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Abstract A novel Model Order Reduction (MOR) technique is presented to
achieve fast and real-time predictions as well as high-dimensional parametric
solutions for the electromagnetic force which will help the design, analysis of
performance and implementation of electric machines concerning industrial
applications such as the noise, vibration, and harshness in electric motors.
The approach allows to avoid the long-time simulations needed to analyze the
electric machine at different operation points. In addition, it facilitates the
computation and coupling of the motor model in other physical subsystems.
Specifically, we propose a novel formulation of the sparse Proper Generalized
Decomposition procedure, combining it with a Reduced Basis approach,
which is used to fit correctly the Reduced Order Model with the numerical
simulations as well as to obtain a further data compression. This technique
can be applied to construct a regression model from high-dimensional data.
These data can come, for example, from Finite Element simulations. As will be
shown, an excellent agreement between the results of the proposed approach
and the Finite Element Method models are observed.
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Highlights

– A novel non-intrusive reduced order formulation based on the sparse Proper
Generalized Decomposition.

– A novel Reduced Order Model for fast electromagnetic force computation
in electric motors.

– Methodology to obtain parametric solutions for fast electromagnetic force
computation to accelerate NVH procedure in electric motors.

– The proposed approach shows an excellent agreement with the pseudo
experimental results.

1 Introduction

The electric powertrain is drastically growing its importance in industry,
specifically in the automotive one, because of different reasons. One of them is
the environmental and energy regulations laid out in United Nations Climate
Change Conference held in Paris in 2015 [1,14]. In addition, the development of
technologies such as Electric Vehicles (EVs), Hybrid Electric Vehicles (HEVs)
or self-driving cars encourages even more the research and development in this
area.

Furthermore, an important effort of research in this direction of both
companies and national governments (such as USA or China) is carried out
in the last years. For example, in Europe, the creation of The European
Technology & Innovation Platform (ETIP) on batteries, named BatteRIes
Europe [2], clarifies and envisages even more the importance of the electric
powertrain and the EVs in our next years.

Due to this interest, it is mandatory to analyze the Vehicle Noise, Vibration
and Harshness (NVH) because contrary to popular costumers’ belief, EVs
are not silent at all. It is true that they can present lower overall levels
comparing to Internal Combustion Engines (ICEs) but unfortunately, they
have high-frequency and tonal content that makes the electric motor noise
annoying if this issue is not addressed correctly [15,8].

The noise in the EV can be divided in 4 main sources: powertrain noise,
wind noise, tire/road noise, and ancillary noise (where the first is one of the
most significant). For this reason, it is so important to analyze the electric
powertrain, specially, the electric motor in the NVH studies.

As it is shown in different sources [9,3] , vibration and noise produced by
electrical machines can be divided into three categories [10]: electromagnetic
vibration and noise, mechanical noise (related to the mechanical assembly,
in particular bearings) and aerodynamic noise (they are mainly caused by
aerodynamic forces in ventilation components of the motor).

Adding complexity to the analysis, the electromagnetic vibration and noise
of electric motors is a multi-physics problem, involving multiple fields including
electromagnetism, structural dynamics and acoustics.
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Fig. 1: Conversion of electric energy into acoustic energy.

Electromagnetic-induced vibration and noise of an electric motor is mainly
caused by radial force waves [3] on the stator surface as said in [10] and [7].
[24] and [11] also agree on this. In addition, this calculation is one of the most
highly-time consuming and challenging. Consequently, Reduced Order Models
(ROMs) are an appealing alternative to compute these force waves which will
be the input for the other stages of the NVH analysis, as illustrated in Figure
1.

Contemporary electric motors are designed with higher magnetic flux
density in the air gap which produces higher radial magnetic forces acting
on the stator. This can lead to a rise of vibration and acoustic problems. [10,
3,24].

Even worse, the relatively small-size and lightweight design for motors, the
large electromagnetic forces as well as the poor rigidity of motor structures
increase this serious problem of electromagnetic vibration and noise which will
affect the riding comfort. Therefore, it is clearly justified to incorporate in the
design the requirements of noise and vibration to avoid large retrofit expenses
when the overall performance is being optimized/balanced as said in [10] and
[9]. [7] and [14] also agree on this.

A possible gateway for enabling more efficient designs could be the
simulation of complex models of the electric machine. However, although it
is a valid option in some cases, it can be problematic when a detailed analysis
of the machine is being carried out or the machine is beeing simulated with
the other physical systems which interact with it.

The reasons are the following ones. On the one hand, a lot of simulations
are needed to analyze the NVH behavior of a motor, thus being required
faster simulations without losing excessively accuracy. On the other hand,
these complex models cannot be used to analyze the whole EV system because
of the difficulties to couple the machine model with the other subsystems.
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Nevertheless, this system simulation is important in the analysis because the
real inputs for the motor are computed and the entire vehicle system is modeled
(within the so-called system engineering) obtaining the predictive responses
of the different subsystems when interacting with each other.

Therefore, the main aim of this paper is to pave the way towards the use of
simple, accurate and fast ROMs to predict the electromagnetic forces on the
stator surface which is one of the most challenging and highly time consuming
steps of the NVH analysis. For this reason, the proposed methodology can be
used to compute these force waves in almost real-time (because of the simple
algebraic expression to be manipulated) and with accuracy respect to the finite
element model (FEM) where it is based.

Concretely, the methodology proposed in this work is a novel formulation
of the sparse Proper Generalized Decomposition (sPGD) [12,19], combining it
with a Reduced Basis (RB) approach, which is used to fit correctly the ROM
with the numerical simulations and to perform a further data compression.
This procedure is described in Section 3.3 and can be extended and used in
other industrial problems without issues when appropriate.

The proposed technique can be applied to construct a regression model
constructed from data. This data can come for example from a Finite
Element Method (FEM) software. Moreover, it is perfectly suitable to create
a high-dimensional function to give us the electromagnetic force or pressure
considering many parameters, including the geometric ones.

One of the main advantages of this technique is that it deals with the
well-known course of dimensionality issue allowing to have good results
with only few snapshots, that is, high fidelity solutions. This way, given
some snapshots, the regression model can be constructed using mainly
polynomials, therefore once the model is constructed the responses are
computed immediately because of the simple expression obtained.

Moreover, the accuracy of the regression model will be strongly related to
the data from which the regression is carried out. For example, if the data
comes from a 3D model, the regression results will be better than the results
obtained from a 2D model. Furthermore, the methodology proposed in this
paper can easily be extended to other type of motors and modeling frameworks.

To illustrate the process, the sPGD-RB procedure is applied to construct 3
regression models from the 2D FEM models of an induction and synchronous
motor presented in Section 2. The open source software Finite Element Method
Magnetics (FEMM) [16] is used to obtain the pseudo experimental data. In
Section 3, the proposed approach is presented and discussed.

The results obtained as well as a comparison study between the sPGD and
FEMM predictions are presented in Section 4 to evaluate the accuracy of the
ROM.

Finally, in Section 5 the general conclusions of the present work are
discussed as well as works in progress.
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2 Analyzed motor

2.1 Induction motor

We focus on a 2D current-based formulation for a squirrel-cage induction
motor. According to [4,18], the 2D problem is given by the following PDE:
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where A is the magnetic vector potential, v is the velocity, Az is the
z-component of the magnetic vector potential, J0 is the applied density current
source, σ is the electric conductivity and µ represents the permeability.

Considering J0(t) = Re(Ĵ0e
jωt) , Az(t) = Re(Âze

jϕtejωt) and Ãz = Âze
jϕt

(where ϕ is the phase angle between Az(t) and J0(t)) as well as the assumptions
and mathematical procedure shown in [4,18], the above problem can be
simplified to the following expression for an harmonic analysis:
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where Ãz is a complex number, j is the unit imaginary number, ω = 2πf , f is
the supply frequency, σeq is an equivalent conductivity computed as σeq = σs
and s is the slip. The slip in induction motors is defined as s = ns−nr

ns
, where

ns is the synchronous speed and nr is the rotor speed.

This formulation transforms the magneto-dynamic field problem expressed
by Eq. (1) to a magnetostatic complex field problem with induced currents.
In the chosen approach the rotor is fixed in the stator reference frame and an
equivalent conductivity is assigned to the rotor bars to take into consideration
the motional term of the current density, that is, the induced current density
due to the movement.

Therefore, we can represent the motor at any operation point by
multiplying the rotor conductivities by the slip. This is similar to the procedure
used in the standard motor equivalent circuit where the rotor resistance is
divided by the slip.

It is true that solving Eq. (1) is more accurate than solving Eq. (2) but we
did this choice to adapt us to the free FEMM software and its capabilities

To take into consideration the nonlinear relationship B-H in Eq. (2), FEMM
includes a nonlinear time harmonic solver that it is used in this work.

This nonlinear time harmonic analysis seeks to include the effects of
nonlinearities like saturation and hysteresis on the fundamental of the
response, while ignoring higher harmonic content.

There are several subtly different variations of the formulation that can
yield slightly different results, so documentation of what has actually been
implement is important to the correct interpretation of the results from this
solver. An excellent description of this formulation is contained in [13,16].
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2.2 Synchronous machine: brushless motor

In this machine, a two-dimensional steady state analysis is carried out to
adapt us to the capabilities of the open source FEMM. In three-phase motors,
as in the other polyphase configurations of the synchronous machines, the
stator-produced magnetomotive force (MMF) rotates at synchronous speed.
Since the rotor is also rotating at synchronous speed in the steady state, an
observer on the rotor experiences a constant field (∂B∂t = 0), and therefore,
there are no eddy currents on the rotor.

On the other hand, an observer on the stator experiences a time varying
field whose fundamental is at the system frequency. Since the stator is
laminated and the stator windings are stranded and transposed, the eddy
currents are resistance limited and can be neglected in the field computation.
Hence the term (σ ∂Az

∂t ) in the diffusion equation is neglected also in this frame
since σ can be considered zero.

If we take into consideration the above assumptions in Eq. (1) as well as
adding the modeling term for the permanent magnets, it will lead us to the
Poisson’s equation for a magnetostatic analysis:
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where Br,x and Br,y are respectively the x and y components of the remanent
flux density.

A fixed reference frame is used in the above equation where the PDE is
solved for each rotor position. To further details in electric machine modeling,
we kindly suggest the reading of [18], [4]. Note also that Eqs. (2) and (3) are
solved in Cartesian coordinates.

2.3 Post-processing step. Computation of the radial force waves

Once the PDE is solved, the B field must be obtained from the expression:

B = ∇×A, (4)

and then, the Maxwell stress tensor is used to compute the forces.
In this work we use, for the sake of simplicity, the approach applied to the

path at constant radius in the middle of the air gap [21]. Other possibilities
can be envisaged. For example, in [17], the Maxwell stress tensor is used and
compared under different paths. However, it is important to highlight that
using a more complicated post-processing will not affect the fast computational
features of the final ROM obtained in this work.

The normal and tangential components of magnetic pressure are:

Pn(α, t) =
1

2µ

(
B2
n(α, t)−B2

τ (α, t)
)
, (5)

Pτ (α, t) =
1

µ
Bn(α, t)Bτ (α, t), (6)
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where α is the angle of a polar coordinate system pointing to the selected
air-gap point, subscript n refers to the radial component in the air-gap midline
and the subscript τ refers to the tangential component in the air-gap midline.

In the vibro-acoustic context, simplifying assumptions are often added
neglecting the tangential terms. The reason is that the tangential component
of the flux density is much smaller than the normal component [17,24,11].
This leads to:

Pn(α, t) =
1

2µ
B2
n(α, t), (7)

Pτ (α, t) ≈ 0. (8)

2.4 Motor parameters

2.4.1 Units used

We introduce the units used in the present work in the following table.

Unit Symbol Unit Symbol

millimeters mm meters m

degrees deg. radians rad

horsepower HP ampere A

Hertz Hz revolutions per minute rpm

Tesla T megasiemens MS

Pascal N/m2 = Pa - -

Table 1: Units used

2.4.2 Induction motor.

We employed an example from FEMM website [16], where geometry and
further details can be found. Main parameters/features of the motor:

– 2 HP motor, 50 Hz, 3-phase supply. It is a 4-pole machine (i.e., p = 2).
– The winding configuration for one pole of the machine is: A+, A+, A+,

C-, C-, C-, B+, B+, B+ (the nine slots from 0 to 90 geometrical degrees).
– There are a total of 36 slots on the stator and 28 slots on the rotor. A total

of 44 turns sit inside each stator slot.
– The rotor’s diameter is 80 mm, and the air gap between the rotor and stator

is 0.375 mm. The length of the machine in the into-the-page direction is
100 mm.

Materials used:

– Aluminum for rotor bars (σ = 34.45 MS/m)
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– Air (µr = 1)
– Stator Winding (µr = 1)
– For the Case 1. Linear B-H relationship.

– Silicon Core Iron for the ferromagnetic materials (µr = 7000)
– For the Case 2. Nonlinear B-H relationship.

– Carpenter Silicon Core Iron ”A”, 1066C Anneal (B-H curve taken from
FEMM library)

2.4.3 Brushless motor.

We employed an example from FEMM website [16] where geometry and further
details can be found. Main parameters/features of the motor:

– 3-phase supply. It is a 8-pole machine (i.e. p = 4)
– The winding configuration for one pole of the machine is: A+, B-, C+ (the

three slots from 0 to 45 geometrical degrees).

Geometry:

– Rotor Inner Diameter: 22.8 mm.
– Rotor Iron Outer Diameter: 50.5 mm.
– Rotor Outer Diameter: 55.1 mm.
– Air Gap Length: 0.7 mm.
– Stator Outer Diameter: 100 mm.
– Angle Spanned by Tooth: 11.9 deg.
– Turns/Slot: 46.
– The complete geometry of the machine is reconstructed in Figure 2.

Materials:

– Winding Wire: 4X20AWG copper wire
– Magnet Material: Sm2Co17 24MGOe
– Stator Material: 24 Gauge M19 NGO Steel @ 98% fill
– Rotor Material: 1018 steel

3 Reduced order model

3.1 Introduction

As already mentioned in Section 1, this paper aims at proposing a new
methodology to obtain accurately the electromagnetic forces on the stator
surface (specifically the magnetic pressure) in almost real-time for any choice of
a given set of parameters. The reason is that this is one of the most challenging
steps of the vibro-acoustic analysis as it was discussed in Section 1.

In fact, the proposed approach allow us to obtain the force or magnetic
pressure immediately when changing different parameters of the problem such
as conductivities or the operation point of the motor, for instance. This
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Fig. 2: Brushless machine: Complete geometry drawn in FEMM software.

methodology opens the door to a more efficient vibro-acoustic analysis during
the design and optimization process of the Electric Machine as well as to
improve the prediction capacities when the whole vehicle system is considered.

The ROM’s accuracy will depend on the data used for the regression
technique. In the cases analyzed here, the models described in Section 2 are
used but without loss of generality of the foregoing, the proposed approach in
this paper can easily be extended to more complex models increasing more the
ratio between accuracy and computational efficiency. But not only that, the
proposed approach also can be extended and used to other type of problems
and modeling frameworks.

As it was introduced in Section 1, the ROM is made of a regression
combining both the sPGD and the RB techniques. In Section 3.2, the sPGD
technique is exposed. This methodology will allow us to achieve excellent
results when dealing with high-dimensional spaces and sparse data. This
technique is specially convenient because only sparse data is available when
dealing with high-dimensional problems [12,19]. This allows us to cope with
the curse of dimensionality.

Then, as it will be discussed in Section 3.3, because of the presence of
localized behaviors and discontinuities in the computed solutions, more than
interpolating the solution itself, we consider the construction of a RB which
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will be used for the regression procedure. The RB is inserted in the sPGD
formulation, creating the ROM described in Section 3.3.

3.2 Sparse PGD

If needed, standard references concerning the Proper Generalized
Decomposition (PGD) method for solving PDEs can be reviewed in [5,
6,20].

In this Section a brief exposition of the sPGD is presented based on a
more detailed work [19]. After discussing this basis, we will present the novel
approach in Section 3.3.

First, we are going to define the following function

f(s1, ..., snd) : Ω ⊂ Rnd → R,

which depends on nd different variables, considered as dimensions of the state
space sk, k = 1, . . . , nd.

The sparse PGD (sPGD) technique is based on approximating this
unknown function f employing a separated (tensor) representation. As in
standard PGD procedures, the function f is decomposed using a sum of
products of one-dimensional functions each one involving one independent
variable. Each sum is called a mode.

In the context of non-intrusive ROMs, the main objective is to find a
function f̃ which minimizes the distance to the sought function

f̃ = arg min
f∗

nt∑
i=1

‖f(si)− f∗(si)‖ , (9)

and that takes the separated form

f̃(s1, ..., snd) =

M∑
m=1

nd∏
k=1

ψkm(sk), (10)

where M is the number of modes and ψkm is the one-dimensional function
for the dimension k and mode m. nt is the cardinality of the training set
used to construct the model and si are the different vectors which contain the
data points to perform the regression. ‖·‖ is the chosen norm to measure the
distance between two points.

The other goal is that the model f̃ has to perform as well in the training
set as in other unseen scenarios. This second target is more difficult to reach,
yet is more crucial because this indicates the predictive ability of the ROM f̃ ,
that is, the prediction accuracy when it is fed with unseen data. Tis is specially
challenging to achieve when facing a high-dimensional problem, which provides
sparse data.



Title Suppressed Due to Excessive Length 11

As previously introduced, the sPGD technique expresses the function f̃
with the separated form expressed by (10). Then, the functions {ψkm}Mm=1 for
each k are formed by a linear combination of a set of basis functions:

ψkm(sk) =

D∑
j=1

Nk
j,m(sk)akj,m = (Nk

m)>akm, (11)

where D represents the degrees of freedom of the selected approximation.
Moreover, Nk

m is a column vector with the set of basis functions for the k
dimension and the m-th mode and akm is a column vector with the coefficients
for the k dimension and the m-th mode. The important question here is
which type of basis functions are the most convenient at hand. For instance,
a polynomial basis or a Kriging basis can be chosen.

The computation of the coefficients in each one-dimensional function for
each mode m = 1, . . . ,M is done by employing a greedy algorithm such that,
once the approximation up to order M−1 is known, the new M -th order term
is found using a non-linear solver (Picard, Newton, for instance):

f̃M =

M−1∑
m=1

nd∏
k=1

ψkm(sk) +

nd∏
k=1

ψkM (sk). (12)

A standard choice is to select the same basis for each one of the modes:

Nk
1 = Nk

2 = . . . = Nk
M , for k = 1, . . . , nd. (13)

This choice may seem reasonable, however it may not be appropriate when
dealing with non-structured sparse data.

It is known that the cardinality of the interpolation basis must not exceed
the maximum rank provided by the training set. Indeed, this constraint, which
provides an upper bound to build the interpolation basis, only guarantees that
the minimization is satisfied by the training set, without saying anything of
the other points. Hence, if there is not an abundance of sampling points in the
training set, in the low-data limit, high oscillations may appear out of these
measured points because of the increased risk of overfitting. Usually, this is an
undesirable effect because it affects the predictive ability of the constructed
regression model.

To deal with this problem, the sPGD uses the Modal Adaptivity Strategy
(MAS) to take advantage of the greedy PGD algorithm. The idea is to
minimize spurious oscillations out of the training set by starting the PGD
algorithm looking for modes with low order degree. When it is observed
that the residual decreases slowly or stagnates, higher order approximation
functions are introduced. By following this procedure, undesired oscillations
are decreased, since a higher-order basis will try to capture only the remaining
residual.

It is strongly recommended to define an indicator and a stopping criterion
to design the above strategy. Many different procedures can be thought. Here,
we employ that defined in references [19,12], where the methodology of the
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sPGD is deeply described. Following that reference, the following norm is used
for the PGD residual in the present work:

RMT =
1
√
nt

√√√√ nt∑
i=1

(
f(si)− f̃M (si)

)2
, (14)

where RMT is the residual of the PGD solution of M modes in the training set

T and f̃M is the PGD solution composed of M modes.

Therefore, we define for each enrichment step, f̃M as:

∆RMT = RMT −RM−1T < εr, (15)

where εr is a parameter defining the resilience of the sPGD to increase the
number of elements of the interpolation basis.

3.3 Constructing a novel ROM by combining sPGD and RB

Regarding the compactness, robustness and simplicity of the PGD models
obtained by the sPGD technique, global polynomial basis are usually selected
to use the sPGD explained in Section 3.2.

As it is well known, polynomials are differentiable functions for all
arguments. Therefore, trying to capture a differentiable function using
polynomials is, above all, a consistent idea because the function which wants
to be captured has the same properties that the basis where is projected.

In fact, according to the Weierstrass approximation theorem, if f is a
continuous real-valued function on [a, b], for a given ε, then there exists a
polynomial p on [a, b] such that:

| f(x)− p(x) |< ε, (16)

for all x ∈ [a, b]. In words, any continuous function on a closed and bounded
interval can be uniformly approximated on that interval by polynomials to
any degree of accuracy. However, sometimes the function which is trying to
be captured is not a differentiable function in some points or even presents
discontinuities.

In this case, global polynomials are far away to be the best choice
to approach this type of functions because they are, in fact, very poor
at interpolating discontinuities. To demonstrate this, Figure 3 shows the
interpolation of the unit step function with 16 points using a 15th-degree
polynomial.

Two different solutions to the problem can be envisaged. The first one
is to use piecewise polynomial interpolation. This way, we can use different
polynomials to approach the function at the right and at the left of the
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Fig. 3: Approximating a unitary step function using global polynomials. In the first case,
Chebyshev nodes are used to fit the polynomial. In the second case, equidistant nodes are
used.

discontinuity. For example, the step function of the previous example will
be composed of:

f(x) =

{
0 x ∈ [−1, 0],
1 x ∈ (0, 1],

(17)

which are zero degree polynomials. However, an issue of this type of approaches
is its rank deficiency when combined with the sparsity used in the sPGD [12].

Other possible solution is to use a basis (which can contain discontinuous
functions) whose linear combination produces the class of discontinuities of
our problem in the right places.

For instance, a basis composed of different step functions can be used to
approximate the unitary step function discussed during this example.

In the industrial problem that this work is dealing with, discontinuities
change their place in space when changing some values in the parameter space.
Therefore, the previous discussed basis approach is prefered to deal with the
discontinuity problem.

Other issue is that if we try to capture a non-regular function of this type
without having preliminary knowledge of the system, a lot of nodes are needed
to detect where and how these singular points are present in the dimension
where this behaviour happens.
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Therefore, to deal with the previous discussed issues, we propose the
following approach:

1. Find the spatial dimension(s) where singular points are placed.
2. Detect parameter(s) which can change location of the singular points along

spatial dimension/s.
3. Construct a RB considering the non-regular dimensions found in steps one

and two. Not sparse sampling will be used along the dimension/s contained
in the RB.

To insert the RB in the PGD procedure, we propose to reformulate the
regression problem in the following way (where without loss of generality only
one dimension—s1—is assumed causing troubles):

f̃(s1, ..., snd) = β1(s2, . . . , snd) ·N1(s1)

+ · · · + βT (s2, . . . , snd) ·NT (s1), (18)

where:

βp(s2, . . . , snd) =

Ip∑
i=1

nd∏
k=2

ψki,p(s
k), p = 1, 2, . . . , T. (19)

N1(s1), . . . , NT (s1) form the RB obtained with the SVD (see Appendix A)
along the s1 dimension, the βp(s2, ..., snd) terms represent the unknown
functions for the sPGD problem for a given Np, Ip is the number of modes

used to decompose βp and

T∑
p=1

Ip is the total number of modes of the ROM.

The training set is then used to obtain the reduced basis as well as the value
of the βp coefficients in the training points. In addition, once these points are
obtained, the sPGD procedure is used to obtain the separated representation
of these functions using polynomial basis according to Eq.(19). To obtain the
RB, we consider the SVD, revisited in Appendix A, according to the discussion
that follows.

Defining zi as a point in the dimensions (s2, · · · , snd) then, the set Y of
one-dimensional functions, created by the points belonging to the training set
T , can be defined as:

Y = {f(s1, zi) : zi ∈ T } (20)

Therefore, the set Y is created collecting the one-dimensional functions
for the different points which are selected for the training set T to do the
regression via sPGD.

Consequently, the snapshots in Y are the ones used to construct the matrix
Y (see Appendix A). Then, the SVD can be used to extract a reduced basis
{Ni}Ti=1, which best approximates the set Y.

To end up, an important issue is the choice of arguments of the parametric
model. They must be independent or poorly correlated to avoid increasing the
redundancy and the complexity of the model without necessity.
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Industrial and technical knowledge can be used to determine the
appropriate choice of variables as it is the case in this work.

If not, a Manifold Learning (such as kernel-PCA, [22]) or a dimensionality
reduction technique (viz. Topological Data Analysis, [23]) can be applied to
reduce unnecessary variables. In addition, the ANOVA analysis can also be
carried out to determine the importance of each input to keep the most relevant
ones.

4 Results

In this section, the results of the proposed ROMs for each motor are presented.
In addition, to illustrate some of the advantages concerning the separated

representation of the PGD, a sensitivity analysis is carried in Section 4.3 to
measure the impact of each variable.

Furthermore, a study comparing the error between the ROM and the FEM
software FEMM is carried out to check the accuracy of the proposed approach.

4.1 Induction Motor.

4.1.1 Linear B-H

The approach shown is based on a current-based model where a balanced
three-phase system is supposed for both the fundamental and the harmonic
component of the current. The searched PGD function is:

Bn(α, f, s, Ip, fh, sh, Iph, γ); Bn ∈ C, (21)

where α refers to an angle pointing to a node in the air-gap midline, f is the
supply frequency, s is the slip, Ip is the current peak value of the fundamental
frequency of the source, fh is the harmonic frequency of the source, sh =
fh−(1−s)f

fh
is a redefined slip concerning the harmonic component, Iph is the

current peak value of the harmonic component, and γ is the relative rotor
position in relation to stator.

In this Section, the problematic dimensions discussed in Section 3.3 are γ
and α. Therefore, the RB procedure will be applied in these dimensions as
explained in the reformulation of Section 3.3.

To obtain the above function, a multi-PGD procedure is used to decompose
the function in more than one PGD solution. Consequently, the searched
function is now:

Bn(α, f, s, Ip, fh, sh, Iph, γ) = f̃1(α, f, s, Ip, γ) + f̃2(α, fh, sh, Iph, γ), (22)

where the sPGD technique will be used first for f̃1 and then for f̃2.
The first PGD search will focus on the range of parameters of the

fundamental component of the source and the second one regarding the
harmonic one.
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Considering the extraction of snapshots the following remark must be
considered to approach the problem.

As the system is considered linear (Linear B-H relationship), the total
response is the sum of the responses obtained from each source considered
separately (superposition theorem). Therefore, the chosen approach is to
analyse harmonic content separately, considering each source component
independently and then adding each time response to Bn. Finally, when the
total Bn(t) is obtained, the post-processing of Eq. (7) must be carried out.

To compare the results for different zi along the α dimension, the following
expressions are used:

errreali =

∥∥real(BPGD
n (α, zi))− real(Bexp

n (α, zi))
∥∥
2

‖real(Bexp
n (α, zi))‖2

,

errimag
i =

∥∥imag(BPGD
n (α, zi))− imag(Bexp

n (α, zi))
∥∥
2

‖imag(Bexp
n (α, zi))‖2

(23)

where the superscript PGD denotes the results obtained by the sPGD
and the superscript “exp” denotes the experimental measurements
(pseudo-experimental results obtained in this case by the FEMM software).

Furthermore, to sample the training set, different Latin Hypercubes (LHs)
are taken using a grid composed of Chebyshev nodes along dimensions
f, s, Ip, fh, sh, Iph. In addition, eight hours are used to obtain the training
set in the offline stage.

In Figure 4, a comparison between the expperimental and PGD results for
a zi 6∈ T . For this plot, the error measured as Eq. (23) is errreali = 0.000355,

errimag
i = 0.000341; and errreali = 0.000037, errimag

i = 0.000029 for the
induction component caused by the harmonic. On the other hand, the error
in the training set measured as Eq. (23) is always lower than 10−5.

In addition, the alternating force (specifically, the alternating magnetic
pressure) for the selection of parameters used in Figure 4 is shown in Figure 5.
This force is obtained combining the different sine/cosine waves of the B-field
in Eq. (7).

In Figures 6 and 7, the error for Eq. (21) for some zi 6∈ T can be seen. As
it can be noticed, an excellent agreement between FEMM and PGD results is
achieved even outside the training set. The main advantage is that the PGD
model computes induction and force for a given zi in less than 0.2 seconds
independently of the computational cost of the Finite Element solutions used
for the snapshots.

4.1.2 Nonlinear B-H

The approach shown here is also based on a current based model. In addition,
perfect sine wave current functions are supposed for the balanced three-phase
system. In this case, the searched PGD function is:

Bn(α, f, s, Ip, σ, δ, γ); Bn ∈ C, (24)
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Fig. 4: Comparison between the sPGD and FEMM model (linear B-H relationship) for the
parameters f = 40 Hz, s = 2.5 %, Ip = 3 A, fh = 5 · 40 Hz, sh = 80.50 %, Iph = 3/5 A,
γ = 1 degree

where σ is the bar conductivity and δ is the air gap of the electric machine.

In this Section, the problematic dimensions described in Section 3.3 are
α and γ. Therefore, the RB procedure will be applied in this dimension as
explained in the reformulation of Section 3.3.

Furthermore, to sample the training set, different Latin Hypercubes (LHs)
are taken using a grid composed of Chebyshev nodes along dimensions
f, s, Ip, σ, δ. In addition, nine hours are used to obtain the training set in
the offline stage.
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Fig. 5: Alternating force components obtained with the parameters f = 40 Hz, s = 2.5 %,
Ip = 3 A, fh = 5 · 40 Hz, sh = 80.50 %, Iph = 3/5 A, γ = 1 degre (linear B-H model).

Fig. 6: Relative error of the sPGD model (linear B-H relationship) to determine the real
part of Bn for different untrained zi. Error criteria of Eq. (23) is used.
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Fig. 7: Relative error of the sPGD model (linear B-H relationship) to determine the
imaginary part of Bn for different untrained zi. Error criteria of Eq. (23) is used.

In Figure 8, a comparison for Eq. (24) is shown for a zi belonging to the
training set. For this plot, the error measured as Eq. (23) is errreali = 0.0008

and errimag
i = 0.001.

In Figure 9, a comparison between the FEMM and PGD results for a
zi 6∈ T . For this plot, the error measured as Eq. (23) is errreali = 0.009 and

errimag
i = 0.012. In addition, the alternating magnetic pressure related to this

B-field can be seen.

In Figures 10 and 11, the error for Eq. (24) for some zi 6∈ T can be observed.

As it can seen in these figures, excellent agreement between FEMM and
PGD results is achieved outside the training set.

The main advantage is that the PGD model computes induction and force
for a given zi in less than 0.2 seconds indepentently of the computational cost
of the Finite Element solutions used for the snapshots.

It is important to highlight that the computational cost of the PGD model
is independent of the one of the FEM software used for the snapshots. Hence,
if the computational cost of the FEM software was some days, the time needed
for the PGD still would be less than 0.2 seconds.

4.2 Synchronous motor.

The approach shown is based on a current based model. In addition, perfect
sine wave current functions are supposed for the balanced three-phase system.
In addition, a nonlinear B-H relationship is used for the materials.
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Fig. 8: Comparison between the sPGD and FEMM model (nonlinear B-H relationship) for
a zi belonging to the training set. Parameters f = 10.4772 Hz, s = 5 %, Ip = 3.3858 A,
σ = 47.6537 MS/m, δ = 0.4876 mm, γ = 0 degrees. The alternating force obtained during
the post-processing step is also shown.

The searched PGD function is:

Bn(α, γ, Ip, τ, ρ); Bn ∈ R, (25)

where α refers to an angle pointing to a node in the air-gap midline, γ is the
relative rotor position in relation to stator, Ip is the current peak value of
the fundamental frequency of the source, τ is the torque angle, namely, the
phase difference between rotor and stator magnetic fields and ρ is a parameter
defining the dynamic eccentricity of the machine (ρ =

DOs,Or

δ ; where Os is the
stator symmetry center which in this eccentricity is equals to the rotor rotation
center Ow, Or is the rotor symmetrical axis, DOs,Or is the distance between
Os and Or and δ is the uniform air-gap length when there is no eccentricity).
The above eccentricity parameters can be seen in figure 12.

In this Section, the problematic dimensions described in Section 3.3 are
α and γ. Therefore, the RB procedure will be applied in these dimensions as
explained in the reformulation of Section 3.3.

Furthermore, to sample the training set, different Latin Hypercubes (LHs)
are taken using a grid composed of Chebyshev nodes with the exception of γ
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Fig. 9: Comparison between the sPGD and FEMM model (nonlinear B-H relationship) for
a zi 6∈ T . Parameters f = 50 Hz, s = 3 %, Ip = 3.5 A, σ = 40 MS/m, δ = 0.5 mm, γ = 0
degrees. The alternating force obtained during the post-processing step is also shown.

(where it is preferred to use equidistant nodes for each parameter combination
to complete a 180-degree turn). In addition, eight hours are used to obtain the
training set in the offline stage.

In Figures 13 and 14, the induction and the magnetic pressure are depicted
for two points z1, z2 6∈ T . The error associated according to Eq. (23) is
respectively errreal1 = 0.01 and errreal2 = 0.009.

In Figure 15, we can see the time evolution of the magnetic pressure of
figure 14 supposing a rotor and synchronous speed of N = 2000 rpm in steady
state.



22 Abel Sancarlos* et al.

Fig. 10: Relative error of the sPGD model (nonlinear B-H relationship) to determine the
real part of Bn for different untrained zi. Error criteria of Eq. (23) is used.

In Figure 16, a comparison of the results between FEMM and the PGD
are shown to analyze the error of the proposed ROM.

As it can be seen, the error analysis for this PGD solution has similar
results to the other PGD functions obtained for the induction motor.

Finally, as in the other cases, the big advantage is that the PGD model
computes induction and force for a given zi in less than 0.2 seconds and
with accuracy indepentently of the computational cost of the Finite Element
solutions used for the snapshots.

4.3 Sensitivity analysis of the parametric solutions

Sensitivity analysis is often interesting in parametric models because of:

– the need to characterize how sensitive the response is with respect to
uncertainties in the input data; for example, manufacturing tolerances or
material properties.

– the need to characterize how sensitive the response is in function of the
operation point of the system.
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Fig. 11: Relative error of the sPGD model (nonlinear B-H relationship) to determine the
imaginary part of Bn for different untrained zi. Error criteria of Eq. (23) is used.

Fig. 12: Sketch to visualize the parameters Os, Ow, Or and DOs,Or
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Fig. 13: Induction obtained with the sPGD model for the parameters: γ = 0 degrees, Ip = 3
A, τ = π/2 rad, ρ = 0

Fig. 14: Radial force wave obtained with the sPGD model for a set of parameters: γ = 0
degrees, Ip = 13 A, τ = π/2 rad, ρ = 0.5
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Fig. 15: Time evolution of the magnetic pressure wave obtained with the sPGD supposing
N = 2000 rpm. Set of parameters: γ = 0 degrees, Ip = 13 A, τ = π/2 rad, ρ = 0.5
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Fig. 16: Comparison between sPGD and FEMM results. Set of the parameters (Top plot):
γ = 0 degrees, Ip = 3 A, τ = π/2 rad, ρ = 0. Set of the parameters (Bottom plot): γ = 0
degrees, Ip = 13 A, τ = π/2 rad, ρ = 0.5.
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– the need to make changes to improve the performance of a design and want
to find out which changes that are most efficient for attaining the expected
goals.

As a result, it seems evident that the importance of doing this type of
analysis arises in industrial applications like the one treated in this paper.
The most appealing point is that the ROMs constructed with the separated
representation proposed in this work make easier performing this analysis. The
reason is that computing partial derivatives in the separated representation is
translated to compute the derivatives of one-dimensional functions. As the vast
part of the one-dimensional functions used in the ROMs are polynomials, the
computation remains quite simple and with low-computational cost enabling
online real-time calculations.

To illustrate the procedure, imagine a PGD solution concerning 3
parameters:

f̃M =

M∑
m=1

Xm(x)Θ1
m(θ1)Θ2

m(θ2)Θ3
m(θ3),

where we want to analyze the how sensitive is the solution around the nominal

point θ1 = a1, θ2 = a2, θ3 = a3. Then, the partial derivatives ∂f̃M

∂θ1
(x, a1, a2, a3),

∂f̃M

∂θ2
(x, a1, a2, a3) and ∂f̃M

∂θ3
(x, a1, a2, a3) are computed as:

∂f̃M

∂θ1
(x, a1, a2, a3) =

M∑
m=1

Xm(x)
∂Θ1

m

∂θ1
(a1)Θ2

m(a2)Θ3
m(a3),

∂f̃M

∂θ2
(x, a1, a2, a3) =

M∑
m=1

Xm(x)Θ1
m(a1)

∂Θ2
m

∂θ2
(a2)Θ3

m(a3),

∂f̃M

∂θ3
(x, a1, a2, a3) =

M∑
m=1

Xm(x)Θ1
m(a1)Θ2

m(a2)
∂Θ3

m

∂θ3
(a3),

where the magnitude of the partial derivative indicates the sensitivity of the
solution for the given parameter in the analysed point (higher magnitude
corresponds to higher sensitivity). In addition, the sign of the partial derivative
indicates the direct or indirect relationship between the function value and the
parameter.

Higher-order derivatives and also derivatives concerning different
parameters are also possible. It is important to note that the sensitivities are
a field, offering large information, beyond the behavior around the operating
point.

Since the ROMs are based in the B-field, the sensitivity relation between
magnetic pressure and the B-field for a given parameter θi is (using Eq. (7)):

∂Pn
∂θi

(α) =
1

µ
·Bn

∂Bn
∂θi

(α). (26)
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Fig. 17: Sensitivity of Bn and Pn for small changes in Ip. Operating point: γ = 0 degrees,
Ip = 0.5 A, τ = π/2 rad, ρ = 0.

Now, as an example of use, we show some analysis that can be carried
out with the extracted ROMs in different regions of the domain. In the
first example, we are going to focus on the synchronous machine. Here, the
sensitivity of the solution for the parameters Ip and ρ is explored in an area
of interest α ∈ [134.7, 224.8] deg. under the conditions: high current and no
eccentricity, high current and eccentricity, low current and no eccentricity, and
low current and eccentricity.

In Figures 17, 18, 19 and 20 the sensitivity is compared with two operating
points changing its Ip from 0.5 A to 20 A. Here, we can observe how much a
little change in the eccentricity or in the current peak value affects the magnetic
pressure as well as the B-field for both cases. In this operating points, adding
eccentricities in the order of 0 - 0.25 mm does not change a lot the sensitivity
behavior.

The second example is reported in figure 21 concerning the induction
motor. Here, the sensitivity of the solution for five parameters is explored
under a nominal operation point. Also, the sensitivity of the conductivity
when its value is not well known was studied concluding that this uncertainty
does not affect strongly the variables of interest.
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Fig. 18: Sensitivity of Bn and Pn for small changes in DOs,Or . Operating point: γ = 0
degrees, Ip = 0.5 A, τ = π/2 rad, ρ = 0.

5 Conclusions

In this paper a ROM is developed combining both the sPGD and RB
techniques. It can be observed that the results of the FEMM software
are reproduced with a high accuracy using the proposed ROM model. A
reduction in the computational time and resources needed to obtain parametric
electromagnetic forces is achieved. In fact, the computational cost can be
carried out by a standard laptop in less than 0.2 seconds.

The saving in computational time and resources opens a door for design,
analysis, optimization and simulation of NVH in electric motors under this
rationale in the electromagnetic step.

In addition, the proposed ROM facilitates the integration and coupling of
the force computation in electric motors to other systems (such as the EV
system) because of the simplicity of the obtained algebraic expression.

The extremely low computational cost of the proposed ROM is independent
of the complexity of the model used to offline obtain the snapshots. In
this paper the two-dimensional models presented in Sec. 2 are used through
formulation available in the free software FEMM.

Furthermore, richer finite element models can be used to obtain the
electromagnetic forces to construct the ROM without major difficulties.
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Fig. 19: Sensitivity of Bn and Pn for small changes in Ip. Operating point: γ = 0 degrees,
Ip = 20 A, τ = π/2 rad, ρ = 0

For example, a transient three-dimensional model taking into consideration
motion.

Although it is true that using these models to obtain the snapshots for the
offline stage is more time consuming, the computing time needed for the ROM
once it is constructed still would not be affected (as it discussed in the results,
the computing time of the ROM is less than half a second).

Our works in progress address more complex models such as a transient
3-dimensional model as well as the coupling of the numerical model with circuit
equations. Thus, the computational cost reduction would be more drastic
allowing to deal with the NVH problem with high-accurate models which can
be computationally prohibitive.

In addition, while analysing these cases, it would be interesting to add
other type of faults as a parameters in the sPGD model to see its effect under
different circumstances.
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Fig. 20: Sensitivity of Bn and Pn for small changes in DOs,Or . Operating point: γ = 0
degrees, Ip = 20 A, τ = π/2 rad, ρ = 0.
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Appendices
A Obtaining the RB from the Singular Value Decomposition
(SVD)

Let us consider Y as the matrix containing the n snapshots collected for our problem.
Therefore, Y = [y1, . . . ,yn] ∈ Rm×n is a matrix with rank d ≤ min(m,n), where y1, . . . ,yn

are column vectors. Further, let Y = UΣV> be its singular value decomposition, where
U = [u1, . . . ,um] ∈ Rm×m, V = [v1, . . . ,vn] ∈ Rn×n are orthogonal matrices and the
matrix Σ ∈ Rm×n has the form given by Eq. (28). Then for any l = {1, . . . , d} the solution
to following constrained optimization problem:

max
ũ1,...,ũl∈Rm

l∑
i=1

n∑
j=1

∣∣∣〈yj , ũi〉Rm

∣∣∣2,
subject to 〈ũi, ũj〉Rm = δij for 1 ≤ i, j ≤ l,

(27)

with the Kronecker Delta tensor defined as

δij =

{
1, if i = j,

0, if i 6= j,

is given by the singular vectors {ui}li=1, i.e., by the first l columns of U. Moreover, the
maximum value of Eq.(27) is given by the sum of the first l singular values of the diagonal
matrix Σ,

Σ =

(
D 0
0 0

)
∈ Rm×n,

D = diag(σ1, ..., σd) ∈ Rd×d.

(28)

In Eq. (28), the diagonal entries are sorted in descending order.
The problem (27) consists in approximating all spatial coordinate vectors yi of Y by a

linear combination of normalized vectors as well as possible. The constraint of the problem
serves to normalize the functions ui and thus ensure the uniqueness of the solution. It also
adds the property of orthonormality between the l functions which solves the problem.

The choice of l is usually based on heuristic considerations combined with observing the
ratio between the modeled energy to the total energy contained in the system Y, which is
expressed by:

ζ(l) =

l∑
i=1

λi

d∑
i=1

λi

. (29)

Note also that σ2
i = λi.

In our case, we considered the constraint 1 > ζ(l) > 0.9999 to construct the RB.


