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Summary

It is well known that model order reduction techniques that project the solution
of the problem at hand onto a low-dimensional subspace present difficulties when
this solution lies on a non-linear manifold. To overcome these difficulties—notably,
an undesirable increase in the number of required modes in the solution—several
solutions have been suggested. Among themwe can cite the use of non-linear dimen-
sionality reduction techniques or, alternatively, the employ of linear local reduced
order approaches. These last approaches usually present the difficulty of ensuring
continuity between these local models. Here, a new method is presented that ensures
this continuity by resorting to the paradigm of the partition of unity, while employing
Proper Generalized Decompositions at each local patch.
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1 INTRODUCTION

The finite element method is the ubiquitous technique for the approximation of partial differential equations (PDE). Its generality
has led it to succeed in many areas of engineering interest. However, when real time or many-query applications are envisaged,
it is well known to be a technique somewhat slow. In recent years, model order reduction (MOR) techniques have shown that a
minimum number of carefully-chosen degrees of freedommay be enough for an accurate solution of these same PDE. Instead of
choosing general-purpose piecewise polynomials as basis functions, MOR techniques construct ad hoc basis functions following
different techniques. For instance, Proper Orthogonal Decomposition (POD)1,2,3,4,5 constructs an efficient basis from a set of
precomputed snapshots of the full-order PDE solution,

u(x, t) =
N
∑

i=1
�i(t)�i(x), (1)

where, very much like in the finite element context, �i are a set of time-dependent coefficients that evolve in time, and �i(x)
are time-independent basis functions obtained by some algebraic treatment of the system snapshots. For instance, many MOR
techniques employ the most energetic eigenfunctions of the snapshot autocorrelation matrix to construct these �i(x). These play
a similar role to the finite element shape functions, albeit they are global instead of local. Other techniques, such as Reduced
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Basis methods, for instance6 7 8, employ some snapshots of the full-order solution as basis for the approximate solution of the
system. These snapshots are calculated in a greedy fashion, at time (or parameter) instants at which the error in the approximation
is maximal.
It is important to note that Eq. (1) constitutes in fact a separated expression of the solution—note the space-time separation,

which also holds in finite element approximations—. Assuming this separate or affine decomposition of the solution is also on
the origin of another family of MOR techniques coined as Proper Generalized Decomposition (PGD)9 10 11 12. These methods
compute the basis function on the fly, that is to say, by means of a greedy algorithm that enriches successively the basis until
the desired precision is achieved. This methodology has proven to be very effective for a wide variety of high dimensional
problems ranging from the resolution of Fokker-Planck equation13, to patient-specific liver responses14 15, structural dynamics16,
computational rheology17 or, more generally, to any parametric problem that could be written in separate form13.
There are situations, however, when the solution is highly non-separable. In other words, the solution of the problem lives on

a non-linear manifold. In this situation, what MOR techniques do is to project the solution on the tangent space to the manifold
at a given (time or parameter) point18. This leads to poor approximation properties far from the tangency point, unless special
techniques are chosen, as in19, for instance, where asymptotic expansions were used.
A way to alleviate this problem is to follow the same philosophy than non-linear-dimensionality reduction methods. For

instance, Locally-Linear-Embedding (LLE)20 tries to unveil the latent variables by means of imposing a local linear variation on
the function, which will change from neighborhood to neighborhood. Another technique which deals with non-linear problems
is the so-called kernel Principal Component Analysis (k-PCA)21. In this particular case, the definition of an efficient kernel
function allows to project the snapshots to high dimensional spaces (potentially, infinite dimensional) in which the solution
manifold is flat. In this particular situation, standard interpolation techniques work well.
A. Badías et al.22 studied the case of a moving source in a transient heat transfer problem. The problem of the non-separability

of the solution was circumvented by means of making a partition of the time domain, dedicating a different PGD for each
partition. However, the imposition of the interface conditions will become a tedious task when dealing with partitions involving
variables other than time.
The main objective of this paper is to develop a generalized PGD formulation in which continuity between subdomains is

guaranteed. This will be achieved by resorting to the Partition of Unity (PU) paradigm23 24. By employing the partition of unity,
continuity of the solution is guaranteed if the chosen PU is continuous. This will allow us to glue different PGD approximations
defined at particular regions of the space, time or parameter spaces, thus ensuring a global solution with a minimum of degrees
of freedom.
The structure of the paper is organized as follows: the second section depicts the general aspects of the proposed methodol-

ogy, the third section shows the capability of the method to approximate highly non-linear functions, the fourth section shows
applications for different PDEs from fully diffusive to transient equations. The fifth section will be devoted to the conclusions.
All details related to the variational form will be given in the appendix.

2 BASICS OF THE METHOD

The method here proposed is based, as mentioned earlier, in the application of the Partition of Unity (PU) paradigm23 24. In
essence, the PUmethod states that, given a collection of non-overlapping patches defined over the domainΩ,Ωi, i = 1,… , npatch,
a partition of unity 'i defined on these patches (i.e.,

∑

i 'i = 1 everywhere in the domain), and function spaces Vi, associated
to each patch, the approximation obtained by

V =
npatch
∑

i=1
'iVi

inherits the approximation properties of the spaces Vi and the continuity properties of 'i.
For the sake of simplicity but without loosing generality, the local PGD method here presented is illustrated by starting with

a weak form related to a general two-dimensional PDE

(u∗(x, y), u(x, y);�) =  (u∗(x, y), f (x, y)) in Ω.



Rubén Ibáñez ET AL 3

Normally, solving the weak form (2) requires an approximation space for the essential variable u(x, y) and its associated
variation u∗(x, y). The classical finite element approximation,

u(x, y) =
∑

i∈
Ni(x, y)ui

where  is the entire set of shape functions defined over the integration domain, Ω, satisfies the partition of unity and linear
consistency properties,

∑

i∈
Ni(x, y) = 1, ∀ x, y ∈ Ω,

∑

i∈
Ni(x, y)xi = x, ∀ x, y ∈ Ω,

∑

i∈
Ni(x, y)yi = y, ∀ x, y ∈ Ω.

The main ingredient of the method here proposed is the combination of the finite element shape functions, Ni(x, y), as an
example of very convenient partition of unity, enriched with low rank PGD approximations. Therefore, each degree of freedom
ui associated to the FEM shape function Ni(x, y) will be enriched with a PGD approximation, aiming to capture the details of
the solution which are not captured by the standard low-order FE meshes. Therefore, the approximation of the solution will read

u(x, y) =
∑

i∈
Ni(x, y)

M
∑

k=1
Xi
k(x)Y

i
k(y),

where Xi
k(x) and Y

i
k(x) functions are the k-th one-dimensional modes related to the i-th PGD.

Several approaches can be adopted to define the trial function. In this particular case, a Bubnov-Galerkin projection is selected.
Hence, the same approximating space is chosen for u(x, y) and u∗(x, y),

u∗(x, y) =
∑

i∈
Ni(x, y)

(

Xi∗
M (x)Y

i
M (y) +X

i
M (x)Y

i∗
M (y)

)

. (2)

It is worth noting the greedy nature of the PGD algorithm, since the variation only takes into account the last,M-th, PGD
mode. Previous modes are considered as known, and therefore do not appear in Eq. (2). Furthermore, a non-linear problem,
which has been created due to the separation of variables—note that we solve for a pair of functions, XM , YM—, is solved
using an alternate direction scheme. Conceptually speaking, it is not necessary to have the same number of modes,M , for each
macro shape function in . A possible strategy would be to stop enriching with new modes in areas where the residual of the
equation is low enough. In this first work, all PGDs are enriched with the same number of modes, M , as the main focus is
placed on the methodology itself and proving that combining different PGDs within a continuous framework could be useful to
obtain separated solutions in complex scenarios where standard PGD performance is decimated. Indeed, the definition of mode
adopted herein is the number of separated functions (1 per element in the set ) that has to be given to the macro partition to
reproduce the solution. In other words, the number of modes equals toM . It is also important to reckon that the size of the mode
will increase according to the number of elements in , since the mode involves as many separated functions per direction as
number of degrees of freedom in .
The properties of the method will change depending on the way finite element shape functions are defined. Fig. 1 exemplifies

the partition when piecewise constant shape functions are used. As it can be seen, no overlapping between different PGDs exists.
Therefore, extra effort has to be done to set proper interface conditions along the red lines appearing in the same figure. This
situation would be equivalent to the method described in22. This is in sharp contrast with the purely additive approach to couple
FE and PGD proposed in25 or in26, for instance. In that case, the method resembled the s-version of the FEM27 or the multiscale
FEM proposed by Rank and coworkers28. In that case, a single PGD approximation was enriched by FE in order to capture high-
gradient details of the solution, that usually provoke an increase in the number of PGDmodes. Here, on the contrary, we develop
an approximation by means of multiple PGD approximations, glued together by means of the Partition of Unity paradigm. We
have coined this method the PU -PGD.
Fig. 2 depicts a piecewise linear partition of the domain. As it can be noticed, a quadrilateral element has contributions

coming from four different PGDs. The coupling conditions between different PGDs are automatically taken into account in the
elemental contributions. Indeed, this kind of partition imposes a smooth transition between PGDs, which vary continuously
along the domain in accordance with the partition of the domain.
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FIGURE 1 Left, piecewise constant FE approximation. Center, domain of influence of i-th PGD. Right, domain of influence
of k-th PGD. As can be noticed, no overlapping exists between different PGD approximations.

FIGURE 2 Left, piecewise linear partition of unity. Center, domain of influence of i-th PGD. Right, domain of influence of
k-th PGD.

It is worth mentioning that the full potential of PGD approximation resides in the capability of writing the integral form in a
separated manner. By doing that, all integrals in a high dimensional space will be split into a product of integrals related to each
one of the subspaces. For the sake of simplicity, we will assume that the shape functions Ni(x, y) are exactly separable in one
single mode

Ni(x, y) = Nx
i (x)N

y
i (y).

It is important to notice that this will be the case, for instance, of 2D quadrilateral elements with straight and parallel sides.
Even though this assumption may be seen as a limitation, it is important to notice that there are some variables such as time

or parameters, that naturally admit cartesian decompositions. Therefore, when dealing with a complex spatial geometry that
evolves in time, a smart partition would be to keep the space variable as is. Nevertheless, this very first work is meant to provide
an insight of the method, thus, all results presented in the sequel will be related to piecewise linear FE shape functions based on
squared elements.

3 PU -PGD FOR APPROXIMATION PROBLEMS

3.1 Basics of the method
In this section, we analyze the capability of the proposed methodology in approximation problems of the form

∫
Ω

u∗(x, y) (u(x, y) − f (x, y)) dΩ = 0, (3)
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FIGURE 3 In the case of bi-linear finite elements, there is one PGD enrichment per node.

where a function f (x, y) is to be approximated in an PU -PGD framework. As it can be noticed, there are no partial derivatives
involved in this type of problems. Instead just a compact expression of the function f (x, y) is sought. It is important to highlight
that continuity is not a requirement, given the fact that no differential equation is involved this particular case. Indeed, considering
a discontinuous approximation space with a much more local procedure will provide better results if the function to be captured
presents high gradients or even discontinuities. However, this very first example is included as an initial point to illustrate the
continuous approach which is mandatory to solve PDEs.
Following the spirit of standard finite element approximation, the integral over the entire domain Ω is split into a sum of

integrals for each one of the finite elements Ωe appearing in the domain. Recall that piecewise bi-linear shape functions present
contributions from four different PGDs per element (one for each corner), as shown in Fig. 3 .
It is important to notice that the i-th PGD, thanks to the partition of unity, affects the support of each finite element node, and

thus four elements in a regular lattice.
Omitting the dependence with respect to space variables, x and y, and thanks to the separability of the FE shape function (if

defined in a regular lattice as a tensorial product of one-dimensional functions), the first term in the integral form of Eq. (3)
particularized for a element Ωe reads

∫
Ωe

u∗udxdy =
4
∑

i=1

4
∑

j=1
∫
Ωe

Nx
i N

y
i
(

Xi
MY

i
M

)∗
(

Nx
jN

y
j

M
∑

k=1
Xj
kY

j
k

)

dxdy.

The next step is to split the 2D integral form into a tensorial product of 1D integrals as

∫
Ωe

u∗udxdy

=
4
∑

i=1

4
∑

j=1

M
∑

k=1
∫
x

Xi∗
MN

x
i N

x
j X

j
kdx∫

y

Y iMN
y
i N

y
j Y

j
k dy +

4
∑

i=1

4
∑

j=1

M
∑

k=1
∫
x

Xi
MN

x
i N

x
j X

j
kdx∫

y

Y i∗MN
y
i N

y
j Y

j
k dy. (4)

As can be noticed, the variation along the x direction shares all the operators with the variation along the y direction. Indeed,
this property arises naturally from the alternate directions scheme that is used to solve the non-linear system of the PGD.
With the source term f (x, y) expressed in a separated format (e.g., by invoking the SVD) as

f (x, y) =
Z
∑

z=1
f xz (x)f

y
z (y),

the right hand side term appearing in Eq. (3) reads

∫
Ωe

u∗fdxdy =
4
∑

i=1

Z
∑

z=1
∫
x

Xi∗
MN

x
i f

x
z dx∫

y

Y iMN
y
i f

y
z dy +

4
∑

i=1

Z
∑

z=1
∫
x

Xi
MN

x
i f

x
z dx∫

y

Y i∗MN
y
i f

y
z dy,

for x and y systems respectively.
Once more, all operators related to the integration of the source term can be precomputed off-line as

"izx = ∫
x

Xi
MN

x
i f

x
z dx,
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FIGURE 4 Left, 3D view of f1(x, y). Right, top view of f1(x, y).

"izy = ∫
y

Y iMN
y
i f

y
z dy.

3.2 A preliminar example
Let us illustrate the methodology by analyzing a highly non separable function,

f1(x, y) =
10

�
√

2�
e−

(x−(vy+x0))
2

2�2 ,

where � = 0.05, v = 0.5 and x0 = 0.2.
Fig. 4 depicts the resulting u(x, y) = f1(x, y) scalar field from different perspectives. As it can be seen, the source term

is going through the diagonal of the domain, generating a highly non-separable function. Indeed, a standard PGD algorithm
encounters many problems to capture such kind of solution.
Two different partitions of the domain have been tested, as shown in Fig. 5 . Along the right and left sides of the domain no

enrichment is added to the FE approximation since the sought solution is already zero along this boundary. It is important to
reckon that right and left sides of the domain could have been enriched, since no boundary conditions need to be imposed in
this approximation problem. However, the fact that compatible boundary conditions, (i.e., zero along the right and left sides)
can be imposed was used as a validation point for the next numerical examples involving PDEs. The elements are colored in
accordance with the number of active PGDs acting in each element.
Fig. 6 shows the reconstructed solution using 4 modes per local PGD, when the domain has 8 active PGDs (left) and 24

PGDs (right). As it can be seen, even though both approximations capture the main features of the solution, the solution using
24 PGDs is slightly better than the one with 8 PGDs.
Fig. 7 shows the convergence error for the approximation of f1(x, y). The relative error is measured as

m =
||uref − um||

||uref ||
,

where um is the reconstructed solution using m modes. uref represents the ground truth. As can be noticed, singular value
decomposition (SVD) method suffers from separating this kind of solutions, having a slow decay of the relative error with
respect to the number of modes. As it is well-known from the literature, standard PGD in two dimensions is exactly equivalent to
SVD when an identity operator is employed (the so-called PGD in approximation29 30). On the other hand, using the PU -PGD
algorithm the relative error decays much faster than the one related to standard SVD or PGD approximations.
It is important to notice that the more a domain is partitioned the smaller the relative error is. This behavior is expected since

the smaller the elements are, the easier is to capture a local behavior. However, the price to pay is that the cost of computing one
mode per PGD will increase just like the storage cost as well. Certainly, systems solved in the fixed point iteration are not local
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FIGURE 5 Left, domain enriched with 8 PGDs. Right, domain enriched with 24 PGDs. Red points, centroid of each PGD. The
legend shows the number of PGD enrichments affecting each element.

FIGURE 6 Left, solution with 8 PGDs. Right, solution with 24 PGDs. Every PGD enrichment incorporates four modes.

due to the fact that macro shape functions are overlapped. If the macro partition involves # shape functions and each local PGD
is discretized using nx and ny degrees of freedom, the number of unknowns in each PGD fixed point are # ⋅ nx and # ⋅ ny for x
and y directions, respectively. Therefore, it is important to keep in mind that refining the macro mesh would reduce the number
of modesM to represent the solution, but it would also increase the computational cost for obtaining one mode. However, the
main focus of this work was to prove that the proposed methodology was able to obtain separated solutions in scenarios where
standard PGD performance was not good enough.

4 PU -PGD FOR THE SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

The aim of this section is to show the potential of the proposed methodology when applied to the solution of different PDEs.
We consider examples of increasing complexity. Therefore, the first test case is a pure diffusion equation. The second case is
a convection-reaction-diffusion equation. Finally, the last example relates to a transient thermal problem with a moving source
term. Even though the construction of the operators for each PDE follows the same trend than the ones presented in the PU -PGD
in approximation, further details are given in the appendix.
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FIGURE 7 Convergence error for the approximation problem. Comparison between SVD, standard PGD, and two different
local strategies.

FIGURE 8 Left, 3D view of u(x, y). Right, planar view of u(x, y) for the diffusion equation.

4.1 Diffusion PDE
We first consider the following weak form corresponding to a diffusion problem:

∫
Ω

�∇u∗ ⋅ ∇udxdy = ∫
Ω

u∗f1dxdy.

Vanishing Dirichlet boundary conditions are imposed on the entire boundary. The source term is equal to the function f1(x, y)
defined in the previous section and the diffusion parameter, �, is set to 1.
Fig. 8 depicts the reference u(x, y) scalar field for the diffusion equation from different perspectives. It has been obtained

with a 80 × 80 finite element discretization. As it can be seen, the solution diffuses the source term through the diagonal of the
domain.
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FIGURE 9 Left, problem solved with four PGDs. Right, problem solved with 16 PGDs. Red points represent finite element
nodes enriched with PGD. The legend represents the number of PGDs per element.

Two different PGD enrichments have been tested as shown in Fig. 9 . The PGD enrichments acting on top, bottom, left and
right sides are set to zero to be consistent with the problem statement where zero Dirichlet boundary conditions are imposed
along the entire boundary domain. The red points indicate the enriched nodal supports. The elements are colored in accordance
with the number of enriching PGDs. Elements on the corners have only one active PGD, whereas elements on the sides have
two active PGDs and interior elements have four active PGDs.
The reconstructed solution using four modes per PGD enrichment, when the domain has four active PGDs (left) and sixteen

PGDs (right) are in perfect visual agreement with the reference solution appearing in Fig.9 .
Fig. 10 shows the convergence error for the diffusive equation. As it can be noticed, all methods converge monotonically,

being the SVD the one that presents the slower convergence with respect the number of modes. Standard PGD shows a similar
convergence rate to SVD, as expected. Even if no formal proof exists of this behavior for operators other than the identity, this
is the observed rate for all the experiments considered so far. Finally, using the multi PGD algorithm presents a faster decay in
the relative error.

4.2 Convection-Reaction-Diffusion PDE
In this subsection a convection-reaction-diffusion equation is studied. Indeed, the major novelty is the introduction of the
convective term since it will involve a non-symmetric operator. The weak form related to the this equation is

∫
Ω

u∗v ⋅ ∇u + �∇u∗ ⋅ ∇u + �u∗u dxdy = ∫
Ω

u∗f2dxdy, (5)

where vanishing Dirichlet boundary conditions are considered on the entire boundary. The integration domain is Ω = [0, 1] ×
[0, 1]. The convective velocity field is assumed to be v = 500(y − 0.5, 0.5 − x)T . The reaction term is set to � = 10 and the
diffusion coefficient to � = 1. Regarding the source term, a Gaussian located in [x0, y0] = [0.75, 0.75] as

f2(x, y) =
800
√

2�
e−

(x−x0)
2+(y−y0)

2

0.005 ,

is considered.
Fig. 11 depicts the reference u(x, y) scalar field for the solution of Eq. (5)—computed by employing an 80 × 80 finite

element mesh, thus with no need for stabilization—from different perspectives. Note how the Gaussian source term is convected
circularly according to the prescribed velocity field. Moreover, the diffusion term makes the Gaussian to be smoothed along its
convection path.
The same partitions than in the diffusive case have been tested as shown in Fig. 9 , since also vanishing Dirichlet boundary

conditions are imposed along the entire boundary of the domain. Fig. 12 shows the reconstructed solution using 4 modes per
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FIGURE 10 Convergence error for the diffusion problem. Comparison between the number of modes provided by SVD,
standard PGD, and two different enrichment strategies considered so far.

FIGURE 11 Left, 3D view of the reference solution u(x, y). Right, planar view of u(x, y) for convection-reaction-diffusion
equation.

local PGD, when the problem has been approximated by four PGDs (left) and sixteen PGDs (right). Notice how the approxima-
tion related to four PGDs does not capture the solution well. Indeed, a higher number of modes will be needed to converge to
the reference solution. On the other hand, the solution involving 16 PGDs is in perfect accordance with the reference solution,
capturing all the features of the scalar field without any perceptible oscillation.
Fig. 13 shows the convergence of the relative error in logarithmic scale for the SVD and the two different partitions proposed

for the CDR equation. It can be clearly seen that the convergence related to the 4 PGD partition is the slowest one. Indeed,
this problematic is derived from the fact that the first PGD modes have to capture a highly non-linear behavior, meaning that
this partition will require a high amount of modes to converge to the real solution. On the other hand, the 16 PGD partition
convergence is quite fast compared with the other two methods.
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FIGURE 12 Solution of the convection-diffusion-reaction equation. Left, 4 PGDs. Right, 16 PGDs. Both solutions have four
modes per PGD.

FIGURE 13 Convergence plot for the convection-diffusion-reaction problem. Comparison between SVD, standard PGD, and
two different enrichment strategies.

4.3 Transient Heat Transfer Equation
This last example is devoted to the analysis of a transient 1D heat transfer problem, a test proposed by S. Idelsohn31 to verify
the compactness of different model order reduction techniques:

∫
Ω

u∗ )u
)t
+ � )u

∗

)x
)u∗

)x
dx dt = ∫

Ω

u∗f3dx dt,

where the diffusion coefficient is set to � = 0.01.
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FIGURE 14 Left, 3D view of u(x, t). Right, top view of u(x, t) for the transient heat transfer equation.

FIGURE 15 Left, problem solved with 6 PGDs. Right, problem solved with 20 PGDs. Red points represent the finite element
nodes that incorporate an enrichment. The legend indicates the number of PGDs per element.

The domain of study is Ω = Ωx × Ωt = [0, 1] × [0, 1]. The set of boundary conditions imposed for the field u(x, t) are
u(x, 0) = 0, u(0, t) = 0 and u(1, t) = 0. The source term f3(x, y) is

f3(x, t) =
10

�
√

2�
e−

(x−(vt+x0))
2

2�2 ,

where � = 0.05, v = 0.5 and x0 = 0.1.
Fig. 14 depicts the reference u(x, y) scalar field for the transient heat equation from different perspectives. Again, a 80 × 80

finite element mesh of bi-linear elements has been employed. This kind of PDE creates a boundary layer along the diagonal of
the space-time domain which is very hard to capture when using standard separate approximations like POD and classical PGD.
Two different enrichment strategies have been tested as shown in Fig. 15 . It is important to highlight that PGDs acting on

x = 0, x = 1 and t = 0 are set to zero to satisfy the null Dirichlet and initial boundary conditions in this portion of the boundary.
However, the PGD acting on the interior nodes of the line t = 1 are not set to zero. This fact is a direct consequence of the pure
convective behavior associated to the time variable. Indeed, the line t = 1 acts like an outflow boundary, thus, no condition
should be imposed there to ensure the well-possedness of the problem.
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FIGURE 16 Solution of the transient heat equation. Left, 6 PGDs. Right, 20 PGDs. Both solutions have four modes per PGD.

FIGURE 17 Convergence error for transient heat problem in logarithmic scale for different number of modes. Comparison
between SVD, standard PGD, and two different partitions of the domain.

Fig. 16 shows the reconstructed solution using four modes per local PGD, when the domain has six active PGDs (left)
and twenty PGDs (right). Notice how both approximations capture the main features of the reference solution. However, the
approximation with 6 active PGD presents small oscillations due to the lack of PGDmodes to converge to the reference solution.
Fig. 17 shows the convergence plot for the SVD and the two different enrichments proposed for the transient heat equation.

It can be stated that both partitions present a faster convergence than the SVD convergence. However, the convergence slope of
the PGD partitions tend to be flatter than the SVD one in the last part of the convergence plot.
To establish a fair comparison between the methods presented so far, it is interesting to perform a comparison on a per-degree-

of-freedom basis. Fig. 18 shows the convergence plot related to the transient thermal problem in which the standard PGD
approximation has the same degrees of freedom than the PU -PGD approximation. It is worth noting the fast convergence of the
PU -PGD, that comes from the fact that it takes advantage of the locality of the solution, avoiding problem of highly non-linear
global functions.
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FIGURE 18 Convergence plot for Idelsohn problem using different partitions of the domain. All approximations have the same
number of degrees of freedom.

5 DISCUSSION. FUTUREWORK

The method presented overcomes some of the most important limitations of standard PGD approximations. These, which are
indeed common to every model order reduction technique, are related to the non-linearity of the solution map. As in previous
works in the literature, an appealing strategy is to develop local approximations. This approach comes from the well-known fact
that a manifold is flat in the neighborhood of every point.
The local, multiple approximations here developed have shown to reconstruct the solution up to a certain tolerance by using

a moderate number of modes. However, as previously stated, the size of the mode will increase according to the macro partition
of the domain. Therefore, the choice of the macro partition constitutes one of the central keypoints of this approach. A macro
partition that minimizes the number of macro elements while it reduces the number of modes to represent the solution would
be the optimal one. Certainly, a possible future route is to mimic the element refinement in FEM, starting with a coarse macro
partition and perform only macro refinement in areas where the residual of the equation is high enough.
One drawback, however, of the proposed technique, is related to the curse of dimensionality in high-dimensional problems.

The PU -PGD approach introduces a mesh to construct the partition of unity. This may result in prohibitive computational costs
if the number of dimensions of the solution grows.
However, as in previous local approaches of PGD22, there is no need to partition every dimension into elements. Instead,

only those parameter interval of interest that cause the most non-linear response of the solution should be partitioned . Knowing
in advance the non-linear shape of the solution manifold is by no means straightforward. This constitutes our current effort of
research.
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APPENDIX

A ELEMENTAL OPERATORS

In this appendix we give exhaustive details about the construction of the operators required to make the PU -PGD approximation
for the different PDEs studied in the paper. Detailed information was given for the case of the PU -PGD in approximation.
Hence, further details will be shown related to the diffusive and convective terms.

A.1 Diffusive Operator
In this subsection a diffusion of a scalar field u(x, y) along the x direction is developed. The derivation for the diffusion along
the y direction follows similar guidelines. For the sake of simplicity but without loosing generality, we will also assume that a
new mode in the x direction is sought. Therefore, all variations related to the y direction are set to zero.
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It can be highlighted that four different contributions are appearing due to the application of the chain rule. Furthermore, all
terms appearing in the last part of Eq. (A1) present already a separated format.

A.2 Convective Operator
In this subsection a pure convection of a scalar field u(x, y) along the x direction is derived. It is important to notice that this case
is a particular case of a general convection given by the velocity field v, where a separated representation of the velocity field
would be required. The derivation for the convection along the y direction follows similar guidelines. For the sake of simplicity
but without loosing generality, we will also assume that a newmode in the x direction is desired. Therefore, all variations related
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to the y direction are set to zero.
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Once again all integrals appearing in the last part of Eq. (A2) are written already in a separated way, improving the efficiency
of the algorithm.
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