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Abstract Compressed sensing is a signal compression technique with very
remarkable properties. Among them, maybe the most salient one is its ability
of overcoming the Shannon-Nyquist sampling theorem. In other words, it is
able to reconstruct a signal at less than 2Q samplings per second, where Q
stands for the highest frequency content of the signal.

This property has, however, important applications in the field of compu-
tational mechanics, as we analyze in this paper. We consider a wide variety of
applications, such as model order reduction, manifold learning, data-driven
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applications and nonlinear dimensionality reduction. Examples are provided
for all of them that show the potentialities of compressed sensing in terms of
CPU savings in the field of computational mechanics.

Keywords Compressed sensing ·Model order reduction ·Manifold learning ·
Nonlinear dimensionality reduction

1 Introduction

Model Order Reduction (MOR) is acquiring an utmost importance for sim-
ulation-based engineering. These techniques allow solving efficiently com-
plex mathematical models, thanks to the use of adapted approximation bases
to describe their solutions. Among the numerous existing MOR techniques,
Proper Orthogonal Decomposition (POD), Proper Generalized Decomposi-
tion (PGD) and Reduced Basis (RB) are largely considered in a variety of ap-
plications [12].

Proper Orthogonal Decomposition is a general technique to extract the
most significant characteristics of a system’s behavior and to represent them
in a set of optimal “POD basis vectors”. These basis vectors provide an ef-
ficient (typically, low-dimensional) representation of the essential features
of the system behavior, which has proven useful in a variety of ways. The
most common use is to project the solution of the governing equations onto
the reduced-order subspace defined by these POD basis vectors. This yields
an explicit POD reduced model that can be solved instead of the original sys-
tem. The POD basis can also provide a low-dimensional description on which
to perform parametric interpolation, infill missing or “gappy” data, and per-
form model adaptation. There is an extensive literature and POD has seen
broad application across fields. Some review of POD and its applications can
be found in [43,36].

Reduced Basis techniques employ an approximation basis constructed by
combining a greedy algorithm and a posteriori error indicators. As for the
POD, the Reduced Basis method requires some amount offline work, but
then the reduced basis model can be used online for solving different models
with control of the solution accuracy, because the availability of error bounds.
When the error is unacceptably high, the reduced basis can be enriched by
invoking a greedy adaption strategy. Useful review works on the subject are
[37,40,38].

Finally, there exist techniques based on the use of separated representa-
tions, at the heart of the so-called Proper Generalized Decomposition meth-
ods. Such separated representations are considered when solving at-hand
partial differential equations by employing procedures based on the sepa-
ration of variables. They were already considered in quantum chemistry to
approximate multidimensional quantum wave-functions, e.g., Hartree-Fock
and post-Hartree-Fock methods. In the 80s, Pierre Ladeveze proposed the
use of space-time separated representations of transient solutions involved in
strongly nonlinear models, defining a non-incremental integration procedure
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[26,27]. Later, separated representations were employed for solving multi-
dimensional models suffering the so-called curse of dimensionality [1,2] as
well as in the context of stochastic modeling [35]. Then, they were extended
for separating space coordinates making possible the solution of models de-
fined in degenerated domains, e.g. plate and shells [4] as well as for address-
ing parametric models where model parameters were considered as model
extra-coordinates, making possible the offline calculation of the parametric
solution that can be viewed as a metamodel or a computational vademecum,
to be used online for real time simulation, optimization, inverse analysis and
simulation-based control (see [14] for a recent review). Some recent reviews
concerning the PGD can be found in [10,13].

These techniques improved traditional strategies based on DoE (Design
of Experiments), that allowed defining metamodels, surrogate models or re-
sponse surfaces. In these cases, experiments or expensive computational so-
lutions are performed for a sampling of possible states of the system, from
which a simplified model linking the inputs to the outputs of interest is elab-
orated. The main difficulties associated to this procedure concerns the best
sampling strategy and the most adequate interpolation scheme for making
prediction everywhere in the design space from the only knowledge of the
few analyzed scenarios. Latin hypercube and Kriging are two usual responses
to these questions. However, other questions remain, such as model verifica-
tion (error estimation and bounds) as well as the definition of adaptive strate-
gies able to reduce such error locally or globally. Even if there is a panoply
of proposals and applied strategies, most of them are problem-dependent
and fail to be robust and reliable. As just indicated, model order reduction
established routes to achieve similar goals while circumventing the main is-
sues just indicated, to finally define a “numerical or graphical handbook”,
constructed offline and efficiently used online for robust design purposes.

Even if, as just indicated, MOR technologies facilitate better approaches,
their main difficulty is that they remain often too intrusive. Nowadays, the
most recents works concerning MOR techniques focus on non-intrusive algo-
rithms. However, from a pragmatic point of view, all these proposals remain
less direct than usual DoE methodologies, the last simply consisting of eval-
uation the model at different points if the design space by using standard
commercial solvers (adapted to the problem at hand) and then simply inter-
polating these solution to any other point. Despite the conceptual difficulties
just referred, the procedure is very simple and attracted the favor of engi-
neers, designers and practicians.

Thus, the big picture could be formulated as follows: could direct sam-
pling lead to a robust and reliable parametric solution?

The answer to this question has been traditionally addressed in a variety
of ways. First, response surface based methodologies (e.g. [7] and references
therein) proposes a sort of adaptive procedure when the model is refined by
zooming-in when solution approaches to the optimal solution with respect
to a given couple model / optimization criterion. However, such a procure
requires an amount of online computation because the fine representation is
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not a priori available and it must be constructed online during the optimiza-
tion process.

Other possibility consists in reconstructing the unknown solution every-
where from the only knowledge of the calculated scenarios by making use
of adequate interpolations: polynomials or POD-based modes (inspired from
the gappy-POD formulations [16]). Reduced Basis perform this job offline:
it extract a basis in which the model solution is projected. This projection
is then solved online. However, one could imagine using directly the offline
computed solution for interpolating it everywhere. The main advantage of
this procedure lies in the fact that in the RB framework the sampling points
(as indicated above) are determined from an adequate “a priori”—or more
generally “a posteriori”—error indicator, defining a sort of greedy strategy
that samples the space at (almost) optimal points. The main drawback is that
very often the definition of those error indicators requires some deep knowl-
edge of the considered model and it is not evident for many complex engi-
neering problems. It is important to note that the fact that extracting the basis
for projecting the problem solution and solving online the reduced problem
offers higher precision that the option of directly interpolating the sampled
solutions.

Close to the methodology just described, Borzacchiello et al. [5,6] pro-
posed the use of hierarchical approximation bases, making possible that at
each level of representation only the contribution from the previous level to
the present one must be calculated. This strategy allows defining simple error
indicators and refine adaptively the parametric domain. Similar strategies,
all them inspired of sparse-grids [9] methodologies can be combined with
the use of wavelet representations in order to profit their inherent multi-
resolution properties, that provide natural error indicators associated with
the weights of the wavelet coefficients at each representation level [29]. This
techniques allows even addressing multi-parametric models in a moderate
number of dimensions.

More recently, the authors proposed a novel technique based on the use
of sparse identification and Proper Generalized Decompositions [21]. In it,
models established in up to ten dimensions are identified with a minimum
of data thanks to the sparse structure of PGD and its ability to overcome the
curse of dimensionality.

It is at this point important to note that interpolation is a tricky issue
when the solution defines a slow manifold embedded in the whole space.
In that case to define safe interpolation one must proceed by interpolating
on the manifold. Within the MOR framework, Farhat was one of the first to
claim this necessity [3]. In [3,34,18,30,20,33] manifold learning was used
(using nonlinear dimensionality reduction strategies [39,28,31]) to extract
latent parameters and the structure of the solution manifold in order to de-
fine accurate interpolations. It has also been employed for the construction
of reduced models operating on the manifold, to define parametric solutions
on it, or simply to define successfully data-driven computational mechan-
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ics applications. In these last cases, traditional constitutive equations were
replaced by a manifold consisting of collected data.

In the present paper we address the problem of the reconstruction of a
parametric solution from a coarse sampling, but from a different perspec-
tive. Compressive sensing provides a solid framework for performing ran-
dom samplings. There is a vast literature on compressive sensing, extensively
used in data and image analysis (see [25,32,24] and the references therein).
It has recently attracted the interest of the modeling and simulation scien-
tific communities to works like [8]. In what follows we first revisit the main
concepts related to compressive sensing. Then in Section 3 we apply such
ideas to random sampling of parametric models. Section 4 presents and dis-
cusses some other applications related to data-driven simulations and hyper-
reduction techniques.

2 Overview of compressed sensing

Most of nonlinear dimensionality reduction techniques consider least-squares
fitting of the data. However, compressed sensing is based in the use of the L1

norm instead. As described in [25], there is a subtle link between sparsity
and the use of the L1 norm. When considering curve fitting, the use of stan-
dard L2 norms magnifies the importance of outlying points because of the
squared norm. The impact of these outlying points in the fitted curve can be
significant.

In the same spirit, the solution of underdetermined algebraic systems is
a tricky issue because they represent an infinite number of solutions. As il-
lustrated in [25], the use of the pseudo-inverse produces a fully populated
solution vector whereas when considering the “Matlab” backslash, the ob-
tained solution contains many zero entries, so that it results to be sparse.
When solving the problem with L2 and L1 optimizations (trying to obtain the
minimum norm solution), the former becomes much less sparse than the last.
In the case of overdetermined systems the same tendencies can be observed.

Thus, from a purely engineering viewpoint, L1-norm can be associated to
sparsity. For this reason the L1 norm was considered as an appealing candi-
date for addressing signal reconstruction. It is able to overcome the Nyquist-
Shannon sampling theory that states that for recovering a signal, one must
sample at twice the rate of the highest frequency involved in the signal.

Let us consider a vector f, in the usual space or time domains, and its
counterpart in a domain in which it should accept a sparse representation,
i.e., its vector counterpart c contains many zeros. These spaces are in gen-
eral the ones related to frequency (Fourier or discrete cosines transforms)
or the ones related to multi-resolution wavelets, among many other possible
choices. We denote by T the matrix making possible this discrete transforma-
tion, i.e.,

Tc = f. (1)
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Since vector c is expected to have many zero entries (as soon as it corre-
sponds, by assumption, to a space in which the signal becomes sparse), one
could expect that its expression could be determined by employing only some
rows of matrix T and vector f. This implies solving the resulting underdeter-
mined system making use of a L1-norm based optimization.

The choice of such rows can be made in different ways. However, the most
usual one consists of a random selection. From a matrix perspective, such
extraction simply consists of defining a diagonal matrix, with unit entries at
the rows we want to extract. If the set of rows to be extracted is denoted by
S , the extraction matrix E is defined from

{
Eii = 1 if i ∈ S ,
Eij = 0 otherwise.

Rows containing only zeros are then eliminated from the matrix, thus gener-
ating a rectangular one, here denoted as E.

The solution of problem (1) can thus be approximated by that of the un-
derdetermined system

ETc = Ef, (2)

by using a L1-norm based optimization.
In sum, the two main ingredients sparse sampling are: (i) the use of an

adequate space in which the solution of the problem at hand is expected to
exhibit sparsity, and (ii) the solution of the underdetermined problem by us-
ing a L1 norm.

Compressed sensing is at the origin os the so-called “single pixel camera”.
In it, instead of acquiring the global image information, i.e., a pixel vector f,
to be then compressed, only a few of its entries are acquired, namely Ef. As
soon as vector c is calculated by solving Eq. (2), the whole solution can be
reconstructed from Eq. (1).

In the sequel, to solve the system of equations (2) we have preferred to
employ the least absolute shrinkage and selection operator, LASSO, method
[42]. Just as a recall, LASSO solves a minimization problem that involves an
L2- minimization of the system of equations plus a penalty term involving a
L1-norm of the unknown field,

min
c

(||ETc−Ef||2L2 +λ||c||L1).

This simple modification of the original compressed sensing procedure has
revealed to avoid some of the numerical problems associated with the so-
lution of an under-constrained system, providing a new coordinate system
such that the solution is sparse. Its performance will be analyzed in Section
6 below.
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3 Obtention of parametric models by compressed sensing

As discussed in the introduction, parametric solutions of the type u(x, t,µ)—
where µ represents the set of parameters in the problem—obtained by the
(off-line) application of PGD techniques are extremely valuable for conduct-
ing (on-line) real-time simulations as well as optimization, inverse analysis,
simulation-based control and uncertainty propagation under real-time con-
straints [11,15]. However, the PGD constructor is strongly invasive with re-
spect to the use of commercial simulation codes. To circumvent or, at least,
alleviate such a constraint, sampling of the parametric space and a subse-
quent interpolation of these samples could be an alternative route. However,
by making it in the original space the sampling becomes sometimes too dense
to capture the richness or as consequence of the Nyquist theorem. As just dis-
cussed in the previous section, compressed sensing by-passes such difficulties
in many cases.

In order to illustrate the proposed procedure, we consider the parametric
heat equation

κ
∂2u

∂x2 = s, in Ωx = (0,L = 1), (3)

with κ the thermal conductivity, s = 1 the source term (assumed constant in
the space domain), and with boundary conditions u(x = 0) = 0 and u(x = L) =
1.

We are interested in solving this thermal model for any thermal conduc-
tivity κ ∈Ωκ = [0.1,1.5]. Solving it using the standard PGD approach (for an
in-deep discussion of this problem the interested reader should consult [11,
15]) we obtain the solution depicted in Fig. 1. It reveals that, by increasing the
conductivity, the solution becomes flatter, since the generated heat can easily
reach the domain boundaries x = 0 and x = L leaving the domain. Lower con-
ductivities imply higher temperatures because of the difficulty of evacuating
the produced heat.

In order to show the potential of compressed sensing, we consider K =
100 coordinates along Ωκ. From them, we randomly select Kr = 10 samples,
defining the sampling set S = {κ1, . . . ,κKr }. At these particular locations, Eq.
(3) is solved by using standard finite differences or finite elements. These
discrete solutions, consisting of vectors containing nodal temperatures for
each choice of the thermal conductivity are denoted by uk , k = 1, . . . ,Kr .

Considering now different nodes in the spatial mesh associated to Ωx, xi ,
we define vectors fi whose j-th entry reads

fi j = uκj (xi).

Vector fi contains K −Kr unknown entries, those related to thermal conduc-
tivities not in the sampling set S . However this does not constitute a prob-
lem, since the corresponding rows are not affected by the extraction matrix
E. Only the rows with known entries will be extracted.
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Fig. 1: Parametric solution u(x,κ) of Eq. (3).

At this point, by using a wavelet representation to define the transforma-
tion matrix T—in particular, a biorthogonal 3.1 one—, the parametric model
at node xi will read

Tci = fi , (4)

or, by extracting the selected entries,

ETci = Efi . (5)

Solving the underdetermined problem using a L1-norm, we obtain ci ,
from which the nodal parametric equation can be reconstructed everywhere
from

fi = Tci . (6)

Figure 2 compares the reference and reconstructed solutions at a partic-
ular node. We deliberately chose one located in the center of the domain in
order to involve large gradients. In this figure the sampling nodes are also
depicted.

We thus see how by sampling only the ten percent of all parametric nodal
positions we obtain a remarkable accuracy in the reconstruction of the ther-
mal field. Notably, this strategy allows the use of commercial software to ob-
tain response surface-like solutions to parametric models and constitutes an
alternative and valuable constructor of meta-models. It avoids the typical os-
cillations that polynomial approximations provoke when the sampling points
are chosen randomly and do not correspond with the Gauss-Lobatto points.
In that sense, compressed sensing produces solutions closer to the ones as-
sociated with the use of Kriging, that avoids large oscillations thanks to its
statistical nature.
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Fig. 2: Reference versus compressed sensing based reconstruction of the nodal solution evolution
with the model parameter. Left: Solution at a given nodal position. Black nodes represent the
sampling points. These are also indicated on the right.

4 Manifold learning

Compressed sensing could also play a fundamental role in data-driven simu-
lations. For the sake of simplicity, but without loss of generality, we consider
mechanical tests conducted on a perfectly linear elastic material. Thus, for
M randomly applied external loads, we assume ourselves able to collect M
couples (σm,εm), m = 1, . . . ,M. Every stress-strain couple could be thought
of as a single point Pm in a phase space of dimension D = 12 (the six distinct
components of the stress and strain tensors, respectively). In the sequel, Voigt
notation will be considered, i.e., stress and strain tensors will be represented
as vectors and consequently the fourth-order elastic tensor reduces to a 6× 6
square matrix.

In the spirit of Locally Linear Embeddings [39], we assume that every
point on the constitutive manifold can be linearly approximated, within a
small enough neighborhood, as a function of the M available data. In other
words,

Pm =
M∑
i=1

WmiPi ,

with Wmi = 0 if i < Sm (the set containing the K-nearest neighbors of Pm). By
minimizing the functional

H(C) =
∑
i∈Sm

(σ i −Cεi)2.

we obtain the secant elastic behavior C(Pm) ≡ Cm. The standard weak form of
the equilibrium equation will be therefore∫

Ω

ε∗(x) : σ (x) dΩ =
∫
ΓN

u∗(x) · t(x) dΓ , (7)

that can be rewritten as [23]∫
Ω

ε∗(x) · (C(x)ε(x)) dΩ =
∫
ΓN

u∗(x) · t(x) dΓ .
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This weak form allows us to solve the mechanical problem at one of the itera-
tions of the nonlinear solver. Other discretization alternative strategies were
discussed in [23].

However, as previously argued, prior to proceed with the calculations
summarized above, one must accomplish the construction of the so-called
constitutive manifold. In [23] the authors considered an inverse approach
that assumed a tentative constitutive manifold. From it, a complex mechan-
ical test was simulated and the strain prediction compared to data coming
from an experimental field measurement. From the measured gap between
predictions and experimental results, the constitutive manifold is updated
providing a new strain prediction. The process continues until convergence is
reached. In other words, until the fixed point of the data-driven inverse strat-
egy is found. We proved in [23] the capability of such a method to identify the
constitutive manifold associated to nonlinear elasticity. However, its general-
ization to more complex behaviors—like those involving internal variables—
seems technically complex [22] [19].

One possible route to explore consists in making use of well-experienced
experimental methodologies. These were often developed for calibrating con-
stitutive equations by testing coupons subjected to simple stress states. These
tests are very well understood and offer valuable information for calibrating
complex constitutive equations. However, by restricting to them, the consti-
tutive manifold remains mostly unexplored, since too sparse information is
accessible.

It is at this point that compressed sensing seems to offer a valuable oppor-
tunity. Indeed, if the constitutive manifold is viewed as a sort of image of the
phase space of the material, a small quantity of data points could be enough
to determine the whole manifold. A parallelism could be established with the
so-called single pixel camera, following the rationale described in Section 2
[25].

To evaluate the performance of such a procedure, we consider a hypothet-
ical nonlinear plane-stress elastic behavior, that in Voigt notation reads

C =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 , (8)

with the elastic coefficients given by{
E = E0 +E1Tr(ε)
ν = ν0 + ν1Tr(ε) ,

with E0, E1, ν0 and ν1 positive constants, and where Tr(•) refers to the trace
operator acting on tensor •. In the numerical example discussed below the
material coefficients were selected as E0 = 10, ν0 = 0.1, E1 = 10 and ν1 = 0.1.

We considered different strain couples (εxx, εyy) and determine from the
constitutive Eq. (8) the associated stress couples (σxx,σyy). Fig. 3 depicts the
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Fig. 3: Reference (left column) versus compressed sensing based reconstructed behavior mani-
fold (right column). Red points indicate sampling locations.

reference solutions and the considered points (in red) that served to recon-
struct the approximated manifold from the compressed sensing rationale. We
do not considered the off-diagonal components because they define a one-
dimensional manifold that is quite simple to approximate, as proved in the
previous section.

It can be noticed that, despite the small number of sampling points, the
reconstructed constitutive manifold reproduces accurately the reference so-
lution, thus constituting an excellent candidate to perform few iterations of
the data-driven inverse strategy described in [23] to improve it. Obviously,
an advantage of the methodology here described is the possibility to update
the reconstructed solution as soon as new data-points are available from test-
ing facilities able to explore new regions of the constitutive manifold. In any
case, sparse sampling within the compressed sensing framework appears as
a valuable option in data-driven computational mechanics applications.

5 Model order reduction

We consider a last possible application of compressed sensing. It concerns
the application to model order reduction, particularly in its hyper-reduction
variant, revisited below.



12 R. Ibañez et al.

Standard discretization of a given model in the form of a PDE equipped
with suitable initial and boundary conditions leads to a linearized system

KU = G, (9)

where, as usual, K represents the tangent stiffness matrix, U a vector contain-
ing the nodal degrees of freedom, and G the nodal force vector.

When considering a reduced basis—based on the application of POD or
RB methodologies, for instance—, the unknown vector U can be projected
onto the reduced basis according to U = Bu. The size of vector u is in gen-
eral much smaller than the size of the original unknown vector U. Here, B
represents the basis transformation matrix, whose columns are the nodal de-
scription of the approximation functions involved in the reduced basis. Thus,
the original algebraic system can be rewritten as

KBu = G,

that premultiplying by the transpose of B leads to the reduced system

BTKBu = BTG = g,

that can be viewed as a Galerkin discretization operating with the reduced
basis instead of the one related to the usual finite element approximation.

However, Ryckelynck noted that since the size of vector u is reduced, one
could consider only a few equations for computing it, and called the tech-
nique hyper-reduction [41]. Thus, he suggested to perform integration only
in some particular elements of the mesh, thus leading to a matrix Khr (where
the superscript refers to its hyper-reduced nature), whose majority of rows
are actually not evaluated and thus populated by zeros. However, the result-
ing reduced system BTKhrB is invertible. Ryckelynck studied is his works dif-
ferent strategies to choose the best elements in which to perform integration,
and many other authors proposed different alternatives with a similar objec-
tive. It is also important to note that BTKhr could be expressed as BPG,TK,
with BPG ensuring the equivalence BPG,TK = BTKhr , that allows us to inter-
pret the hyper-reduction as a Petrov-Galerkin formulation. Advanced hyper-
reduction methodologies were considered by the same authors as well as by
Farhat and coauthors [17]. In what follows, we consider a similar procedure,
but now inspired from the compressed sensing rationale.

The starting point is again the original algebraic system (9) that, by as-
suming sparsity in a target space (e.g. discrete cosines, Fourier, wavelet, ...)
for both the source and the unknown vectors, G and U respectively, allows
writing, after assuming the same target space for both vectors, expressed
from the transformation matrix T,{

G = TĜ
U = TÛ

,

and consequently
KTÛ = TĜ,
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Fig. 4: Reference versus compressed sensing-based model order reduction.

or
T−1KTÛ = Ĝ,

on which the extraction applies.
To show the potential of this proposal we consider again the discrete sys-

tem that results from the discretization of a plane-stress elastic problem. Fig-
ure 4 depicts the reference solution and the one resulting from the reduced
formulation just described when extracting randomly 25% of the involved
equations, proving the potential of the proposed methodology.

6 Time-dependent Problems

In this section we will develop a space-time approach for the solution of
transient problems with the help of compressed sensing techniques. We will
study three different partial differential equations. Namely, steady, transient
Poisson and wave equations will be considered, Eqs. (10), (11) and (12), re-
spectively:

α∆u(x, t) = b(x, t) ∀x ∈Ω, (10)

∂u
∂t
−α∆u(x, t) = b(x, t) ∀x ∈Ω, (11)

and
∂2u

∂2t
−α∆u(x, t) = b(x, t) ∀x ∈Ω. (12)

These equations must be equipped with suitable Dirichlet boundary con-
ditions at some part of the boundary ∂ΩD in order to make the solution
unique. For the sake of simplicity, but without loosing generality, we will
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impose homogeneous Dirichlet boundary conditions at the Dirichlet portion
of the Domain Ω = [0,1]× [0,1], ΩD ,

u(x = 0, y) = 0.

When dealing with time derivatives, initial conditions have to be im-
posed,

u(x,0) = 0,

and, possibly, in the case of the wave equation also,

u̇(x,0) = 0.

We will consider a source term that varies in time as,

b(x, t) = Acosωt.

To approximately solve Eqs. (10), (11) and (12), finite elements in space
and finite differences in time have been used. Therefore, equilibrium for
steady/transient Poisson and wave equations at the i-th time step read

Kui = fi ,

1
∆t

M(ui −ui−1) +Kui = fi ,

and
1

∆t2
M(ui+1 − 2ui +ui−1) +Kui = fi ,

respectively.
Assume now that we prefer to solve every time step together. We should

write a single system of equations of the form

Aû = f̂. (13)

Here, matrix A is a block-diagonal matrix containing a matrix K at each block
for the steady Poisson case. The first and second time derivatives appearing in
transient Poisson and wave equations will generate coupling terms between
consecutive time steps by means of the M matrices. û and f̂ are the concate-
nation of spatial nodal unknowns and forces for every time step.

Solving directly the system (13) is a legit approach. Indeed, the usual
time-marching approach is recovered. However, we would like to explore the
advantages of compressed sensing. If the unknown field û is projected onto a
new basis enabling a sparse representation, a hyper-reduction results, as seen
in the previous section. Therefore, an underdetermined system needs to be
solved by performing a L1-norm minimization. Thus, we will seek to solve
the following system:

EATĉ = Ef̂,

where T is again the projection matrix, and E is the extraction operator that
defines randomly which rows are going to be selected to perform the L1 min-
imization. Finally, ĉ are the unknown coefficients in the new basis. When a
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time step is chosen, every spatial node related to this time step is automati-
cally selected to keep spatial global equilibrium.

Since we know that the dependance in time of the source term was caused
by a cosine function, a smart choice for the projection base in our case is the
discrete cosines transform (DCT). It is worth to say that the choice of the
projection basis is problem dependent. For instance, if our excitation force
evolves as a Heaviside step function, it may be convenient to use a Haar-
wavelet-based projection.

6.1 Numerical Performance of the LASSO scheme

The functional that the LASSO algorithm seeks to minimize does not have a
closed-form solution. Hence, an iterative algorithm has to be used in order
to find the minimum of the functional, such as a steepest descent method.
When using LASSO, there is a numerical parameter called the relative toler-
ance, which controls the maximum admisible difference between two itera-
tions of the steepest descent method. If the difference between two iterations
is smaller than the relative tolerance, the iterative algorithm stops. There-
fore, the smaller the relative tolerance, the higher number of iterations are
required, but the solution will be more accurate. Fig. 5 shows the relative
tolerance of LASSO method versus solution error in logarithmic scale. The
colors of the points represent the time, in seconds, required to solve the un-
derdetermined system by means of LASSO. As it can be noticed, the lower the
relative tolerance, the lower error in the solution is obtained. Yet, the time to
solve the system increases. The number of spatial snapshots ui to build the
LASSO system was 10 out of 75 total time steps. The solution error is mea-
sured by

εU =
1
N
||û− ûR||L2,

where ûR is the reference solution, which is assumed to be the one of the
usual time marching approach. N represents the number of total unknowns.

At the end of the day, a compromise between the solution error and com-
putational cost should be accomplished. The quality of the reconstructed so-
lution depends also on the number of snapshots. Fig. 6 shows the number of
snapshots versus solution error in logarithmic scale. The legend represents
the time required to solve the LASSO minimization. The relative tolerance is
set to 0.8e − 5. Obviously, the more snapshots ui we consider, the more accu-
rate is the solution and less time is required to solve the system of equations.

In our cases, a relative tolerance of 1e − 5 provides good results. If the
relative tolerance is set to 1e − 6, it will provide even better results in terms
of error, but it will take more time to minimize the functional. Fig. 7 shows
the DCT coefficients solving the entire system of equations (red) and the ones
obtained after minimizing LASSO (blue) with a relative tolerance of 1e−4. As
it can be noticed, there are some differences between the red and blue curves,
meaning that the iterative algorithm has finished before reaching the proper
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Fig. 5: Relative Tolerance of LASSO method versus solution error in logarithmic scale. The legend
represent the time, in seconds, required to solve the LASSO minimization. 10 out 75 time steps
are sampled.

Fig. 6: Number of snapshots versus solution error in logarithmic scale. The legend represents
time, in seconds, required to solve the LASSO minimization. Relative tolerance set to 1e − 5.
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Fig. 7: DCT coefficients at a given spatial node with a bad tolerance in LASSO. (Relative tolerance
1e-4).

minimum of the functional. Fig. 8 shows how imposing a smaller tolerance
will provide better results. Of course, the price to pay is that the LASSO min-
imization takes more time.

6.2 Numerical results

In this section, several numerical examples involving the three equations con-
sidered in the previous section will be analyzed. Sparsity of the new basis will
play an important role to make the LASSO algorithm efficient. Parameters
employed in the solution of Eqs. (10)-(12) are compiled in Table 1.

Parameter Value

Tf , sim. time 0.1
ω 125.6

Number of time steps 200
α 1
A -100
Ω [0,1]× [0,1]

Spatial dofs 16× 16

Table 1: Parameters employed in the analysis of Eqs. (10)-(12).
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Fig. 8: DCT coefficients at a given spatial node equation with a good tolerance in LASSO. (Rela-
tive tolerance 0.8e-5).

The first equation to be tested is Eq. (10). The global system of equations
is uncoupled from time step to time step due to the fact that it does not
involve a time derivative. Fig. 9 depicts the value of u(x = (0.5,0.5), t) for
both an usual time-marching approach and for a compressed sensing-based
procedure. In this case only 5 time instants out of 200 are considered in the
LASSO minimization. As it can be noticed, the blue curve tends to capture
the overall behavior of the red curve (reference solution). However, there are
still some noisy peaks appearing in the blue curve due to the small number
of time instants involved in the computation. Fig. 10 shows the coefficients
of the discrete cosines transform, which is indeed what the LASSO algorithm
computes. It can be noticed how some high frequency peaks are appearing
causing the small oscillations in the u field.

The results are better if we increase the number of sampled time instants
up to ten. Figs. 11-12 show u and c fields, respectively. It should be high-
lighted that the high-frequency peaks are no longer appearing. Furthermore,
the leakage pollution close to the main peak is filtered thanks to the LASSO
algorithm.

The case of the wave equation (12), with a second derivative in time, is less
problematic than the one involving first derivatives only, see Eq. (11), since
it forces the response to follow the loading, whereas the transient Poisson
equation involves diffusion. Therefore, we will expect a sparser solution than
in problem (11).

Fig. 13 shows the u field for the wave equation case. Since the source
term is a cosine function, the response of the system is also a cosine. Further-
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Fig. 9: u(x = (0.5,0.50), t) for steady Poisson’s case. Five time instants are sampled out of two
hundred possible time steps.

Fig. 10: c(x = (0.5,0.50),ω) for steady Poisson’s case. Five time instants are sampled out of two
hundred possible time steps.
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Fig. 11: u(x = (0.5,0.50), t) for steady Poisson’s case. Five time instants are sampled out of two
hundred possible time steps.

Fig. 12: c(x = (0.5,0.50),ω) for steady Poisson’s case. Five time instants are sampled out of two
hundred possible time steps..
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Fig. 13: u(x = (0.5,0.50), t) for the wave equation. 30 time instants are sampled out of two hun-
dred possible time steps.

more, the system must be initialized with a non-homogeneous initial con-
dition. Otherwise, compatibility conditions of the time marching approach
will no longer be satisfied. Fig. 14 shows the DCT coefficients c for the wave
equation case. As it can be noticed, the first coefficient accounts for a solid
rigid-like translation (i.e., the cosine is not centered in 0) and the other peak
coincides with the frequency of the source term.

Figs. 15, 16, 17, and 18 show the expected behavior: imposing a cosine in
the source term with a first time derivative will cause a sinusoidal response,
which is not sparse in the projected base, due to the diffusion effects. Hence,
more time instants need to be taken into account in order to achieve an accu-
rate result.

7 Conclusions

In this work we explored different applications of compressed sensing in
computational mechanics. First, we proved that it could be a valuable strat-
egy for performing random samplings to evaluate solutions of parametric
models. Then, inspired from the so-called “single pixel camera”, we ana-
lyzed the use of the compressed sensing methodology to reconstruct consti-
tutive manifolds from the only knowledge of a quire reduced number of data-
points. Finally, in the preceding section, we proved that the same methodol-
ogy can be employed for reducing significantly the size of the discrete system
of equations that results from the application of standard discretization tech-
niques defining a new kind of model order reduction techniques.
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Fig. 14: c(x = (0.5,0.50), t) for the wave equation. 30 time instants are sampled out of two hun-
dred possible time steps.

Fig. 15: u(x = (0.5,0.50), t) for transient Poisson’s case. 100 time instants are sampled out of two
hundred possible time steps.
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Fig. 16: c(x = (0.5,0.50), t) for transient Poisson’s case. 100 time instants are sampled out of two
hundred possible time steps.

All these different application rely on a single technique and we strongly
believe that it will play a very relevant role in computational mechanics for
the years to come.
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