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Abstract

We present a method for the data-driven learning of physical phenomena

whose evolution in time depends on history terms. It is well known that a

Mori-Zwanzig-type projection produces a description of the physical phenom-

ena that depends on history, and also incorporates noise. If the data stream

is sampled from the projected Mori-Zwanzig manifold, the description of the

phenomenon will always depend on one or more unresolved variables, a priori

unknown, and will also incorporate noise.

The present work introduces a novel technique able to unveil the pres-

ence of such internal variables—although without giving it a precise physical

meaning—and to minimize the inherent noise. The method is based upon a

refinement of the scale at which the phenomenon is described by means of

kernel-PCA techniques. By learning the metriplectic form of the evolution

of the physics, the resulting approximation satisfies basic thermodynamic
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principles such as energy conservation and positive entropy production.

Examples are provided that show the potential of the method in both

discrete and continuum mechanics.

Keywords: Machine learning, Generalized Langevin Equation,

Mori-Zwanzig projection, history-dependent physics, GENERIC.

1. Introduction

Computational mechanics, as any other scientific discipline, could get

benefit from the widespread availability of data and the ease of transmission

through mobile networks. The different forms of machine learning allow, in

turn, to obtain knowledge from data. It is not uncommon, nowadays, that

even scientific principles can be unveiled in closed form from data without

any human intervention[1, 2].

In general, we are not even interested, when learning physical laws, in

obtaining closed form expressions. For instance, in Kirchdoerfer and Ortiz[3]

or Ayensa-Jimenez et al.,[4] raw data are employed to substitute constitutive

equations in solid mechanics. In these works, equilibrium and compatibil-

ity equations are considered in a traditional way, while constitutive laws are

substituted by the closest experimental strain-stress pair satisfying equilib-

rium and compatibility equations. Many other references have tackled this

promising way of employing data recently [5–8]. New concepts as the consti-

tutive manifold have arisen [9–11] Other approaches employ neural networks,

for instance [12–14].

A careful analysis of these different approaches reveals, however, some

problems not yet fully solved nor understood. One is the thermodynamic

admissibility of the resulting approximations to the physical phenomenon.

Of course, the unveiled structure of these approaches must fulfill basic ther-
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modynamic principles such as conservation of energy and entropy production

for isolated systems. Recently, the authors have suggested the employ of these

data-driven approaches so as to obtain, by regression, the GENERIC struc-

ture of the phenomenon at hand [15, 16]. GENERIC (an acronym for General

Equation for Non-Equilibrium Reversible-Irreversible Coupling[17, 18]) is a

completely general equation for the time evolution of a physical system out of

equilibrium. By obtaining the value of the terms in the GENERIC equation

from data, one can ensure the fulfillment of the laws of thermodynamics. In

addition, this approach gives rise to a thermodynamic interpretation of ma-

chine learning of physical laws that gives insight to the problem and greatly

contributes to its understanding. This interpretation has been developed by

the authors recently [19] and will be reviewed and adapted to the objectives

of this paper in Section 2 for completeness.

Another big problem in the development of data-driven approaches to

continuum mechanics lies in the presence of history-dependent phenomena.

Although some approaches to the problem exist [20] these are not completely

general nor satisfactory, since they involve the treatment of data in the form

of time series—trajectories in phase space.

A long tradition exists in the development of Generalized Langevin Equa-

tions (GLE) of phenomena for which micro-scale (usually molecular dynam-

ics) descriptions exist [21–25]. GLE appear after projections of fully resolved

data onto scales for which some details are skipped. This process is usually

known in the literature as a Mori-Zwanzig projection [26, 27].

Essentially, what Mori and Zwanzig said about coarse graining of physical

models is that the elimination of some degrees of freedom from the fully-

resolved description leads to an equation, the GLE, that includes an integral

term depending on time (history) and a noise term. The interested reader can

3



consult, among other references, the recent work by Venturi and collaborators

on the data-driven approximation of the MZ equation, and particularly, of

its memory term [28–32]. In general, in the above-cited references, starting

from the scale of molecular dynamics, where Newton laws apply, some form

of coarse graining is sought, by determining the form of the history kernel in

the GLE so as to avoid its integration in time.

Here, on the contrary, we assume that experiments are performed at a

scale where some form of history dependence is already present. Conse-

quently, also noise will be present in one form or another. These appear as

a consequence of eliminating relevant degrees of freedom in the phase space

of the problem. In continuum mechanics this problem has traditionally been

solved by the phenomenological establishment of internal variables. These

inform us about the unresolved degrees of freedom, as well as the history

dependence of the problem at hand.

However, in a purely data-driven and machine learning (thus, completely

unsupervised) approach, it is not evident how to determine which is the best

form for these internal variables, what is the true influence of history in the

problem and the effect of the inherent noise in the experiments. To give

insight about this problem, we rely on the thermodynamic interpretation of

the process of machine learning of physical phenomena established by the

authors [19]. This makes use, in turn, of the dynamical systems equivalence

of machine learning, a parallelism already present in some previous works

[33, 34].

This dynamical systems equivalence will be briefly revisited in Section

2, along with the GENERIC approach to the problem, which makes exten-

sive use of this equivalence. This will allow us to describe the problem in

thermodynamic and geometric terms. In Section 3 a toy problem will be
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employed to describe the approach here developed. This problem, however,

does not admit a GENERIC description, since it does not represent any phys-

ical process. The full methodology will be described in Section 4.1. Section

4.2 addresses this problem for the case of viscoelastic fluids, by taking the

Oldroyd-B model as a paradigm. The paper is completed with the usual

discussion in Section 5.

2. A dynamical systems approach to thermodynamically sound

machine learning

Some authors have employed a mathematical equivalence of machine

learning to dynamical systems [33, 34]. Assume that a set of measurements

have been performed on a group of variables at discrete time instants t. These

are stored in a vector ξ(t) ∈ Rd. Of course, we are interested in predicting

their time evolution,

ξ̇ = f(t, ξ), ξ(0) = ξ0.

Given some time horizon T , we are interested in determining the flow map

ξ0 → ξ(T, ξ0).

Under the prism of the so-called dynamical systems equivalence, machine

learning of the physics giving rise to the experimental measurements ξ(t, ξ0)

is equivalent to obtaining, by regression, the expression of the function f .

This can be done by employing neural networks or by more traditional tech-

nologies for the solution of inverse problems.

What is interesting about this way of seeing machine learning is the pos-

sibility of imposing certain properties to f . For instance, if for any reason

we know in advance that the physics under scrutiny conserves energy, we can

impose a Hamiltonian structure to the evolution dictated by f .
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In a general framework, however, we are not allowed to impose a priori

any conservative structure to the system. Instead, the authors have proposed

recently [15, 16] the employ of a more general description, coined as General

Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC)

[17, 18]. Under this prism, the evolution of the system will take the form

ξ̇t = L(ξt)∇E(ξt) +M (ξt)∇S(ξt), ξ(0) = ξ0, (1)

with L the so-called Poisson matrix, responsible for the reversible (Hamil-

tonian) part of the evolution of the system. E represents the energy of the

system, as a function of its particular state at time t, ξt. Dissipation is in-

troduced here by means of a second potential, entropy S. M represents the

friction matrix, responsible for the irreversible part of the evolution of the

system.

For this equation to represent valid physics, it must be supplemented by

the so-called degeneracy conditions:

L(ξ) · ∇S(ξ) = 0, (2a)

M (ξ) · ∇E(ξ) = 0. (2b)

These ensure the correct fulfillment of the first and second principles of ther-

modynamics, i.e., by the usual choice of L to be skew-symmetric and M to

be symmetric, semi-positive definite, we arrive at

Ė(ξ) = ∇E(ξ) · ξ̇ = ∇E(ξ) ·L(ξ)∇E(ξ) +∇E(ξ) ·M (ξ)∇S(ξ) = 0.

In other words, one ensures the conservation of energy in closed systems. In

the same spirit,

Ṡ(ξ) = ∇s(ξ) · ξ̇ = ∇S(ξ) ·L(ξ)∇E(ξ) +∇S(ξ) ·M(ξ)∇S(ξ) ≥ 0,

ensures the fulfillment of the second principle of thermodynamics.

6



Our approach to obtain thermodynamically consistent machine learning

procedures thus consists in solving the following regression (constrained to

the degeneracy conditions) within a time interval T :

µ∗ = {L,M,DE,DS} = arg min
µ

||ξ(µ)− ξmeas||, (3)

with ξmeas ⊆ Ξ, a subset of the total available experimental results. Here,

µ = {L,M,DE,DS} represent the sought parameters of the GENERIC model,

th numerical approximations to the Poisson matrix L, the friction matrix

M , the gradient of energy ∇E and the gradient of entropy, ∇S. These are

expressed in a piece-wise linear, finite element sense. The interested reader

can consult our previous works on the topic for more details [15, 16].

It is worth noting that both potentials, E and S depend of the chosen

level of description for the system at hand. If, for instance, one chooses

to obtain data from molecular dynamics simulations, where only Newtonian

mechanics apply and there is no dissipation, no entropy potential will be

necessary. This constitutes the most detailed level of description one could

think of. However, it must be readily coarse-grained, given the immense

amount of data it encompasses (position and momentum of every molecule

at each time step).

Eliminating some of these degrees of freedom and retaining others is done

by a Mori-Zwanzig projection, π. This results in the incorporation of noise

into the less-detailed description. And fluctuation is well known to be equiv-

alent to dissipation by the Nyquist theorem [35], thus justifying the need for

the entropy potential. A graphical interpretation of this is depicted in Fig.

1. At the end of this sequence of coarse-grained descriptions lies thermody-

namics, where only invariants are employed to describe the system and thus

no evolution equation exists. A related approach can be found in the work

by Wan et al. [36].
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Figure 1: Mori-Zwanzig projections give rise to a sequence of projections onto coarse-

grained descriptions of the system, i.e., from any detailed description whose manifold

structure is here represented byM, to a coarse-grained one, here represented by its man-

ifold structure N . For each one of these descriptions, a particular GENERIC structure

emerges, with distinct energy and entropy potentials.

The machine learning procedure is seen under this prism as a dissipative

process in which redundant data (think of position and momentum of the

molecules) is projected onto a coarse-grained manifold in which only relevant

information is manipulated [19]. But this projection π is in general not

bijective. In other words, multiple micro states give rise to the same macro

state. This is finally translated into fluctuation of the results and, finally,

into dissipation [37].

In the next Section we give further insight on the origin of the problem

and pave the way towards its solution.

3. How to learn internal variables from data

In this section we develop the basics of the proposed approach. We begin

by a succinct description of the effect of unresolved variables in the final
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description of the system. We then briefly describe kernel-PCA methods,

that play an essential role in the technique here developed.

3.1. An introductory example

We borrow a toy example first introduced by W. E [38]. Consider a

system whose dynamics is described by two degrees of freedom,

ẋ = A11x+ A12y, (4a)

ẏ = A21x+ A22y, (4b)

with x(0) = x0 and y(0) = y0. If we substitute y into Eq. (4a), we obtain

ẋ = A11x︸︷︷︸
Markovian

+A12

∫ t

0

eA22(t−s)A21x(s)ds︸ ︷︷ ︸
Non-Markovian

+A12e
A22ty0︸ ︷︷ ︸

Noise

, (5)

viz., a Markovian term, a non-Markovian one (thus depending on history)

and a third term that depends on y0 that can be interpreted as noise. This

is the Mori-Zwanzig formalism for a linear case [26, 27].

The phase space in which we parameterize the state of the system by

pairs z = (x, y) is represented in Fig. 1 by the manifold M. For this

simple example, D = 2. Imagine that, for any reason—such as technical

limitations or lack of knowledge—, we are allowed to sample only x-values,

and no information from y is available, even its mere existence. In that case,

we look for a description of the system on a reduced-order manifold akin

to N ⊂ Rd=1, in which there is only one degree of freedom instead of two:

ξ = x.

Performing measurements on N will provide a set of trajectories for x.

Here, we assumed that x0 = 0.5, y0 is uniformly distributed along [−1.2, 0.8]

and that A11 = 1.0, A12 = −0.3, A21 = −0.3, A22 = 0.0 . By performing 100

different measurements, we obtain 100 slightly different curves, represented
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Figure 2: Sampling of the time evolution of x. At each one of the one hundred samplings,

a different y0 is chosen—assuming a normal distribution—, thus giving the different tra-

jectories. In the absence of any knowledge about the existence of y, this produces the

apparent noise in the Mori-Zwanzig formalism.

in Fig. 2. Remember that we assumed that we are not allowed to perform

measurements on y.

The problem is thus established in the following terms: is it possible to

project back these trajectories to a manifold M∗ ⊂ RD∗>d, such that the

presence of an internal variable is detected? We do not aspire to project

these experimental results back to M, where D∗ = D, since we are not

aware of the existence of y. For the objectives of this work, it will be enough

to establish one or more internal variables that allow us to get rid of the

dependence on history and noise.

To achieve such a projection Z, see Fig. 2, we employ kernel-Principal

Component Analysis (k-PCA) techniques [39, 40]. These are reviewed next

for completeness. The reason for this choice is that k-PCA, a technique for

manifold learning, unveils the manifold structure of data by first projecting
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them to a high-dimensional space, where everything is linearly separable.

This property will be leveraged not to reduced order modeling of our data,

but to project them back to higher dimensional manifolds M.

3.2. A brief review of k-PCA

Despite of its name, k-PCA works, like multi-dimensional scaling, with

the matrix of pairwise scalar products, the Gram matrix S = ΞTΞ, where

Ξ, we recall, is the matrix of snapshots obtained by sampling N [41]. The

basic ingredient of k-PCA methods, however, is appealing: data not linearly

separable in d dimensions, could be linearly separated if previously projected

to a space in D > d dimensions. In a surprising strategy, k-PCA projects

data to an even higher dimensional space. To this end, a mapping

φ : N ⊂ Rd → RR, ξ → z = φ(ξ),

is employed, where R may be any dimension (even infinite). The true advan-

tage of k-PCA is that, in practice, there is no need to explicitly determine

the analytical expression of the mapping φ.

To do so, we need to decompose Φ = ZTZ, a matrix defined in RM×M ,

into eigenvalues and eigenvectors. M represents here the number of stored

snapshots zi, stored in a matrix Z. Previously, the mapped data zi involved

in Φ is centered. This centering process would be impossible without knowing

the mapping φ. However, it can be achieved in an implicit way through a

double centering.

The mean of the j-th column of Φ is denoted by µi(zi ·zj), and the mean

of its i-th row, in turn, µj(zi · zj). The mean of all entries of Φ will be

therefore µi,j(zi · zj). The double centering takes the form

zi · zj − µi(zi · zj)− µj(zi · zj) + µi,j(zi · zj).
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The spectral decomposition can be performed on the double centered

matrix, by computing

Φ = UΛUT ,

thus giving the reduced matrix

Υ = ID×MΛ1/2UT .

It is worth noting that, in contrast with multi-dimensional scaling, the

maximum number of strictly positive eigenvalues is not bounded by min(M,d),

but by min(M,R). This opens the possibility of using k-PCA to map data

to a higher-dimensional space, instead to a lower one, since R is usually very

big, even infinity.

In practice, the mapping φ is used exclusively to compute scalar prod-

ucts. If the images of the mapping belong to a high dimensional space,

these products will involve an enormous number of multiplications. To avoid

all these products, an even to compute the mapping φ, a kernel function κ

is employed instead, such that it gives the value of the scalar product by

κ(ξi, ξj) = zi · zj. This is possible thanks to Mercer’s theorem [39]. It es-

tablishes that, if κ(ξ,η) is continuous, symmetric and positive definite, then

it defines an inner-product in the mapped space. This property is known as

the “kernel trick” and is the principal ingredient of k-PCA that makes it so

interesting.

Among the different kernels that fulfill Mercer’s condition, we have

• Polynomial kernels: κ(ξ,η) = (ξ · η + 1)p, with p an arbitrary integer;

• Gaussian kernels: κ(ξ,η) = exp
(
−‖ξ−η‖

2

2σ2

)
for a real σ;

• Sigmoid kernels: κ(ξ,η) = tanh(ξ · η + b) for a real b.
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There is no particular reason to choose one kernel or another, but their

performance in the separation process. The final goal is that standard PCA

performed on the mapped data is able to efficiently separate the data.

This is the key ingredient of our technique: to map coarse-grained, exper-

imental results onto a high-dimensional manifold in dimension R � d and

then map back, via PCA, to a manifold M∗ ⊂ RD∗
, where D∗ ≥ D, the

exact manifold where the intrinsic variables are described.

The resulting procedure will look like a mapping from N to M, or at

least, to some approximation of it. We review its performance on the toy

example just introduced below.

3.3. Finding the intrinsic variable

Of course, we know that the different curves in Fig. 2 are due to the

existence of y, the intrinsic variable, and its different initial values y0, different

for each sampling. However, in the absence of any information on y, the

proposed method should be able to first unveil the existence of a hidden

variable, and to equip the experimental results with some topology, dictated

by y, so that we can interpolate among experimental results so as to obtain

our data-driven approach to the problem.

In Fig. 3 we show the result of the embedding of 100 different experiments

Ξ = {x1(ti),x2(ti), . . . ,x100(ti)}, i = 1, . . . , 5000, to a manifold in R3. Each

embedded result is plotted according to the y0 value with whom the experi-

mental x values were obtained. It is worth noting that this value is unknown,

but k-PCA is able to unveil it and, notably, to order the experimental points

according to this “hidden” value.

Even if we normally do not have access to the value of the intrinsic vari-

ables, like y0, it is extremely important to be able to determine the manifold

structure of the data, indicating in this case that a one dimensional arc-length
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Figure 3: After applying k-PCA to the set of 100 experimental results, mapping them

back to D=3, we observe that the technique is able to order the results, according to the

value of y0, represented in the color bar, even if it is unknown. The axis represent the

three first PCA embedding coordinates, whose physical meaning is not known, in general.

parameter s could be established along the manifold in Fig. 3.

In the following sections we analyze the performance of this technique on

two different problems, one discrete, and the second one, continuous.

4. Numerical examples

In this section we analyze two different examples. The first one is discrete,

a thermoelastic dissipative pendulum. The second one is continuous, the

analysis of a Couette (shear) flow in an Oldroyd-B fluid.

4.1. A first example: the double pendulum

4.1.1. Description of the numerical experiment

Consider the double pendulum, shown in Fig. 4. This system has a clear

Hamiltonian structure. However, let us imagine a situation in which we do

not have access to sampling the evolution of the first of the masses, m1. We

do not even know anything about its existence. Our current experimental
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setup only allows us to measure the position and momentum of the second

mass, q2 and p2 respectively.

m1

m2

Ca

Cb

Figure 4: The double pendulum.

Every experiment considered the same starting position and momentum

for the m2 mass—viz., q2 = (2.2, 0.0) and p2 = (1.0, 0.0). On the contrary,

since we can not control the initial conditions for the mass m1, we assumed

a uniform distribution on an interval ±0.02 around q1 = (1.0, 0.0) and p1 =

(0.0, 2.0). It is worth noting the small difference of the initial conditions of

these experiments, and the chaotic behavior of the pendulum.

In this situation, what we observe is that different measurements on the

trajectory of m2 give different results, something that, in the absence of any

other information, we interpret as noise, see Fig. 5.

This noise comes, obviously, from the different starting conditions (posi-

tion q1 and momentum p1) of the first mass for each different execution of

the experiment. Since we do not have access to this information, we observe

noise, as predicted by the Mori-Zwanzig theory.

4.1.2. Unveiling the existence of internal variables

Data series ξ(t) = {q2(t),p2(t)} coming from 80 different experiments are

projected, thanks to k-PCA, to R8. Of course, here we leverage our a priori
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Figure 5: Results for 80 different experiments in which the position of the second mass,

q2 = (x2, y2) is measured. Note the high degree of noise in the results.

knowledge on the true dimensionality of the problem, whose microscopic

state is exactly described in R8. In other words, describing the pendulum by

taking z = {q1, q2,p1,p2} ∈ R8 gives a Hamiltonian structure in which no

dissipative character is found. By suppressing any of these variables from the

phase portrait, an apparent noise appears (as in Fig. 5) and this fluctuation

in the results is equivalent to dissipation—by the well-known fluctuation-

dissipation theorem—. In this last case, the addition of a second potential—

entropy, see Eq. (1)—is mandatory to describe the system accurately. The

result of this projection can not, for obvious reasons, be represented here.

4.1.3. Learned behavior

Once the proposed technique has been able to detect the existence of

hidden or internal variables, we are in the position of reconstructing any new

experiment.

The GENERIC structure of each one of the 80 different experiments has

been obtained by regression, as explained in Eq. (3). The corresponding
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structure for the new experiment is then interpolated from these 80 results.

Of course, this interpolation is made on the data manifold. As in LLE, for

instance, we assume a certain number of neighbors for each datum (5 in

this case) [42]. For each data point zm we can write the locally linear data

reconstruction as:

zm =
∑
i∈Sm

Wmiz
i, (6)

where Wmi are the unknown weights and Sm the set of the 5-nearest neighbors

of zm.

As the same weights appears in different locally linear reconstructions, the

best compromise is searched by looking for the weights, all them grouped in

vector W, that minimize the functional

F(W) =
M∑
m=1

∥∥∥∥∥zm −
M∑
i=1

Wmiz
i

∥∥∥∥∥
2

(7)

where here Wmi is zero if zi does not belong to the set of 5-nearest neighbors

of zm.

We compare three approaches to reconstruct the new experiment. In

the absence of any other information, what experimentalists usually do is to

compute the mean of the experimental measurements and fit the model from

it. Here, we obtained a mean GENERIC model for the results, by assuming

ξ = {q2,p2} ∈ R4. This is not, in general a good option, as will readily be

noticed. Instead, it is better to find the true neighboring experiments in this

space, and to interpolate the GENERIC structure of the experiment at hand

from them. We then compared these reconstructions to the one obtained by

performing an interpolation of GENERIC models in R6 and R8. Results are

depicted in Fig. 6.

It can be noticed how the proposed technique provides with predictions

several orders of magnitude more accurate than the standard experimental
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Figure 6: Reconstruction of a new experiment. Comparison among the result predicted by

a mean GENERIC model in R4—dashed black line—the one in R6, and the one obtained

in the appropriate phase space, i.e., R8—blue line—. The ground truth is represented by

the continuous red line.

procedures. In fact, the error, measured in 2-norm, is 1.80 % for the proposed

technique in R6, versus 35.22 % for the classical, mean GENERIC one. This

error decreases to 1.36% if the interpolation, still in R4, is performed among

the right neighboring experiments in the database. In addition, it is worth

noting that the proposed strategy is able to determine that, for a description

in R8, no entropy term in Eq. (1) is necessary, as expected. This means

that the resulting manifold is actually equivalent to the microscopic phase

space—it has, at least, the same number of dimensions—. In this case, the

error in the predicted trajectory resulted to be 1.603%. The ground truth

expression for this system has been obtained from [43].

What is noticeable about these results is that, regardless of the scale at

which the physics is to be represented, GENERIC provides the right frame-

work for a thermodynamically sound description. If the dissipative part of

the equation is found accurately, the physics will be described no matter

which scale is employed. This excludes, however, the standard experimental
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practice, that consists in computing the mean of the experimental results.

This practice is demonstrated to be nonsense and should be avoided.

4.2. A second example: viscoelastic fluids

In continuum mechanics, many models rely on a microscopic represen-

tative volume so as to achieve a multiscale description of their constitutive

equations. This is actually a way to look for a higher-dimensional consti-

tutive manifold in which the history and noise terms have less influence on

the results. Among these models, viscoelastic fluids presents many different

examples.

To show how the proposed technique works, we have chosen one of the

simplest viscoelastic fluid models, the Oldroyd-B model [44]. This a very

particular model, that can be obtained by starting from the stochastic de-

scription of a suspension of linear elastic dumbbells, or by continuum con-

siderations [45].

4.2.1. The Oldroyd-B model

The Oldroyd-B model can be seen as arising from considering the devia-

toric part T of the stress tensor σ (the so-called extra-stress tensor), of the

from

T + λ1

∇
T= η0

(
γ̇ + λ2

∇
γ̇

)
, (8)

where the triangle denotes Oldroyd’s upper-convected derivative [46]. Coef-

ficients η0, λ1 and λ2 are material constants. γ̇ = (∇sv) = D represents the

strain rate tensor. v represents the velocity field in the fluid. ∇sv stands

here for the symmetric part of the gradient operator.

By considering the stress in the solvent (denoted by a subscript s) and

polymer (denoted by a subscript p) components as

T = ηsγ̇ + τ ,

19



we obtain

τ + λ1
∇
τ= ηpγ̇,

which is the constitutive equation for the elastic stress.

As mentioned before, an alternative derivation can be obtained by start-

ing from a population of linear dumbbells immersed in a Newtonian fluid

[44]. In that case, the model relies on the microscopic description of the

state of the dumbbells [47]. In this case, a particularly useful choice is to

base the microscopic description on the evolution of the conformation tensor

c = 〈rr〉, or, in other words, the second moment of the dumbbell end-to-end

distance distribution function. This tensor is in general not experimentally

measurable and plays the role of an internal variable.

In this case, the extra-stress tensor results to be proportional to the con-

vective (or Oldroyd) derivative of the conformation tensor,

τ = − n

2ζ12

∇
c .

4.2.2. Model problem

We consider, as a model problem, the startup of shear (Couette) flow.

The evolution of the velocity profile of this flow is shown in Fig. 7. As

we did in previous examples, we are going to perform different numerical

experiments with different values of the variable c(t = 0) so as to determine

under what circumstances the proposed strategy is able to unveil its influence

in the model.

The problem is solved by the so-called CONNFFESSIT technique [48]. In

it, the probability of finding a dumbbell at a given position in the fluid x, at a

given time instant t, is governed by the corresponding Fokker-Plank equation

[45]. Given its inherent high dimensionality, this Fokker-Plank equation is

20



0 0.2 0.4 0.6 0.8 1

Velocity

0

0.2

0.4

0.6

0.8

1

y

Figure 7: Evolution of the velocity profile at the startup of shear flow in an Oldroyd-B

fluid. The different lines represent the velocity profile at different time instants. Note

the overshoot in the profile, that tends to the linear profile, typical of a Couette flow, for

sufficiently large time. Velocity profile at every t = 0.01 seconds (t ∈ (0, 1.5]). Velocity is

imposed at the bottom plate, with h = 1.0 and vshear = 1.0.

solved advantageously by converting it in its corresponding Itô stochastic

differential equation,

drx(y, t) =

(
∂u

∂y
ry(t)−

1

2We
rx(y, t)

)
dt+

1√
We

dVt (9a)

dry(t) = − 1

2We
ry(t)dt+

1√
We

dWt, (9b)

where r = [rx, ry]
>, and where we have assumed a Couette flow, so that ry

depends solely on t, and not on y, We is the Weissemberg number and Vt,

Wt are two independent one-dimensional Brownian motions. This equation is

solved by Monte Carlo techniques, by replacing the mathematical expectation

by the empirical mean. A total of 10,000 dumbbells were considered at each

nodal location in the model, which is composed by 480 nodes along the 200

mm distance between plates, see Fig. 7. In this way, the expected stress (xy

component of the stress tensor) will be given by

τxy =
ε

We

1

K

K∑
k=1

rxry,
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where, as mentioned before, we have taken K = 10, 000 dumbbells, and

ε = ηp
ηs

represents the ratio of the polymer to solvent viscosities. For the

analyzed problem, Re= 0.1 and We= 0.1 numbers were considered.

4.2.3. Learning the model: unveiling the origin of noise

CONNFESSIT simulations usually take isotropic dumbbell distributions

to begin with. Here, however, we have performed up to 750 simulations by

starting from different conformation (and therefore also stress) tensors. Once

subjected to the analysis of k-PCA techniques, the resulting eigenvalues of

the data are shown in Fig. 8. Note in the detail of the figure that the three

first eigenvalues, whose value descends rapidly, are one order of magnitude

bigger than the following ones. This suggest the presence of three to six

dimensions more important than the others. Beyond the sixth eigenvalue,

they descend in a less pronounced way. This reasoning is of course qualitative,

and no definitive response exist for the estimation of the intrinsic dimension

of a manifold. There seems to be no other alternative to perform some

numerical experiments and to check the goodness of the results.

These differences in eigenvalues may not be so pronounced as in other

cases, but remember that, due to the Monte Carlo approach to the problem,

the stress tensor becomes in fact a stochastic variable, thus equipped with

some unavoidable noise.

We embed these experiments onto the space spanned by the first four

eigenvectors of the k-PCA. In Fig. 9 we plot the mentioned 750 experi-

ments on a three-dimensional plot, where a sphere-like manifold structure

is observed. This also suggests the validity of an embedding onto a three-

dimensional manifold.

The legend (and the color in the dots representing each experiment) in

Fig. 9 represents the value of the stress component τxy at the startup. We
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Figure 8: Eigenvalues of the sample covariance matrix for the Oldroyd-B problem.

notice that the results are very well clustered according to this value, even

if very similar results are obtained by plotting the xy component of the

conformation tensor, for instance or, less clearly, the value arctan(rx/ry) at

t = 0, for instance.

This fact suggests that, even if we can not measure it, the proposed

technique is able to infer that results depend on a variable other than the

macroscopic ones. This variable seems to live in a three- or four-dimensional

manifold (up to six dimensions have been considered with no apparent gain

in accuracy). The embedding in three dimensions shows good results (the

fourth dimension could be understood as the inherent noise in the simula-

tion). These three dimensions are interpreted by us as equivalent to the

three distinct components of the conformation tensor or the three distinct

components of the stress tensor.

For each one of these 750 simulations, a GENERIC model has been ob-

tained by regression, see Section 2. This constitutes the learning phase of
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Figure 9: Embedding of 750 Oldroyd-B results onto the space spanned by the first four

eigenvalues of the k-PCA. For obvious reasons, it is not possible to plot them in a three-

dimensional plot. Here, the first three coordinates of the resulting embedding have been

conserved. This also suggests that an embedding onto a three-dimensional manifold would

have provided similar results.

our method, in which we obtain a thermodynamic consistent representation

of these flows.

4.2.4. Learning the model: unveiling the dependence on history

The strain rate at which the experiment is performed is something that we

can control completely, to a great accuracy. And, of course, it will affect the

results by changing the history of the experiment—it plays the same role as

the non-Markovian term in Eq. (5)—. Up to 750 different experiments were

performed in which both the initial configuration of the dumbbells and the

shear rate were considered as random variables. The goal was to determine

if the proposed method is able to ascertain the influence of both, history and

noise, in the experimental results.
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As can be noticed from Fig. 10, results are now distributed on a manifold

that resembles the shape of the outer surface of a torus or ellipsoid. Moreover,

if we plot the embeddings attending to the initial state of the dumbbells or

the shear rate, respectively, we obtain that the experiments are correctly

clustered according to these values.

Note that, in a general situation, we will not have any information about

the nature of the found internal variables. Nevertheless, the suggested method

still provides with valuable information on the number of dimensions in which

the problem should be described, even in the absence of any physical inter-

pretation about the meaning of these coordinates.

4.2.5. Predictive capabilities of the method

But, of course, the goal of scientific learning is to be able to make predic-

tions about the future. Therefore, nothing in the above procedure would be

useful if we are not able to predict the evolution of an arbitrary Oldroyd-B

flow. The predictive capabilities of the method will thus be given by its abil-

ity to “learn” the GENERIC structure of an arbitrary flow, not considered

in the database.

Characterizing noise. To that end, we consider a new example, that starts

from a new configuration tensor, not considered before, in the first exper-

imental set—that obtained with constant shear rate—. This new flow is

denoted with a big black dot in Fig. 9. This allows us, in fact, to determine

which experimental results are “neighbors” of this new situation in the space

dictated by the k-PCA projection. In other words: which of the already

learned examples are the closest to this new one in terms of the hidden,

three-dimensional internal variable just found.

We employ again the strategy introduced in Section 4.1.3, by choosing
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(a) Embedding according to the initial dumbbell orientation. The legend

reflects the value of the τxy stress tensor component.

(b) Embedding according to the value of shear rate. In this case, the

legend reflects the value of the shear rate, γ̇. during the experiment.

Figure 10: Result of the embedding of 750 different experiments according to (a) the

noise due to the initial state of the dumbbell distribution and (b) the value of the shear

rate. Observe how in both cases the proposed method is able to unveil the existence of

the internal, hidden variables and, noteworthy, to suggest an embedding on a manifold of

the expected dimensionality. Both color plots suggest that the topology of the resulting

manifold could be parameterized by two coordinates, one in meridian and the other in

parallel directions. These coordinates, whose physical meaning is not provided by the

method, are identified by us as the conformation tensor and the shear rate.
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M = 3 neighbors. This value is of course a user parameter, as in many other

non-linear dimensionality reduction techniques [42]. The new GENERIC

model for the just considered flow will therefore be given by locally linear

interpolation of the neighboring GENERIC models, thus obtaining a totally

predictive and thermodynamically sound model for this problem.

It is worth noting that this new model takes into consideration the re-

solved variables considered in the original GENERIC models for the examples

in the experimental database, but also the dependence of the model on this

new, three-dimensional hidden or unresolved variables. So to speak, we have

increased the dimensionality of the description by learning the presence of

an internal variable.

The evolution in time of the velocity component vx for twelve nodes out

of the 480 of the mesh is shown in Fig. 11. The error in discrete 2-norm was

found to be between 2.24 and 4.3%, depending on the particular conditions

of the execution.

Effect of history. If we repeat the same strategy for the big dataset in which

we make vary both the initial condition (i.e., noise) and shear rate (thus

affecting history), we obtain similar accuracy levels. In this case, the dimen-

sion of the embedding space was augmented, and assumed to be six. This

is due, of course, to the expected increase on the true dimensionality of the

data, motivated by the dependence on the shear rate.

By taking again three neighbors for each experiments, a randomized new

experiment is reproduced with an error of 3.77% in discrete 2-norm.

5. Conclusions

While data-driven learning of physical laws possesses an inherent interest

for obvious reasons, it has lacked of a general theory about the right scale at
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Figure 11: Evolution in time of the velocity vx for twelve distinct nodes in the mesh.

The continuous red line represent the ground truth, obtained by direct numerical solution,

while the dashed line represents the learned GENERIC model for the flow.

which the data must be represented or analyzed. In sum, at what scale does

the resulting law should be written. It is well known that a coarse-grained

description of the results gives rise to the appearance of history-dependent

and noisy laws, while a very microscopic, detailed representation leads to an

overwhelming amount of information to be processed.

The method here presented constitutes the first attempt—to the best of

our knowledge—to unveil the need of internal variables in the description of

a physical phenomenon. By employing k-PCA techniques, we have shown

that data informs us about the right dimensionality in which these results

should be represented in the form of a physical law.

But experiments usually proceed in an autonomous manner, by sampling

at scales dictated by the current technological knowledge and not by the

physics itself. If this is the case, the method here proposed suggests the

employ of internal variables and also indicates the number, or at least an
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approximation to it, of these variables.

The main limitation of this approach, however, is that it does not provide

with any information on the physical nature of these internal variables. The

reasoning of well-educated physicists remains to be indispensable to unveil

the true nature of these variables.

This does not constitute a problem, however, for many applications of

industrial interest. For instance, this technique opens the possibility of con-

structing digital twins able to learn by themselves, just by analyzing data,

and to correct, if necessary, not only the parameter values of their imple-

mented models, but the models themselves. This constitutes part of our

current effort of research.
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[15] D. González, F. Chinesta, and E. Cueto. Thermodynamically consistent

data-driven computational mechanics. Submitted, 2018.

[16] David Gonzalez, FRancisco Chinesta, and Eĺıas Cueto. Learning cor-
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