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Abstract

This work aims at proposing a new procedure for parametric problems whose

separated representation has been considered difficult, or whose SVD com-

pression impacted the results in terms of performance and accuracy. The pro-

posed technique achieves a fully separated representation for layered domains

with interfaces exhibiting waviness or—more generally—deviating from pla-

nar surfaces, parallel to the coordinate plane. This will make possible a

simple separated representation, equivalent to others, already analyzed in

some of our former works. To prove the potentialities of the proposed ap-

IThis work has been supported by the Spanish Ministry of Economy and Competi-
tiveness through Grant number DPI2015-72365-EXP and by the Regional Government of
Aragon and the European Social Fund, research group T24 17R.

∗Corresponding author
Email addresses: cghnatios@ndu.edu.lb (Chady Ghnatios),

Emmanuelle.Abisset-Chavanne@ensam.eu (Emmanuelle Abisset),
Amine.AMMAR@ensam.eu (Amine Ammar), ecueto@unizar.es (Eĺıas Cueto),
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proach, two benchmarks will be addressed, one of them involving an efficient

space-time separated representation achieved by considering the same ratio-

nale.

Keywords: PGD, Space separated representation, Parametric modeling.

1. Introduction

When looking for an approximation of the solution u(x, t) of a given PDE,

here assumed, without loss of generality, to be scalar and linear, the standard

finite element method considers the approximation

u(x, t) =
N∑
i=1

Ui(t)Ni(x), (1)

where Ui denotes the value of the unknown field at node X i and Ni(x)

represents the so-called shape function associated to the i-th node. Here N

refers to the number of nodes employed to approximate the field u in the

domain Ω in which the physical problem is defined.

This approximation results in an algebraic problem of size N in the linear

case, or the iterative solution of many of them in the general transient and

nonlinear case. In order to alleviate the computational cost, model order

reduction techniques were proposed and are nowadays intensively used.

In the framework of POD-based model order reduction [9], a learning

stage allows extracting the significant modes φi(x) that best approximate

the solution. In many cases, a reduced number of modes R (R � N) suffice

to approximate the solution of problems similar to the one that served to

extract the modes in the learning stage.

Thus, the solution u(x, t) is projected onto the reduced basis composed

of functions {φ1(x), · · · , φR(x)}, according to

u(x, t) ≈
R∑
i=1

ξi(t)φi(x), (2)
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that now requires the solution of linear systems of size R instead the ones of

size N characteristic of finite element solutions. This often allows us to obtain

impressive computing time savings.

Approximations (1) or (2) imply a finite sum of time-dependent coeffi-

cients and space functions. The last are assumed known: they consist of

the usual finite element shape functions or the modes extracted by applying

the POD. A generalization of this procedure could consist on assuming that

space functions are also unknown and therefore to compute both, time and

space functions, on the fly [19]. Thus, this approximation reads

u(x, t) ≈
M∑
i=1

Ti(t)Xi(x). (3)

Since both functions involved in approximation (3) are unknown, the

problem solution becomes nonlinear, and its solution requires an appropri-

ate linearization strategy. The interested reader can refer to [2, 7, 11, 20,

23, 25, 26] and the references therein for practical details on the computer

implementation of separated representations.

Expression (3) evidences that the solution procedure requires the solution

of about M problems, with M � N and M ∼ R (slightly more, in fact, because

of the nonlinearity induced by separated representations) involving the space

coordinates (in general three-dimensional and whose associated discrete sys-

tems are of size N) to compute the space functions Xi(x) and about M one-

dimensional problems to calculate the time functions Ti(t). Due to the fact

that the computing cost related to the solution of 1D problems is negligible

with respect to the solution of 3D problems, the resulting computational com-

plexity reduces drastically, scaling with M instead of P (here, P represents the

number of time steps considered in the time domain discretization and that

corresponds with the complexity of standard incremental time-integration
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techniques).

Another step forward consisted in assuming model parameters as extra-

coordinates. Thus, space-time-parameters separated representations allowed

constructing the so-called computational vademecums (also known as aba-

cus, virtual charts, nomograms, ...) efficiently employed for multiple pur-

poses: simulation, optimization, inverse analysis, uncertainty propagation

and simulation-based control, all them under real-time constraints [6, 9].

When the unknown field involves space, time and a series of parameters

µ1, . . . , µQ, its associated separated representation reads

u(x, t, µ1, . . . , µQ) ≈
M∑
i=1

Xi(x)Ti(t)

Q∏
j=1

M j
i (µj). (4)

1.1. Space separation

The separation of space coordinates was also intensively considered in

our former works referred later, as well as in other references, see, for in-

stance, [10] and the references therein. Space separation allowed addressing

multi-physics problems defined in degenerated geometries in which at least

one of its dimensions results to be much smaller that the other ones (e.g.

beams, plates, shells, laminates) or processes involving additive layers (e.g.,

automated tape placement, 3D printing, or additive manufacturing). Thus,

if domain Ω can be decomposed as Ω = Ωx×Ωy ×Ωz, the solution u(x, y, z)

could be approximated by using the separated representation

u(x, y, z) ≈
M∑
i=1

Xi(x)Yi(y)Zi(z), (5)

that allows calculating the 3D solution from a sequence of 1D problems.

For some geometries, as the ones concerning plates or shells, in-plane-

out-of-plane separated representations become specially appealing,

u(x, y, z) ≈
M∑
i=1

Xi(x, y)Zi(z), (6)
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where the 3D complexity is reduced to a 2D complexity, related to the cal-

culation of in-plane functions Xi(x, y).

As discussed in [9], the cost savings provided by the use of these separated

representations are potentially impressive when the spatial domain is fully

separable. Indeed, the complexity of the simulation now scales with the one-

dimensional meshes used to solve the BVP’s in Ωx, Ωy and Ωz, associated

to the computation of functions Xi(x), Yi(y) and Zi(z) or with the two-

dimensional ones associated with the calculation of functions Xi(x, y) in the

case of in-plane-out-of-plane separated representations [7].

When the domain is not intrinsically separable or, in other words, express-

ible from a direct cartesian product, fully separated representations require

the use appropriate geometrical mappings [1, 10] or the immersion of the

non-separable domain onto a fully separable one [15, 17].

In-plane/out-of-plane separated representations are particularly useful for

addressing the solution of problems defined in plate and shell geometries,

[3] and [4] respectively, or extruded domains [21]. A parametric 3D elastic

solution of beams involved in frame structures was proposed in [5]. The same

approach was extensively considered in structural plate and shell models in

[12, 28–32] and [24].

Space separated representations where enriched with discontinuous func-

tions for representing cracks in [16], delamination [22] and thermal contact re-

sistances in [8]. The in-plane/out-of-plane decomposition was then extended

to many other physics like squeeze flows of Newtonian and non-Newtonian

fluids in layered domains in [14] or electromagnetism [27].

1.2. Paper outline

The present paper aims to propose a new simple procedure for treating,

in a fully separated representation manner, problems in which the expres-
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sion of the parametric dependency in a separated form was considered diffi-

cult, or where the separated representation performed by invoking SVD-like

techniques had a significant impact in the performance and efficiency of the

resulting numerical procedures.

After the just addressed introduction on separated representations, with

special emphasis in those involving space coordinates, the next section will

introduce the main idea of the present work. Namely, a very efficient geo-

metrical mapping leading to a separable description of the problem. Then, in

Section 3, the proposed approach is applied to the solution of thermal prob-

lems defined in thin domains, but in which the material conductivity has

not a compact separated representation. Section 4 addresses the issue of 1D

thermal problems containing an inclusion of a different thermal conductiv-

ity and whose position in the domain is assumed to be the model parameter.

Consequently, the temperature field for any position of the inclusion is found.

The paper finishes by summarizing the most valuable conclusions.

2. Domain mapping

We introduce the proposed methodology, for the sake of simplicity and

without loss of generality, by making use of a two-dimensional heat transfer

problem. Thus, we consider the temperature field u(x), x = (x, y), defined in

a thin domain Ω = (0, L)× (0, H), with H � L, where a non-planar internal

boundary (as the one sketched in Fig. 1) separates the upper domain Ωu,

with thermal conductivity Ku, and the bottom domain, Ωb, with conductivity

Kb. This boundary is defined by a function h(x).

The temperature field is assumed to be the solution of the steady-state

heat transfer problem defined in Ω, whose weak form reads∫
Ω

K(x)∇u∗ · ∇u dx = 0, (7)
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with u ∈ H1(Ω) space and u∗ ∈ H1
0 (Ω). The problem is subjected to the

boundary conditions

∂u(x,y)
∂x

∣∣∣
x=0

= 0,

∂u(x,y)
∂x

∣∣∣
x=L

= 0,

u(x, 0) = 0,

u(x,H) = ug,

(8)

where ug denotes the prescribed, temperature on the top surface.

Ωu

Ωb

Figure 1: Domain containing a nonplanar internal boundary

Because of the small domain thickness, i.e., H � L, standard mesh-

based discretization techniques fail due to the excessive number of degrees of

freedom due to the domain degeneracy, i.e. the very different characteristic

dimensions, with the thickness dimension orders of magnitude smaller that

the others. Those based on the use of separated representations

u(x, y) ≈
M∑
i=1

Xi(x)Yi(y), (9)

are faced to the difficulties relative to the presence of the non-planar bound-

ary, that implies a hardly separable conductivity field, that as discussed below
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needs too many modes, M, to converge, that is, for reaching a residual small

enough [7].

Of course, conductivity can always be separated by invoking, for instance,

the singular value decomposition (SVD), i.e., by expressing the conductivity

as

K(x, y) ≈
L∑

k=1

Fk(x)Gk(y). (10)

In the case of a planar boundary Γ = Ωu∩Ωb, characterized by h(x) = h,

with 0 < h < H, a single term suffices for separating the conductivity, i.e.,

Kp(x, y) = F p(x)Gp(y), (11)

where the superscript (•)p refers to the planar interface configuration, F p(x) =

1 and Gp(x) is defined by

Gp(y) = Ku − (Ku −Kb)χ(y), (12)

with

χ(y) =

 1 y < h

0 y ≥ h
. (13)

However, when internal boundaries deviate from the planar configuration,

the number of modes K increases prohibitively, and with it the operators

involved in the weak form (7). Thus, both the performance and the efficiency

of the solver are seriously compromised.

In order to circumvent this issue, we define two mappings transforming

Ωu and Ωb into two rectangular domains, noted respectively Ru and Rb.

1. Mapping Ωb into Rb. The first mapping with r = (r, s) ∈ Rb = (0, L)×

(0, 1) reads x = r,

y = s h(r),
(14)
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or, equivalently, r = x,

s = y
h(x)

.
(15)

The components of the Jacobian matrix Jb result

∂x
∂r

= 1,

∂x
∂s

= 0,

∂y
∂r

= s h′(r),

∂y
∂s

= h(r),

(16)

that allows transforming the differential operators involved in the weak

form (7), ∇ = ( ∂
∂x
, ∂
∂y

)T as ∂•
∂x

= ∂•
∂r

∂r
∂x

+ ∂•
∂s

∂s
∂x

= ∂•
∂r
− ∂•

∂s
sh

′(r)
h(r)

,

∂•
∂y

= ∂•
∂r

∂r
∂y

+ ∂•
∂s

∂s
∂y

= ∂•
∂s

1
h(r)

,
(17)

that, together with

dx = det(Jb)dr = h(r)dr, (18)

allows rewriting the weak form (7). For this purpose, we define matrix

Bb

Bb =

 1 −sh
′(r)
h(r)

0 1
h(r)

 , (19)

and the gradient operator ∇r = ( ∂
∂r
, ∂
∂s

)T , such that

∇• = Bb ∇r•, (20)

that allows writing the weak form as∫
Rb

Kb (∇ru
∗)T BT

b Bb∇ru det(Jb)dr = 0. (21)

2. Mapping Ωu into Ru. Equivalently, for Ωu we define x = r,

y = (s− 1)(H − h(r)) + h(r),
(22)
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with (r, s) ∈ Ru = (0, L)× (1, 2).

The gradient operator and the Jacobian are then calculated for this

mapping following the same rationale considered in the previous ap-

proach. The final weak form in Ru reads∫
Ru

Ku (∇ru
∗)T BT

uBu∇ru det(Ju)dr = 0, (23)

where Bu is now given by

Bu =

 1 h′(s−2)
H−h

0 1
H−h

 . (24)

By defining the characteristic functions of both subdomains, χu(r) and

χb(r),

χu(r) =

 1 if s ≥ 1,

0 if s < 1,
(25)

and

χb(r) =

 1 if s < 1,

0 if s ≥ 1.
(26)

By using the notations
K(r) = χu(r)Ku + χb(r)Kb,

B(r) = χu(r)Bu(r) + χb(r)Bb(r),

det(J(r)) = χu(r) det(Ju(r)) + χb(r) det(Jb(r)),

(27)

the weak form in R = Ru ∪Rb reads∫
R
K(r) (∇ru

∗)T BT (r)B(r)∇ru det(J(r)) dr = 0. (28)

Now, u(r, s) is approximated in the separated form

u(r, s) ≈
M∑
i=1

Ri(r)Si(s). (29)
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The problem can therefore be solved in a separated representation as a

sequence of problems in the r and s coordinate domains, by using the stan-

dard PGD procedure (see [7] for more details).

The main and major advantage of the proposed mapping is its capacity

for preserving the separated form of Jacobians.

3. Numerical examples

This section addresses different case studies: 2D and 3D domains with

non-separable interfaces, a parametric problem involving an inclusion and

finally the problem of a thermal source moving along a one-dimensional do-

main. In all the numerical examples which follow, each domain is discretized

with a uniform mesh.

3.1. 2D domains with non separable interface

In this section the applied boundary conditions (in the sequel all units

are assumed to be in the metric system) read:

u(x, y = 0) = 0,

u(x, y = H) = 25,

∂u(x,y)
∂y
|x=0 = 0,

∂u(x,y)
∂y
|x=L = 0.

(30)

In what follows, we analyze two kinds of non-separable boundaries.

3.1.1. Parabolic interphase

In this first numerical example we consider an extremely thin rectangular

domain Ω = (0, 1) × (0, 10−3), i.e., H = 10−3 and L = 1, with the internal

boundary h(x) defined by the parabolic curve

h(x) =
H

2

(
0.5 + 2x− x2

)
. (31)
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This boundary defines two domains with different thermal conductivities:

the upper domain has a conductivity Ku = 10, whereas the bottom one has

a conductivity Kb = 1. The interface h(x) is depicted in Fig. 2. The PGD

solution is achieved in 0.2 seconds on a standard laptop using 100 nodes

in the r-mesh and 1000 nodes in the s-mesh. Note that this resolution is

equivalent to the use of 2 · 105 finite element degrees of freedom.

The solution in the (r, s) domain is shown in Fig. 3, whereas the one in

the actual (x, y) domain is depicted in Fig. 4. The PGD solution involves

M = 6 terms, that allowed a residual reduction of 9 orders of magnitude, i.e.,

a reduction factor of 10−9.

0 0.2 0.4 0.6 0.8 1
x (m)

2

3

4

5

6

7

8

y
(m

)

×10
-4

Figure 2: Interface in Ω defining the top and bottom domains Ωu and Ωb

When expressing the conductivity in a separated form according to Eq.

(10) by invoking the singular value decomposition, K = 96 modes are needed

for a reduction of six orders of magnitude of the associated eigenvalues. The

solution using that K-mode separated representation of the thermal conduc-

tivity requires a non negligible effort, first for performing the SVD and then
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Figure 3: Solution in the reference domain R = Ru ∪Rb.

for constructing the separated representation of the temperature. In the

last, more than 50 temperature modes (i.e., M > 50) were required to reach

an acceptable accuracy, needing more than half an hour of calculation.

It is worth mentioning that, when using the approach based on the separa-

tion of the thermal conductivity, the usual separated representation construc-

tor, see [7], that proceeds by computing rank-one updates, hardly converged,

and each new mode produced only a very slight reduction of the residual.

3.1.2. Wavy boundary

In this second example the boundary h(x) is defined from

h(x) =
H

4
sin (4xπ) +

H

2
. (32)

Meshes and model parameters are the same that the ones considered in

the previous case study. Despite of poor separability of the thermal conduc-

tivity field, again by using the mappings discussed in Section 2, the solution

contained only M = 6 modes. It was obtained in 0.36 seconds, with a similar

residual reduction factor (10−9).
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Figure 4: Solution in the actual domain Ω = Ωu∪Ωb with the interface location highlighted.

The solutions in the reference and actual domains, R and Ω, are depicted

respectively in Figs. 5 and 6. Again, the interface location is highlighted.

When using a SVD-based separated representation of the conductivity field,

the solver hardly converges, and every new mode reduced very slightly the

residual. Consequently, the calculation required again more than half an

hour.

3.2. Three-dimensional layered domain with an inclined flat interface

In this section the procedure described in Section 2 is extended to the 3D

case considering the domain sketched in Fig. 7, with Ω = (0, Lx)× (0, H)×

(0, Lz).
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Figure 5: Solution in the reference domain R = Ru ∪Rb.

Now the mapping (r, s, t)→ (x, y, z) reads:

for s ∈ (0, 1)


x = r,

y = s h(x, z),

z = t,

for s ∈ (1, 2)


x = r,

y = (s− 1) (H − h(x, z)) + h(x, z),

z = t,

(33)

where h(x, z) is given by

h(x, z) = (H/4) + (H/2)
x

Lx
. (34)

The thermal problem is solved by prescribing temperatures at the top and

bottom surfaces, u(x, 0, z) = 0 and u(x,H, z) = 25, while enforcing null heat

fluxes on the lateral surfaces x = 0, x = Lx, z = 0 and z = Lz. The thermal

conductivities of the subdomains located above and below the interface, Ku

and Kb, are the same that the ones previously considered.
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Figure 6: Solution in the actual domain Ω = Ωu∪Ωb with the interface location highlighted.

Figure 8 depicts on the reference domain R the solution on the domain

cross section t = Lz/2, while Fig. 9 shows the solution at the corresponding

cross section of the actual domain Ω. Figure 10 depicts the 3D plot of the

solution on the actual 3D domain Ω.

The meshes considered in this simulation consisted of 100 nodes along the

r- and t-coordinates, and 1000 along the thickness s, to reach a resolution

equivalent to 107 finite element degrees of freedom. The most remarkable

fact was that the calculation was accomplished in 3 seconds in a standard

laptop, and that M = 15 modes were enough for reducing the residual in 8

orders of magnitude, that is, a reduction by factor of 10−8.

When expressing the conductivity using both, an in-plane/out-of-plane

separated form or a fully separated form, by invoking in both cases the SVD,

the usual rank-one constructor [7] did not reach convergence after computing

100 modes (note that 15 modes were enough when using the procedure based

on the mapping described in Section 2).
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Figure 7: 3D case study involving a non-planar interfacein the plate domain 1× 10−3 × 1

(units in meters).

3.3. Parametric inclusion

In this example we analyze an issue of major relevance, related to a ther-

mal problem in a one-dimensional domain x ∈ [0, L], with L = 1, assumed

to be composed by a material of thermal conductivity K1 = 5 that contains

an inclusion of length l = L/20 and conductivity K2 = 1 (IS units), with its

central point located at position X ∈ [0.035L, 0.965L].

The parametric temperature field is sought. In other words, we look

for the expression of the temperature field for any possible position of the

inclusion X, i.e., u(x;X). Within the PGD rationale, the inclusion location

X is considered as an extra-coordinate, so that the temperature field becomes

two dimensional, i.e. u(x,X), while the complexity due to the increase of

dimensionality is compensated by the use of the separated representation.

The parametric weak form of the heat equation now reads∫
Ω

∂u∗

∂x
K(x;X)

∂u

∂x
dx =

∫
Ω

u∗Qdx, (35)

with Q the heat source term.
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Figure 8: Temperature u(r, s, Lz/2).

We consider the mapping:

s ∈ [0, 1]

 X = r,

x = sh1(X) = sh1(r),

s ∈ [1, 2]

 X = r,

x = (s− 1)l + h1(X) = (s− 1)l + h1(r),

s ∈ [2, 3]

 X = r,

x = (s− 2)h2(X) + l + h1(X) = (s− 2)h2(r) + l + h1(r),

(36)

where h1(X) is the position of the inclusion left boundary, i.e. h1(X) =

X − l/2, l is the inclusion length and h2(X) the distance between the right

boundary of the inclusion and the domain right boundary, i.e. h2(X) =

L−X − l/2. The mapping (36) is sketched in Fig. 11.

By using the expression of the Jacobian, the heat problem weak form

(35) can be expressed in the reference (r, s) domain and discretized without

major difficulties, thus leading the parametric solution in the separated form

u(r, s) ≈
M∑
i=1

Ri(r)Si(s). (37)
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Figure 9: Temperature u(x, y, Lz/2).

3.3.1. First numerical case

In this first numerical example we consider Q = 50 with the thermal

conductivity K(x;X) expressed form:

K(x;X) =

 5 if x ∈ [X − l/2, X + l/2],

1 if x ∈ [0, X − l/2] ∪ [X + l/2, L],
(38)

and homogeneous boundary conditions, u(x = 0) = 0 and u(x = L) = 0.

Meshes contained 1500 and 100 nodes along the s− and r−domains, re-

spectively. The parametric solution u(r, s), and consequently its counterpart

u(x,X), were obtained in less than 1s again by making use of a standard

laptop, with a reduction factor of 30 with respect to the 100 1D calculations

needed for computing the equivalent parametric temperature field, one for

each of the 100 discrete positions of the inclusion. Of course, when increasing

the problem dimensionality (2D or 3D) the computing time savings are much

higher. The constructed separated representation involves M = 10 modes.

Figure 12 depicts the PGD solution of the problem while Fig. 13 illus-

trates the one related to the solution of the 100 1D problems. A maximum

relative error of 0.7% was found. The maximum error localizes around the
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Figure 10: 3D solution representation in the plate domain of dimension 1× 10−3 × 1 m3.

r

sx

X

h1(X)

h2(X)

hg

1

2

3

Figure 11: The geometrical transformation depicted in Eq.(36)

bottom left and top right corners, where the mapping exhibits the largest

gradients.

It is worth noting, with respect to the discussion addressed in previous

sections, that if we try, as discussed in [13], to proceed by separating the

thermal conductivity K(x,X) according to

K(x,X) ≈
K∑
i=1

Fi(x)Gi(X), (39)

by invoking the SVD, the parametric solution u(x,X) directly constructed in

the domain Ω involves M = 97 modes, and requires 10 times more computing

time.
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Figure 12: First numerical example: Parametric solution u(x,X) computed by using the

separated representation constructor operating on mapped domain R.

3.3.2. Second numerical case

In order to better emphasizing the effect of the inclusion, we consider

Q = 0, the thermal conductivity expressed now from

K(x;X) =

 1 if x ∈ [X − l/2, X + l/2],

5 if x ∈ [0, X − l/2] ∪ [X + l/2, L],
(40)

and the boundary conditions, u(x = 0) = 0 and u(x = L) = 25.

The computational performance is almost the same as the previous nu-

merical example. Figure 14 depicts the PGD solution of the problem while

Fig. 15 illustrates the one related to the solution of the 100 1D problems.

Again a maximum relative error of 0.7% is found, in the regions where the

mapping gradients are larger.

3.4. Thermal source moving along a one-dimensional domain

In this example, we consider L = 1m and the thermal source location

X defined in X ∈ Ω = [0.035L, 0.965L]. X thus depends on the time from
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Figure 13: First numerical example: Solution for the different inclusion positions, u(x;Xi),

i = 1, · · · , 100.

X = x0 + νt. In this example, the thermal source velocity ν corresponds to

a movement from X = 0.035L to X = 0.965L in 1s., leading to x0 = 0.035

and ν = 0.93. The parametric weak form reads∫
Ω×I

u∗
∂u

∂t
+
∂u∗

∂x
k
∂u

∂x
dxdt =

∫
Ω×I

f(x, t)dxdt, (41)

where I represents the considered time interval.

The source location and the geometrical construction is depicted in Fig.

16. The relation between time t and source location X writes

t =
(X − x0)

ν
. (42)

From Fig. 16, the heat source can be easily defined from:
h1(X) = X − hg

2
,

hg(X) = L
20
,

h2(X) = L− hg
2
−X.

(43)
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Figure 14: Second numerical example: Parametric solution u(x,X) computed by using

the separated representation constructor operating on mapped domain R.

We define a new mapping:

For s ∈ [0, 1]

 X = x0 + νt,

x = sh1(X),

For s ∈ [1, 2]

 X = x0 + νt,

x = (s− 1)hg + h1(X),

For s ∈ [2, 3]

 X = x0 + νt,

x = (s− 2)h2(X) + hg + h1(X),

(44)

that allows transforming the problem weak form into the reference (physical)

space (x,X).

In the numerical solution, we assume the uniform source f = 1 defined

between h1 and h2 as depicted in Fig. 16. The heat source term f(x, t) in

the actual domain is shown in Fig. 17, associated to the one in the reference

domain depicted in Fig. 18 for the apparent source intensity fapp = f hg
ν

.

The considered mesh consisted of 600 nodes along the s coordinate and 300
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Figure 15: Second numerical example: Solution for the different inclusion positions,

u(x;Xi), i = 1, · · · , 100.

in the X domain. The PGD solution converged after 1.18s and consisted

of 15 modes, reducing the residual more than 3 orders of magnitude. The

solution in the reference domain (X, s) is shown in Fig. 19, whereas the one

in the actual domain (x, t) is depicted in Fig. 20.

The same problem was solved using the standard PGD procedure. First

the source term was expressed in a space-time separated form by invoking

the SVD. Because its poor separability, many modes were required, with the

eigenvalues involved in the SVD decomposition decreasing very slowly. Then,

the standard rank-one greedy algorithm computed the temperature solution.

However, its poor separability required again more than 100 modes and more

than 50 seconds calculation to find a solution that exhibits small oscillations.
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Figure 16: Heat source in the (x,X) physical space

Figure 17: The heat source in the actual domain (X, s)
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Figure 18: The heat source in the reference domain (s, t)

Figure 19: Temperature in the reference domain (X, s)
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Figure 20: Temperature in the actual domain (x, t)

4. Conclusions

In this paper we addressed the space separation in layered domains Ω

where interfaces are not planar (or, even being planar, are not parallel with

respect to the in-plane-coordinate). In these circumstances, former works

stressed that space-separated representations lose their expected effective-

ness. In fact, that conclusion was derived from the fact that these geometries

involved too many terms in the material property-separated representations

when invoking the SVD or its high order counterpart, the so-called HOSVD

[18]. In these circumstances, the separated representation constructor con-

verges too slowly, with the subsequent impact on accuracy and computational

efficiency.

In this work we proved that when the domain Ω is mapped into a fully

separable one R standard separated constructors recover their efficiency, as

the numerical results here described and discussed proved.
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The technique here proposed opens numerous possibilities, such as the

flow in thin ducts with rough surfaces, where fully 3D discretization fails,

whereas the use of separated representations can lead to levels of resolution

never attained before.
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scale computational method and the proper generalized decomposition.

Computer Methods in Applied Mechanics and Engineering 199(21-22),

1287-1296, 2010.

[21] A. Leygue, F. Chinesta, M. Beringhier, T.L. Nguyen, J.C. Grandidier,

F. Pasavento, B. Schrefler. Towards a framework for non-linear thermal

models in shell domains. International Journal of Numerical Methods

for Heat and Fluid Flow, 23(1), 55-73, 2013.

[22] S. Metoui, E. Pruliere, A. Ammar, F. Dau, I. Iordanoff. The proper gen-

eralized decomposition for the simulation of delamination using cohesive

zone model. International Journal for Numerical Methods in Engineer-

ing, 99(13), 1000-1022, 2014.

[23] S. Perotto, M.G. Carlino, F. Ballarin. Model reduction by separa-

tion of variables: a comparison between Hierarchical Model reduc-

tion and Proper Generalized Decomposition, 2018, arXiv preprint

arXiv:1811.11486.

[24] E Pruliere. 3D simulation of laminated shell structures using the Proper

Generalized Decomposition. Composite Structures 117, 373-381, 2014.

[25] R. Reyes, R. Codina, J. Baiges, S. Idelsohn. Reduced order models for

thermally coupled low Mach flows. Advanced Modeling and Simulation

in Engineering Sciences , 2018, 5:1, 28.

[26] J.P. Senecal, W. Ji. Characterization of the proper generalized decom-

position method for fixed-source diffusion problems. Annals of Nuclear

Energy, 126, 68-83, 2019.

31



[27] H. Tertrais, R. Ibanez, A. Barasinski, Ch. Ghnatios, F. Chinesta. On the

Proper Generalized Decomposition applied to microwave processes in-

volving multilayered components. Mathematics and Computers in Sim-

ulation, 156, 347-363, 2019.

[28] P. Vidal, L. Gallimard, O. Polit. Composite beam finite element based on

the Proper Generalized Decomposition. Computers & Structures, 102,

76-86, 2012.

[29] P. Vidal, L. Gallimard, O. Polit. Proper Generalized Decomposition

and layer-wise approach for the modeling of composite plate structures.

International Journal of Solids and Structures, 50(14-15), 2239-2250,

2013.

[30] P. Vidal, L. Gallimard, O. Polit. Explicit solutions for the modeling of

laminated composite plates with arbitrary stacking sequences Compos-

ites Part B - Engineering, 60, 697-706, 2014.

[31] P. Vidal, L. Gallimard, O. Polit. Shell finite element based on the Proper

Generalized Decomposition for the modeling of cylindrical composite

structures. Computer & Structures, 132, 1-11, 2014.

[32] P. Vidal, L. Gallimard, O. Polit. Assessment of variable separation for fi-

nite element modeling of free edge effect for composite plates Composite

Structures, 123,19-29, 2015.

32


	1 Introduction
	1.1 Space separation
	1.2 Paper outline

	2 Domain mapping
	3 Numerical examples
	3.1 2D domains with non separable interface
	3.1.1 Parabolic interphase
	3.1.2 Wavy boundary

	3.2 Three-dimensional layered domain with an inclined flat interface
	3.3 Parametric inclusion
	3.3.1 First numerical case
	3.3.2 Second numerical case

	3.4 Thermal source moving along a one-dimensional domain

	4 Conclusions

