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Summary

While modern CFD tools are able to provide the user with reliable and accurate simu-
lations, there is a strong need for interactive design and analysis tools. State of the art
CFD software employs massive resources in terms of CPU time, user interaction and
also GPU time for rendering and analysis. In this work we develop an innovative tool
able to provide a seamless bridge between artistic design and engineering analysis.
This platform has three main ingredients: computer vision to avoid long user inter-
action at the pre-processing stage, machine learning to avoid costly CFD simulations
and augmented reality for an agile and interactive post-processing of the results.
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1 INTRODUCTION

Very much like other aspects of our everyday life, simulation is living profound changes. It is not infrequent to hear about
“democratisation”—more than deployment—of simulation or even about appification. In general, by democratisation we mean
to make simulation accesible to users that previously did not feel the need for it, but now consider it interesting. However, many
undoubtedly interesting applications of simulation in engineering practice come at the price of many hours of user interaction
followed by many CPU hours to obtain results. And this results in a barrier for many potential users.
In industry, particularly in automotive manufacturing, there is a claim for interactive ways to connect designers (artists, in

sum) and engineers [1]. For this to be possible, developing real-time, interactive simulation apps that could provide immediate
responses on the physical effects of purely artistic decisions onmockups, for instance, could be of great help. This immediacy and
interactivity should include the pre-processing stage in which engineers construct the CAE model of the product, the meshing
operation for the development of a FEA model and a reasonable time to response.
In parallel, with the global deployment of mobile devices (smartphones, tablets), there is a tendency towards simulation

appification, i.e., the implementation on such platforms of the usual simulation tools. While the performance of these platforms
is nowadays impressive, they are undoubtedly less powerful than usual workstations. This imposes additional requirements to
any realistic attempt to simulation democratization.
Augmented reality (AR) has gained popularity given the realism and ease of interpretation of the information it provides.

Therefore, AR can now be seen as a feasible way for simulation post-processing. However, AR makes intensive use of computer
vision techniques [2] [3] and therefore induces additional restrictions to the simulation pipeline [4].
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and the European Social Fund, are also gratefully acknowledged.
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In this work we present our first attempt to democratize simulation by developing a platform that copes with the aforemen-
tioned requirements. We try to directly suppress the user time employed in the construction of the model. Instead, it is required
that the model comes directly from physical reality, through computer vision techniques. As a proof of concept, we focus on car
aerodynamics, and thus the geometry of the car (or prototype) will be captured by a commodity camera. No stereo or RGBD
cameras are needed, in principle, even if their use is obviously possible and could eventually ease and improve the accuracy of
the process. Previous approaches to this problem employ this type of cameras (Microsoft Kinect cameras, for instance, in [5],
that capture depth measures by means of an infrared laser).
Geometry of the objects to analyze will thus be acquired by computer vision, thus bypassing the need for time-consuming CAE

pre-processing steps. Usually, the same device that captures geometry will serve to depict the results in an AR framework, but
many different possibilities exist. Our approach makes use of feature-based Simultaneous Localization and Mapping (SLAM)
techniques to acquire the geometry of the object with a single monocular camera, even though many modern smartphones are
already equipped with stereoscopic cameras. In particular, we employ ORB-SLAM techniques [6]. These techniques allow us
to capture selected points on the surface of the object, whose geometry will need nevertheless to be reconstructed from these
points. In other words, a suitable parametrization of the shape of the object needs to be constructed. Previous works include the
use of free-form deformation techniques [7] or the closely-related approach in [8].
Our approach to the problem is data-driven [9] [10] [11] [12] [13] [14]. This means that we employ manifold learning tech-

niques [15] over a data base of previously computed CFD results. While there is a vast corps of literature on (linear) model
reduction of flow problems [16] [17] [18] [19] [20] [21] [22], these techniques rarely achieve real-time performance. For this
particular application, by real-time we mean a code able to provide feedback response at some 30–60 Hz (i.e., the usual number
of frames per second in modern smartphone cameras).
Other approaches, however, achieve interactivity by means of machine learning [8] or by model reduction [1], but do not

consider augmented reality output. On the other side of the spectrum, some previous studies have considered the brute force
approach [5]. This type of approach makes intensive use of GPUs capabilities in a Lattice Boltzmann framework and are not
well suited, therefore, for their implementation on a mobile platform.
The employ of machine learning towards learning physical dynamics has gained considerable interest in recent times [28]

[29] [30]. In particular, deep learning architectures are of course tempting [23]. In general, while model order reduction methods
[24][25] achieve important speedup by means of a considerable reduction in the number of degrees of freedom and also provide
with important insight on the physics of the problem, deep learning architectures perform in nearly the opposite way [26]. They
are able to capture multiscale phenomena or transient features and, at the same time, are able to capture invariants of the system,
but need for a tremendous effort to train the neural networks and, conversely, provide little or no interpretation of the results.
Some scientists have warned about the possible implications that the employ of machine learning on top of biased data could
have [27].
Closely related, there is a strong research activity in the development of physics-aware artificial intelligence—in other words,

machine learning approaches that satisfy first principles by construction [31] [32] [33]. Our approach here is to employ, so to
speak, the best of both worlds. Non-linear dimensionality reduction techniques—in particular, manifold learning—are able to
substantially reduce the number of degrees of freedom of the problem, very much like classical, linear model order reduction.
But, at the same time, the provide very useful insight on the non-linearity of the problem. As will be noticed from the results
here presented, manifold learning techniques provide clear physical explanations on the structure of data, reduce the number of
degrees of freedom and their dimensionality, and allow for very efficient computational approaches.
With all these ingredients—computer vision, machine (manifold) learning and augmented reality—we construct a reliable

simulation platform that, even if we admit errors higher than those typical of state-of-the-art high-fidelity simulations, provide
the user with a unique degree of interactivity and immediacy.
The paper is structured as follows. In Section 2 we provide an overall description of the method we have developed. In Section

3 we give detailed insight on the construction of the database and its subsequent embedding in a lower dimensional space.
Then, in Section 4 we briefly describe the state-of-the-art computer vision techniques employed to capture cars not being in the
database. In Section 5 we describe how to interactively depict CFD results on top of the video stream of the particular car of
interest. Finally, in Section 6 we analyze the accuracy of the results, computational cost, etc. The paper is completed with some
final comments about the interest of the proposed technique.
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2 OVERALL DESCRIPTION OF THE METHOD

Figure 1 depicts a sketch of the general pipeline of themethod. The key ingredient is the employ of manifold learning techniques
to learn car aerodynamics. This will allow us to avoid simulating in real time. Instead, we interpolate—in the right manifold
space—existing CFD results (represented in the left column of Fig. 1 ). By obtaining a low-dimensional embedding of these
results we will not only ensure to interpolate in the right space (instead of the Euclidean one) but also take profit of the non-
linear reduced order modeling capabilities of Locally Linear Embedding techniques [34], which will be thoroughly described
in Section 3.

FIGURE 1 Schematic description of the method. We first construct a database of CFD results for known car geometries (left
column). These results are embedded onto a low-dimensional manifold  by means of LLE techniques. Once a new car—not
in the database—is captured with the camera, the features are first processed so as to obtain an approximate envelope of the new
car geometry. This new geometry is then embedded onto the manifold (blue point) and its CFD results interpolated among its
neighbors in the manifold (red points).

These results are obtained by usual CFD methodologies, starting from CAD descriptions of car bodies. Once unveiled, the
manifold structure of these data, , will allow us to easily incorporate new designs, not previously analyzed (right column of
Fig. 1 ). With the help of a standard smartphone we will capture the bodywork of a new car or prototype. To this end, it is
necessary to film around the car, so as to capture its entire geometry. SLAM techniques [6] will allow us to detect special points
in the body of the car called ORB features (green points in the bottom-right corner of Fig. 1 ) [35].
After a reconstruction of the body of the car from these ORB points (top right corner of Fig. 1 ) we are in the position

of embedding this new design onto the already available manifold of shapes . This will also provide us with the necessary
weights so as to interpolate from surrounding CFD results in the database. This simple approach will allow us to obtain velocity
maps, streamlines, etc. without the burden of meshing procedures, long CPU computations and subsequent post-processing.
Once the new results have been obtained, they are ready to be represented on the screen, on top of the video stream. For this

to be possible, a registration process will be needed. By image registration we mean the process of finding the common system
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of reference between the video frames and the just obtained CFD results. So to speak, we need to align both so as to construct
an augmented reality post-processing of these results.
These steps are detailed in the following sections. We begin by describing the steps towards the obtention of the car database.

3 CONSTRUCTION OF A SUITABLE DATABASE OF CFD RESULTS

3.1 Parameterization of the shape
A crucial step in the machine learning of car aerodynamics is that of parameterizing shape. This issue has been deeply analyzed
in [8], for instance. In the reduced order modeling literature there is another vast corps of literature, see, for instance, [20] [7]
[36] [17] [37] for works employing freeform deformation techniques. Of course, usual CAD techniques based on the employ of
NURBS or related approaches cannot be employed here, since the capture of shapes by computer vision is obliged in the tool
we are developing. This problem shares many similarities, for instance, with the construction of patient avatars in the medical
community [38] [39] [40].
The original database was composed by object (*.obj) files. Prior to converting them to a manageable format, compatible

with the computer vision system, a de-refinement of the bodywork of every analyzed model is mandatory, see Fig. 2 . We
employed the same de-refinement method as in [8]. In the examples analyzed herein, the intermediate level of refinement was
chosen, that corresponds with the center figure in Fig. 2 . Of course, the final accuracy of the method strongly depends on the
level of detail to which the body of the car is represented. Further refinement leads of course to higher levels of accuracy.

FIGURE 2 Model de-refinement for the Ford Fiesta example.

This de-refined geometry is then embedded into a grid of 140×40×20 points uniformly distributed on a volume of 14×5×4
cubic meters around each half car (we exploit here the symmetry of cars so as to include only one half of the bodywork in the
database). While in some of the previous works of the authors [38] we employed a signed distance field to characterize the
shape, in this work we have found that the employ of a presence function

�(x) =

{

1 if x ∈ Ω,
0 if x ∉ Ω,

(1)

where Ω represents the boundary of the car, rendered better results for the manifold learning procedure to be described next. In
other words, we characterized each particular shape by a vector z ∈ ℝD, where D = 140 × 40 × 20 = 112000, whose entries
are the values of �(xj) at each node of the grid, xj , j = 1,… , 112000.

3.2 Manifold learning
The key ingredient in our method is to hypothesize that car shapes describe a manifold structure whose precise form is to be
found. To this end, we employ Locally Linear Embedding (LLE) techniques [34]. In essence, LLE assumes that, given the fact
that a manifold is homeomorphic to a flat space in a sufficiently small neighborhood of each point, each datum can be reasonably
well approximated through a linear combination of its nearest neighbors—whose precise numberM is to be fixed by the user—.
Therefore, LLE assumes that for each zm a linear reconstruction exists of the form

zm =
∑

i∈m

Wmizi, (2)
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whereWmi are the unknown weights and m the set of theM-nearest neighbors of zm.
The search for the weights is done by minimizing the functional

 (W ) =
M
∑

m=1

‖

‖

‖

‖

‖

‖

zm −
M
∑

i=1
Wmizi

‖

‖

‖

‖

‖

‖

2

,

whereWmi is zero if zi ∉ m, i.e., if cars i and m are not neighbors in the manifold of shapes.
LLE also hypothesizes that an embedding exists onto a lower-dimensional space ℝd , with d ≪ D, such that the manifold

structure is conserved. In other words, a new set of coordinates � ∈ ℝd exists for each car z ∈ ℝD and they can be found by
minimizing a new functional

(�1,… , �M ) =
M
∑

m=1

‖

‖

‖

‖

‖

‖

�m −
M
∑

i=1
Wmi�i

‖

‖

‖

‖

‖

‖

2

,

where the neighboring relation between points (i.e., the weightsWmi ) are maintained. See Fig. 3 for a description of LLE.
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FIGURE 3 Hypothesis abut the existence of a manifold on which the car shapes live. The small black dots represent the car
database in a high-dimensional space ℝD. These data are then embedded onto a lower-dimensional manifold ℝd , with d ≪ D.
A new car not in the database (blue dot) will thus be interpolated from its neighboring cars (red points) through the weightsWmi
provided by LLE, that define a mapping ℤ(�). By hypothesis, LLE assumes that the same neighborhood relationships hold in
the high-dimensional manifold.

3.3 Our database
We analyzed a set of 80 different car bodies. All of them are subjected to a CFD analysis using commercial software. Fig. 4
shows a typical mesh of the environment of one of the models. All of them are subjected to a uniform velocity of 10 m∕s at the
leftmost part of the meshed volume. This gives us a Reynolds number on the order of 9000.
After the CFD computations, a projection of the velocity field onto the same grid mentioned in the Section 3.1 is made for

subsequent interpolation purposes. Our cars are thenmanually classified into four different groups: large cars (Audi Q7, Hummer,
Jeep Grand Cherokee, VW Touareg, among others), sport cars (Mercedes AMG GTS, BMW Z4, Audi R8, BMW i8, Porsche
911, ...), old cars (Pontiac firebird, Dodge Charger, Chevrolet Camaro, ...) and a fourth set of “various”, which comprises not
easily classifiable models.
Our experiments showed that a range betweenM = 6 − 15 neighbors provided a good embedding onto ℝ2. Figure 5 shows

the embedding obtained withM = 9 neighbors, where it can be noticed how LLE clearly clusterizes sport cars apart from large,
familiar cars, for instance. Old cars, whose shape does not follow any specific pattern, and those cars in the “various” group are
somewhat mixed in the embedding procedure, as expected.
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(a)

(b)

FIGURE 4 (a) Typical FE mesh employed in the CFD calculations. (b) Contour plot of the velocity module for the same model.

4 COMPUTER VISION FOR NEW CARMODELS

While the previous sections described the off-line work to construct the car database, in the following section we describe the
on-line work done for the characterization of the new geometry and the subsequent interpolation of the results on the manifold
of shapes.
After the database has been completed, and its dimensionality conveniently reduced, the pipeline of our platform faces the

problem of reconstructing the geometry of a new car. In general, a new car or a new design will not be in the database, so we
assume that no CAD description is available. Instead, the user will make use of a commodity camera (through a smartphone,
for instance) to capture the new geometry.

4.1 Capturing the geometry from a video sequence
The problem of reconstructing a three dimensional geometry from a set of two-dimensional images is known in the robotics field
as the Structure fromMotion, SfM, problem [2] [41] [42]. In essence, if we assume that the object to reconstruct is rigid—for the
deformable case refer to [4] and references therein—, the problem is sketched in Fig. 6 . The object is assumed to be attached
to a fixed position in the frame of reference. The problem thus begins by determining the pose—location and orientation—of
the camera.
The input image space is denoted by k ⊂ ℝ2, with k = 1,… , nimages, the number of available frames in the just captured

video. We assume no batch approach in this platform but we do not consider the possibility of a video stream. In other words,
the video has a finite number of frames.
Cameras perform a projection from three-dimensional, physical space to a two-dimensional pixel space. This projection is

characterized by an a priori unknown camera operator denoted by Π ∶ )∗Ωt →  whose determination is known as the
calibration of the camera. This projection can be expressed asΠ = K[R|t], whereK corresponds to the camera intrinsic matrix
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FIGURE 5 Results of the embedding of car geometries ontoℝ2 by employing nine neighbors for each car. It can be noticed how
LLE clusterizes sport cars far apart familiar (or “large”) cars, while old cars and other models without a distinctive characteristic
are somehow mixed.

x1

x2

x3
1

x

Ω

p

Π
z

n

FIGURE 6 Sketch of the Structure from Motion problem. While the object is assumed to be rigid and attached to a fixed
position in the frame of reference, the camera needs to move so as to reconstruct its three-dimensional geometry. Here, two
video frames, namely 1 and n are shown, together with the camera projections of the solid. The projection Π of a particular
point x on the visible surface of the solid gives rise to point p in the pixel space.

and [R|t] represents the camera extrinsic matrix. We denote x = (x, y, z)⊤ and p = (p1, p2)⊤ and a scale factor s, so that,

⎡

⎢

⎢

⎣

p1
p2
s

⎤

⎥

⎥

⎦

= �
⎡

⎢

⎢
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f∕dx 0 cx
0 f∕dy cy
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]

⎡
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⎢

⎢
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⎣
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⎤
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⏟⏞⏞⏟⏞⏞⏟
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, (3)
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where xc represents the coordinates of x in the camera system (a moving frame of reference attached to the camera, not the
world reference frame). )∗Ω denotes the visible part of the boundary of the object of interest, Ω.
Two transformations exist: first, the camera extrinsic matrix transforms three-dimensional physical points in the world system

of reference into three-dimensional points in the camera moving frame of reference. This transformation is equivalent to the
composition of a rotation (R) and translation (t) between the corresponding points. On the other hand, the camera intrinsic
matrixK contains information about the projection centre (cx,cy), the pixel size (dx,dy) and the focal distance, f , that maps three-
dimensional camera points into two-dimensional pixel coordinates. Finally, � represents a scale factor that takes into account
the fact that, with a single picture, an indeterminacy exists that makes it impossible to discern between the projection of a big
object positioned far from the objective or a small one at a closer position.
Therefore, to determine the camera pose and the location of a rigid object we need more than one single image. To solve

this indeterminacy, SfM algorithms minimize the reprojection error. In other words, SfM minimize the geometric error corre-
sponding to the image distance between a projected point and a measured one [3]. As sketched in Fig. 6 , the camera performs
a projection of the form

p = Π(x),
with p ∈ ℝ2 and x ∈ ℝ3. Note that we do not know the exact value of x. Well established geometrical analysis will provide an
estimation x̂ of the true position of the point [43] [3]. If we re-project this estimate for each frame by

p̂ = Π(x̂),

the sought reprojection error takes the form d(p, p̂).
This analysis is often made with respect to some marked points usually known as fiducial markers. In general, this analysis is

greatly simplified if the object to reconstruct can be labelled at some points with the help of some visible sticker, for instance.
However, for our purpose this is not feasible. The tracked points x must be selected by the algorithm itself. To this end, we
employ a method based on features, the so-called Oriented FAST and rotated BRIEF (ORB) method [35]. In fact, we employ
the so-called ORB-based Simultaneous Localization and Mapping (ORB-SLAM) method, able to solve the SfM problem while
at the same time it constructs a map of the environment [6]. These ORB features are the green points shown in Fig. 7 .

4.2 Projection onto the database
The ORB features just captured constitute a cloud of points in the boundary of the sought geometry. To determine the best
possible approximation to the sought geometry we employ �-shapes [44]. Essentially, �-shapes reconstruct a volume given a
cloud of points on its boundary with the help of one user-defined parameter, �, that represents the coarsest level of detail in the
reconstructed geometry. Basically, � is on the order of the distance between recognized ORB features.
Of course, a stereo or RGBD camera would provide a much more detailed geometry representation. We analyze, however, the

case of deployed hardware, and consider that a simple smartphone or tablet is enough to obtain a reasonable representation of
each car bodywork. With the just reconstructed geometry, we embed it in the same grid employed to construct the car database
and evaluate the presence function �(x) at each of the nodes of the grid, xj , j = 1,… , D, see Fig. (9 ). This will provide a new
vector znew = [�(x1)⋯�(xD)]⊤ for the geometry at hand.
This new vector znew can easily be embedded on the manifold without the need of re-computing every weight, by invoking

incremental LLE algorithms, see [45], for instance. This will provide the new weightsWi, i = 1,… ,M .
The key ingredient in our method is the assumption that the velocity field (for sufficiently low Re numbers) of a new car

can be obtained in an accuracte enough manner by linear interpolation among the neighboring models in the manifold. In other
words, that the new velocity field is approximated by

vnew(xj) ≈
M
∑

i=1
Wivi(xj), (4)

with vi(xj) the velocity field for the i-th neighboring car model at the j-th node of the grid. This assumption, which may seem
too restrictive, has demonstrated already to provide reasonably accurate results in a completely different context, but in a similar
procedure, see [38].
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(a)

(b)

FIGURE 7 (a) An example of the captured ORB features for the VWGolf model. (b) A reconstruction of the cameramovements
in the video. Blue pyramids indicate the position and orientation (pose) of the camera. Dots represent the ORB’s detected by
the SLAM methodology, that belong both to the car and its surroundings.

5 AUGMENTED REALITY OUTPUT

5.1 Car identification
ORB-SLAM is probably the best technique to reconstruct static 3D scenes in a sparse way, if we think of employing a commodity
camera.We can estimate the 3D position x(x, y, z) of the most relevant points of a scene, extracted by using the feature descriptor
ORB. This means that we need a relatively low computational power to work, it does not require the use of graphical acceleration
by GPU, at the cost of reducing the number of observed points. With this system we do not expect to obtain a dense cloud
of points, as it happens with other acquisition systems (such as RGB-D devices or stereo systems), but to be able to take very
precise measurements in real time with little computational cost. It is also important to point out that densification techniques
can be applied a posteriori to obtain a denser 3D point cloud, such as [46].



10 A. Badías ET AL

−0.2

0
0.2

−0.4

−0.2

0

0.2

0.4

0.6

−0.2

0

FIGURE 8 Reconstruction of the VW Golf model. Red points represent to detected ORB features. The blue volume is
reconstructed by an �-shape algorithm.

Since we are using a monocular system (like the camera we can have in our smartphone) we can not recover the scale of
the model without knowing any of the real dimensions of the objects (an RGB-D system or stereo camera could give us this
information, but a standard user does not usually have this type of technology). Nor can we identify the direction of gravity (it
could be done with an Inertial Measurement Unit or IMU), which complicates the estimation of the location or pose of the car
in space. Our objective is to depend only on the visual system, obtaining the information of the scene from only a monocular
camera.
We start, therefore, from a set of three-dimensional points estimated in the scene, where we need to identify the geometry of

a car. For this we assume that the user has surrounded a real car with its monocular system, where the car appears relatively
centered in the cloud of points. Figure 10 collects the algorithm used to identify, segment and locate the position of the car
from the point cloud.
The first task of the algorithm is a point culling process depending on the local density surrounding any point of the cloud. We

use this type of cleaning methods because sparse SLAM methods can add noise in the triangulation step. The use of a pyramid
of image scales may also encourage this type of defects.
Next we estimate the centroid of the cleared point cloud, which allows us to locate where the most relevant object in the scene

is located. After this, we eliminate those points that are further away from 95% of the distances of all points from the centroid.
This allows us to work without the need to add adjustment parameters.
We then estimate the plane of the ground, because we assume that the car is located on a large plane with texture. So we

estimate the main floor plane, and remove the points contained in that plane.
A principal direction analysis is then applied to estimate the predominant direction of the vehicle, that with the centroid and

the gravity vector (estimated from the floor plane) allow us to fix the coordinates origin of the car.
The last step is the scaling. A noise removing process is again applied based in the histogram of positions to remove areas of

isolated points. Then the car is inserted within a box to facilitate the estimation of scale and geometric transformations, which
are then applied to move the car to the origin of coordinates and scale it with a unitary scale. We can do this because although we
do not recover the scale, if the camera is well calibrated, the system is able to obtain a very precise 3D aspect ratio between the
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FIGURE 9 The car’s geometry is then embedded on a grid and the presence function, Eq. (1), evaluated at each of its nodes.
Red nodes are evaluated to zero (they fall outside of the car) while blue ones are evaluated to one (they fall inside). Note that
the grid’s resolution is lower than that actually employed (140 × 40 × 20) just to make the figure visible.

3 dimensions. In other words, even if the object is in another scale, moved and oriented in another direction, it is not necessary
to apply different scales in the X, Y or Z axes, but a common scale of type xSC(x, y, z) = �(xORB(x, y, z)), where xSC are the 3D
positions of the geometry with scale correction and xORB(x, y, z) are the initial 3D coordinates estimated by the SLAM system.
This allows us to compare the estimated car with the database of the rest of the cars, where we have already precomputed the
aerodynamic solution.
It is important to note that we could also have used modern techniques of recognition of car pose through images only,

employing learning techniques [47], [48]. However, we think that it is possible that they do not reach the level of precision we
expect for the geometry of a car. In addition, with our method we avoid the labeling and training phase. Working with image
masks and then estimating the position of the 3D points by triangulation may involve similar noise problems, and some points
could be located outside the real geometry of the car. Therefore, we should apply some filtering techniques again, as we have
done in our proposed method. The tests we have done show that, although we use classic techniques in our method, they work
in a robust way.

5.2 Final appearance
The previous identification algorithm provides very valuable information for the final augmentation of the video. In particular,
having the reconstructed three-dimensional geometry is a necessary step for the computation of occlusion culling in the results,
i.e., disabling objects not seen by the camera to appear in the image. All the steps in the augmentation process are implemented
in OpenGL [49]. The final appearance of the augmented results is shown in Fig. 11 .
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function CarDetection (input SLAMCloud, output cleanCloud)
{

densityPointCulling(SLAMCloud);
centroid = geometryAnalysis(SLAMCloud);
centroidPointCulling(SLAMCloud);
floor = planeEstimationRANSAC(SLAMCloud);
floorRemoving(SLAMCloud);
PrincipalDirections = PrincipalComponentAnalysis(SLAMCloud);
noiseRemoving(SLAMCloud);
boxAdjustment(SLAMCloud);
[S,R,T] = GeometricalTransformation(SLAMCloud, unitaryCarCloud);
cleanCloud = linearTransformation(S,R,T,SLAMCloud);

}

FIGURE 10 Pseudo-code of the car detection process.

6 ANALYSIS OF THE RESULTS

In this section we analyze the performance of the just presented methodology. Particular emphasis is made to the computational
cost and real-time compliance of the on-line computations. A supplemental video showing both the process and the result of the
proposed methodology can be downloaded from https://youtu.be/Azm4E3Y7jS4.

6.1 Computer vision
The first part of the on-line procedure is the capture of the bodywork geometry through ORB-SLAM techniques. This algorithm
runs in real time (i.e., it attains 30–60 frames per second) without any problem on a standard laptop. We employ the standard
implementation in [50], whose code is freely available.

6.2 Reconstruction of the geometry
Given the set of points captured in the process described in the previous section, the reconstruction of the geometry of the
bodywork (i.e., the determination of the approximate geometry shown in Fig. 8 ) takes on average 0.30 seconds in a MacBook
Pro 2016 computer equipped with 16 Gb RAM running an Intel Core i7 processor at 3.3 GHz.

6.3 Embedding of the new model
After the reconstruction of the geometry, the new model or prototype should be embedded onto the manifold of shapes. This
allows us to obtain the interpolation weightsW i, see Eq. (4). This process takes, on average, less than a second. Previous works
have also reported how fast the LLE algorithm is, with some 500 different geometries running in about one second [38].

6.4 Car identification
The procedure sketched in Fig. 10 runs in real time on a standard laptop.

6.5 Error analysis
To test the accuracy of the LLE embedding onto the shape manifold, we deliberately kept five models out of the database. They
were employed as ground truth, and their direct numerical simulation was compared to the result obtained by the interpolation

https://youtu.be/Azm4E3Y7jS4
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(a)

(b)

FIGURE 11 Final appearance of the augmented video (a) Streamtraces can be plotted on top of the reconstructed geometry.
(b) Other possibilities, such as pressure or velocity contour plots, also exist.

of their velocity field, see Eq. (4). L2-norm errors ranged from 1.02% for the Hummer model to 0.56% for a classic car labelled
as sedan 4, see Fig. 12 .
These results indicate that, for the scale of the grid employed in the characterization of geometry, many models provide

very similar results. These velocity fields are, therefore, easy to interpolate. A highly refined mesh—which is not necessary for
the type of applications we are envisaging here—would maybe report more important differences in the velocity field among
different models.

7 CONCLUSIONS

We have presented a tool able to capture and reconstruct, with the help of a commodity camera, the geometry of a three-
dimensional object—we have studied mainly cars—and to perform simple but reasonably accurate CFD predictions of the
flow around the object for interactive design. This technique employs state-of-the-art structure from motion techniques for the
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FIGURE 12 Interpolated velocity field for the sedan 4 model. View along the symmetry plane.

geometrical reconstruction and manifold learning techniques to construct inexpensive predictions of the velocity and pressure
fields around the object.
The advantage of such a platform is that what we obtain is actually an appification of CFD software. This tendency in our

community is having tremendous commercial implications and is changing the way we see simulation. Here, the user needs only
a smartphone to capture the geometry of the object to analyze, so as to obtain timely information about the physical consequences
of his or her decisions. Artistic designers are thus invited to incorporate CFD to their workflow in a seamless way and with a
minimum of knowledge in engineering—something that could be risky, nevertheless.
The combination of computer vision techniques, artificial intelligence (here, manifold learning) and augmented reality gives

rise to a platform that changes the way we interact with simulation software. At the price of a little loss in accuracy with respect to
existing, high-fidelity software, we obtain real-time responses to our query in a very short period of time, thus enabling decision
making and an easy interplay between designers and engineers.
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