2009) and then again in González et al. (2018). The162
system is a double pendulum, which is connected by thermoelastic springs. It comprises two masses m1163
and m2 connected by springs of internal energy e1 and e2. They oscillate around a fixed point, see Fig. 1.164
We employ the classical notation of Hamiltonian mechanics where qi, pi, i = 1, 2 represent position and165
momenta, respectively. For the springs, their respective entropies are sj , and the longitudes at rest will be166
denoted by λ0

j , j = a, b.167

[Figure 1 about here.]168

The set of state variables for this double pendulum will be therefore

S = {z = (q1, q2,p1,p2, s1, s2) ∈ (R2 × R2 × R2 × R2 × R× R), q1 6= 0, q2 6= q1}.
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The GENERIC structure for this problem needs to consider the internal energy of the system. Again, the
internal energy is composed by the kinetic energy of the masses and the potential energy in the springs, i.e.,

E(z) = K1(z) +K2(z) + ea(λa, sa) + eb(λb, sb),

with
λa =

√
q1 · q1, λb =

√
(q2 − q1) · (q2 − q1).

The temperature in the springs, θj , is assumed to be originated by the Joule effect,

θj =
∂ej
∂sj

, j = a, b.

The conductivity in the springs will be denoted by κ. Under this rationale, the resulting equations for the
double pendulum will be

q̇i =
pi
mi
,

ṗi = − ∂

∂qi
(ea + eb),

ṡj = κ

(
θk
θj
− 1

)
,

with i = 1, 2, j = a, b, k 6= j. Therefore, the gradients of the GENERIC formalism will look

∇E(z) =

(
fana − fbnb, fbnb,

p1

m1
,
p2

m2
, θa, θb

)
, (6a)

∇S(z) = (0,0,0,0, 1, 1), (6b)

with fj , nj , j = a, b, the forces in the springs and their respective unit vector along their direction.169

Poisson and friction matrices will result in this case,170

L(z) =



0 0 1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , M (z) =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 κ θbθa −κ
0 0 0 0 −κ κθaθb


. (7)

However, we will assume that this description of the system is not available—will be used as a ground171
truth to determine errors—and that the system is thought to be purely Hamiltonian.172

In this scenario, the goal of our method will be that of unveiling the dissipative part of the model so as to
correct the pure Hamiltonian behavior of the assumed model. In other words, the system will be considered
as modeled by

żt = L(zt)∇E(zt),
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with L as in Eq. (7) and ∇E as defined in Eq. (6a). Results of the ground truth, the assumed (purely173
Hamiltonian) model and the found corrected model are shown in Fig. 2.174

[Figure 2 about here.]175

The mean squared error of the assumed model with respect to the pseudo-experimental data was initially176
0.1732%. Note the little influence of the Joule effect on the results. However, after a correction is found177
and the dissipative character of the model is taken into account, this error is decreased up to 0.0125%, i.e.,178
one order of magnitude.179

5 CORRECTIONS TO HYPERELASTIC MODELS

In order to show the full capabilities of the proposed method, we consider now an example of a visco-180
hyperelastic material whose precise constitutive model is to be corrected from experimental data.181

5.1 Ground truth. Pseudo-experimental data182

The pseudo-experimental data is obtained by finite element simulation of a visco-hyperelastic Mooney-183
Rivlin material in which184

W = C1(I1 − 3) + C2(I2 − 3) +D1(J − 1)2, (8)

with I1 = J−
2
3 I1 and I2 = J−

4
3 I2, and where the invariants of the right Cauchy-Green tensor C are185

defined as I1 = λ2
1 + λ2

2 + λ2
3, and I2 = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, respectively. J represents, as usual, the186

determinant of the gradient of deformation tensor. In this case, C1 = 27.56 MPa, C2 = 6.89 MPa and187
D1 = 0.0029 MPa.188

To model the viscoelastic behavior of this rubberlike material, it is assumed that the material’s shear
modulus G and bulk modulus K evolve in time. This evolution is modeled by means of a Prony series in
terms of the instantaneous moduli,

G(t)

G0
= 1−

2∑
i=1

gPi

(
1− exp

(
− t

τi

))
,

K(t)

K0
= 1−

2∑
i=1

k
P
i

(
1− exp

(
− t

τi

))
,

with gPi = [0.2, 0.1] and k
P
i = [0.5, 0.2]. The relaxation times take the values τi = [0.1, 0.2] seconds,189

respectively. With these values, the initial instantaneous Young’s modulus takes the value E = 206.7 MPa,190
with Poisson’s ratio ν = 0.45.191

Data was generated after a total of 557 different loading processes to the same specimen. It was subjected192
to a load history of different amplitudes. In every case, a first plane stress state (σx, σy, τxy)—values are193
not correlated—is applied during a short impulse of 0.021 seconds, then maintained at constant value for194
one more second, allowing the material to creep. This is followed by a second loading process of 0.021195
seconds at a different (σx, σy, τxy) value, followed by a final plateau of one more second. For each one of196
the 557 different experiments these two stress states were different. These results are stored in the form of197
557 different Z vectors, thus representing a trajectory in time.198
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5.2 Modeling the results with a purely hyperelastic model199

After the generation of the pseudo-experimental data, we tried to reproduce these results with a200
deliberately wrong model: the material was assumed to be modeled by a Mooney-Rivlin model with201
no viscous response (and thus purely Hamiltonian or conservative). The comparison of the experimental202
results and the predictions given by this (poor) model are shown in Fig. 3.203

[Figure 3 about here.]204

It seems obvious that a classical Mooney-Rivlin model can not reproduce the viscous behavior of the205
reference material. In the next section a correction to this model is developed based on the available data206
and the procedure introduced in Section 3.207

5.3 Correction of the dissipative part of the model208

Knowing in advance that the pseudo-experimental results come from a viscous modification to a Mooney-209
Rivlin model, a first attempt is made of finding a correction by incorporating a dissipative part in the210
GENERIC description of the model. To this end, for each one of the experimental results, a fitting procedure211
of the dissipative GENERIC terms was accomplished.212

In Fig. 4 results are shown for one of the 557 essays. Experimental results, Mooney-Rivlin prediction and213
the subsequent GENERIC correction are shown. As can be noticed, experimental results are captured to a214
high degree of accuracy. In this case, for the particular test shown in Fig. 4, the mean squared error was215
0.018%. All the tests showed similar levels of error.216

[Figure 4 about here.]217

5.4 What if some terms need no correction?218

Of course, in general we will not know in advance that a particular model is the best for the Hamiltonian219
part of the behavior. In a general situation both parts of the model will need to be corrected. To show the220
robustness of the presented method, we demonstrate here that if we try to correct the Hamiltonian part221
of the model, the method is able to detect that it is already correct (Mooney-Rivlin) and that it needs no222
correction. The method proceeds by correcting the dissipative part only, obtaining the same levels of error223
as the preceding section.224

5.5 Constructing the good model225

The final goal of the method is not to reproduce each one of the experimental results, but to be able to226
construct a true model from data. To this end, we first unveil the underlying manifold structure of the227
experimental data. The temporal series of zexp(t) is grouped into a high dimensional vector, one for each of228
the 557 experiments. These are then embedded, by means of Locally Linear Embedding techniques (Roweis229
and Saul, 2000) onto a low-dimensional manifold. This permits to unveil the true neighborhood structure230
between experimental data and, notably, to perform rigorous interpolation on the manifold structure—and231
not on the Euclidean space—among data.232

The first step when applying LLE techniques to a set of high-dimensional data is to find the right233
dimensionality of the embedding space. To do so, the eigenvalues of the projection matrix are usually234
studied. These are depicted in Fig. 5.235
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[Figure 5 about here.]236

The first LLE eigenvalue is always close to zero within machine precision, and is discarded. The next237
“isolated” eigenvalues represent the true dimensionality of the embedding space (in this case, three). The238
rest of the eigenvalues are usually much closer to each other and do not represent the right dimensionality239
of the embedding space. Therefore, it seems that the right dimensionality of the embedding space is240
three—even two.241

Locally Linear Embedding techniques need some user intervention to determine, by trial and error, the
adequate number of neighbors for each datum. In this case we assume some 20 neighbors for each one.
The key step in finding the good low-dimensional embedding of the data is to find a vector of weightsW
that minimizes the functional

F(W ) =
557∑
m=1

∥∥∥∥∥zm −
20∑
i=1

Wmizi

∥∥∥∥∥
2

.

Once these weights are found, LLE assumes that they continue to be valid in the low-dimensional
embedding, and looks for the new coordinates ξ in this space accordingly, by minimizing a new functional

G(ξ1, . . . , ξ557) =
557∑
m=1

∥∥∥∥∥ξm −
20∑
i=1

Wmiξi

∥∥∥∥∥
2

.

This procedure allows us to find the constitutive manifold, as defined in Ibañez et al. (2017). It is shown242
in Fig. 6. The objective of this validation procedure will be to try to reproduce a control point in the243
manifold—a complete loading history, in fact—by obtaining its GENERIC model from the neighboring244
experimental points. This control point is shown in red in Fig. 6.245

[Figure 6 about here.]246

In Fig. 7 the result of the interpolated model (in continuous line) and the eight neighboring experimental247
results (dashed lines) that served to construct the final GENERIC model for the red point in Fig. 6 are248
shown. The mean squared error with respect to the control experimental history resulted be 0.174%.249

[Figure 7 about here.]250

5.6 Full model correction251

In the preceding sections we assumed that the Hamiltonian part of the model (basically, a Mooney-Rivlin252
model) was known and that the model needed only some amendment in its dissipative part. In this section253
we study the performance of the proposed technique if every term in the assumed model is wrong.254

To this end, we assume for the solid a Neo-Hookean model with no viscous dissipation. The neo-Hookean255
model is basically equal to Mooney-Rivlin, see Eq. (8), with C2 = 0. To make things even more difficult,256
we assume a bad calibration of the instruments so that, for this “wrong” model, C1 = 68.9 MPa (four times257
the right value for the Mooney-Rivlin model—the actual one—) and D1 = 0.0016.258

Proceeding like in previous sections, we first computed corrections for each one of the 557 different259
experimental time series. For one of these essays, the prediction given by the “wrong” (neo-Hookean)260
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model, the experimental results (coming from the Mooney-Rivlin model) and the corresponding corrected261
model predictions are shown in Fig. 8.262

[Figure 8 about here.]263

For this particular case (every experiment provided similar results), the initial error for the prediction264
given by the “wrong” neo-Hookean model was 13.05%. After correction, the relative mean square error in265
the time history was 0.092%.266

Once the whole 557 experiments have been corrected, the constitutive manifold for this material can be267
constructed by LLE methods, as detailed in Section 5.5.268

With this constitutive manifold thus constructed we can now evaluate the behavior of any new strain-stress269
state by simply locating it in the manifold, determining its surrounding neighbors, and employing the LLE270
weights to interpolate its GENERIC terms. This was done for one of the experimental results, that was271
removed from the manifold for control purposes, and interpolated from its neighbors. The result of this272
process is shown in Fig. 9.273

[Figure 9 about here.]274

The mean squared error along the time history with respect to the control experiment was 1.057%.275

6 DISCUSSION

From the results just presented, it is clear that the proposed technique presents an appealing alternative276
for the machine learning of models from data. Instead of constructing data-driven models from scratch,277
constructing only corrections to existing, well-known models has shown to provide very accurate results278
that very much improve these models.279

One key ingredient in these developments is the concept of constitutive manifold, that allows to interpolate280
experimental results in the right manifold structure. Existing works choose simply the nearest experimental281
neighbor, but, notably, this neighborhood is found in an Euclidean space (Kirchdoerfer and Ortiz, 2016) or282
in a Mahalanobis space (Ayensa-Jiménez et al., 2018).283

The presented method is robust even if some parts of the model need no correction. The final method,284
as has been presented, has the important property of being sound from the thermodynamic point of view,285
guaranteeing, thanks to its GENERIC structure, the conservation of energy and positive production of286
entropy.287

From the numerical point of view, the resulting, GENERIC-based time integrator schemes have already288
demonstrated their ability to conserve the right symmetries of the system (see, for instance, Romero (2009)289
or González et al. (2018)). In sum, we believe that the just presented technique, that should be extended to290
other types of systems, presents a promising future.291
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Figure 1. Double thermal pendulum.
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Figure 2. Results for the thermal pendulum problem. Results are shown (see the detail in the small window
in the bottom figure) for the ground truth (pseudo-experimental data), the uncorrected (purely Hamiltonian)
assumed model and the corrected one.
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Figure 3. Loading process for one particular experiment. Pseudo-experimental response and prediction
made by the standard (non-viscous) Mooney-Rivlin material.
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Figure 4. Comparison of the Mooney-Rivlin model prediction and its subsequent GENERIC correction
with the experimental results for one particular experiment.
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Figure 5. Evolution of the eigenvalues of the projection matrix in the embedding of experimental data.
Only the first 17 eigenvalues are shown for clarity.
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Figure 6. Obtained constitutive manifold by embedding the experimental results onto a three-dimensional
space. Only a portion of the 557 experimental results are shown for clarity. In red, control point employed to
validate the approach. Note that it is surrounded by a user-defined number of neighbors, whose GENERIC
model is employed to obtain, by interpolation by means of the LLE weights, the sought model.
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Figure 7. Result (continuous line) of the interpolation on the constitutive manifold of the eight neighboring
experimental results (in dashed line). These are the time history of the eight neighboring points in Fig. 6.
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Figure 8. Experimental results (circles), prediction made by the neo-Hookean model (dashed line) and
corrected model (red line) for experiment number 85.
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Figure 9. Experimental results (circles) for a new experiment, prediction made by the neo-Hookean model
(dashed line) and interpolated corrected model (red line). The interpolation is made by employing the same
weights provided by LEE techniques in constructing the constitutive manifold.
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