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Abstract

Simulation-based Engineering has been a major protagonist of the last
century technology. However, models based on well stablished physics fail
sometimes to describe the observed reality, exhibiting noticeable differences
between the physics-based model predictions and the performed
measurements. This difference is due to several reasons, practical
(uncertainty and variability of the parameters involved in the models) and
epistemic (the models themselves are in many cases a crude approximation
of a richer reality). On the other side, approaching the reality from the data
resulting from measurements, represents a valuable approach because of
its generality. However, this approach embraces many difficulties: the model
and the measurement variability; the necessity of performing many
measurements for accurately representing rich solutions (extremely
nonlinear or fluctuating), with the associate cost and technical difficulties
for performing them; and finally, the difficulty to explain and certify, both key
aspects in most of engineering applications.

This work overviews some of the most remarkable progress in the field in
recent years.

Keywords: Data-driven learning; Physics-informed learning;
Physics-augmented learning; Machine learning; Artificial intelligence

1 Introduction

Engineering sciences acquired a proved maturity in what concerns to modeling,
simulation and experiments, the three so-called pillars of engineering. These have
enabled an unprecedented technological development in almost every technology
domain: space, transport and mobility, energy, machinery, civil and industrial in-
frastructures, smart industry, smart cities and nation, ...

Existing models are a heritage of centuries of fruitful science, and once cali-
brated and validated, exhibit both accuracy and robustness, even in presence of
uncertainty, that was also successfully addressed, quantified and propagated, ...
with all the technological accomplishments as a definitive proof. Models devel-
oped under the impulsion of experimental techniques, the more and more ad-
vanced, enable the access to the smallest scales, with increasing accuracy and ef-
ficiency, for observing, measuring and interacting with the deepest details of the
surrounding reality.

Models also benefit from the unprecedented advances in applied mathematics
and computer science. Thus, a fast and accurate solution of the complex mathe-
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matical models that are expected to describe finely the physical reality, was pos-
sible, even when components, structures and systems exhibit extremely large un-
certainty and complex couplings. Thus, the design (under multi-disciplinary op-
timality constrains), the diagnosis, the prognosis and a performant predictive en-
gineering, are nowadays part of the everyday engineering practice, the engineer’s
mission!.

The 21st century started with revisited challenges: the dream or need of treating
systems the more and more large, complex, involving the finest scales, exhibiting
uncertainty, variability and fluctuating behaviors, ...with new objectives, as the
one of defining twins of the real entities, able to emulate their behavior, and con-
sequently enabling an efficient dialog between the user or the controller and the
digital twin, instead of making that dialog with the real entity.

A Digital Twin (DT), a real one, aims at representing the reality in a com-
plete, concise, accurate and efficient way. It is more than a continuously calibrated
physics-based model (by using adequate data assimilation) and also much more
than a simply transfer function relating specific inputs with specific outputs, that
even being very precise and operating very fast, it fails to be general enough to ad-
dress any query. DT embrace three main functionalities: (i) an accurate model, able
to replicate or emulate the reality with the required level of fidelity; (ii) a digital
platform for processing that model and making predictions form it at the required
rate; and (iii) data with multiple missions: calibrating physics-based models, learn-
ing data-driven-models, making diagnosis, validating predictions, ...

Advances in sensing for data-acquisition, data-transfer, data-storage, data-
analytics, ... facilitated and boosted the irruption of DT in almost all the science
and technology domains [115, 37, 62, 23]. Now, we must conciliate accuracy with
rapidity, making fast and well, the engineer dream!.

In this context, we should address a first question:
• What are the limits or difficulties we are confronted to in the current engineering

practice?
with a natural second one:

• Which framework is needed, such that it is able to conciliate explainability and
understanding (the foundations of knowledge), efficiency and pragmatism, needs
and resources?

for finally
• Identifying the available methodologies,

and
• Illustrating their use in the domain of materials and structures, fluids and flows,

processing and multi-physics coupling, complex systems and systems of systems.
Coming back to the first question, it can be noticed that several models exhibit a

limited fidelity with respect to the reality that they are expected to represent, and
this is due to different reasons, of practical and/or epistemic nature. In fact, the re-
ality seems to be much richer that our approach to it, our conceptualization of the
physical reality. To enrich them, enhancing their predictability capabilities, fur-
ther research works are needed. Some of them will run for many years to reach the
targeted accuracy in the resulting models prediction. This is the way that science
and technology followed during the past centuries.
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Nothing seems really new from the fundamental point of view at present, maybe
only the fact that the society, with scientists and engineers being part of it, becomes
more and more impatient, and queries are expected to be responded instanta-
neously. An expanding insatiable impatience seems to be the only novelty with
respect the process of transforming observations into knowledge accomplished
during centuries of successful science and technology.

From now on, three main challenging scenarios must be addressed:
• Improving the efficiency of optimal design procedures by enabling fast, ac-

curate and a complete exploration of the design space—that is, the space
spanned by the design parameters—by improving existing techniques and
proposing new advanced methodologies.

• In what concerns to diagnosis, it works quite well based solely on the data
analysis. As soon as data, as described later, is classified to compose a sort
of catalog or dictionary of faults, pattern recognition suffices for perform-
ing online diagnosis. However, the prescription of corrective actions, needs
for accurate prognosis, that at its turn, needs for a deeper modeling-based
approach, also discussed later.

• Finally, very often models exist and are accurate enough. However, they are
difficult to manipulate with the prescribed accuracy, under stringent real-
time constraints. In these circumstances, to improve the performance, when
well experienced Model Order Reduction (MOR) techniques do not suffice
or are too complex to implement, models are degraded (coarsened). In that
case, the risk becomes that of making wrong predictions very fast. Efficient
technologies are then needed to ensure fast an accurate predictions.

The transition between the 20th and 21st centuries was accompanied of a hatch-
ing of technologies able to address the just referred challenges, conciliating rapid-
ity and accuracy:

• First, the solution of state-of-the-art physics-based models was accelerated
to accomplish as much as possible real-time responses by using advanced
MOR techniques. These techniques neither reduce nor modify the model it-
self, they simply reduce the complexity of its solution by employing more
adapted approximations of the unknown fields [22].
Model Order Reduction techniques express the solution of a given problem
(usually governed by a PDE) into a reduced basis with strong physical or
mathematical content. Sometimes these bases are extracted from some offline
solutions of the problem at hand, as in the Proper Orthogonal Decomposi-
tion (POD) or the Reduced Basis (RB) methods. When operating within the
reduced basis approach, the solution complexity scales with the size of this
basis. It is, in general, much smaller than the size of the general-purpose ap-
proximation basis associated with the Finite Element Method (FEM), whose
size scales with the number of nodes involved in the mesh that covers the
domain in which the problem is defined. Even if the use of a reduced ba-
sis implies a certain loss of generality, it enables impressive computing-time
savings while guaranteeing acceptable accuracy as soon as the problem so-
lution continues living in the space spanned by the reduced basis.
The main drawbacks of these techniques are: (i) their limited generality
when addressing situations far from the ones that allowed the reduced basis



Chinesta and Cueto Page 4 of 24

construction; (ii) the difficulties of addressing nonlinear models, that require
the use of advanced strategies; and (iii) their intrusive character with respect
to its use in well experienced and validated, existing software.
For circumventing, or at least alleviating, the just referred computational
issues, an appealing route consists of constructing the reduced basis at the
same time that the problem is solved, as Proper Generalized Decomposi-
tions (PGD) do [19, 20, 21]. However, PGD is even more intrusive than POD
and RB referred above. Thus, non-intrusive PGD procedures were proposed,
that proceed by constructing the parametric solution of the parametric prob-
lem from a number of high-fidelity solutions, obtained offline for different
choices of the model parameters. Among these techniques we can mention
the SSL-PGD, that considers hierarchical separated bases for interpolating
the precomputed solutions [9], or its sparse counterpart [53, 103].
Once the parametric solution of the problem at hand is available, it can be
particularized online for any choice of the model parameters, enabling sim-
ulation, optimization, inverse analysis, uncertainty propagation, simulation-
based control, ... all of them under stringent real-time constraints [22].

• With the democratization of technologies around sensing, metrology, com-
munication, storage and computation, massive data-acquisition experienced
an exponential increase in many new domains (in other domains like spec-
trography, tomography, thermography, among others, massive data was al-
ready present for many years). Data were not the real revolution. The real
revolution, as just argued, was its democratization and the colonization of
many domains of science and technology,. This happened first where models
were inexistent, or where models existed but their predictions did not fulfill
the desired expectations in what concerns to accuracy or rapidity.

• Thus, many initiatives irrupted worldwide, pointing out the opportunities
that the use of machine learning and artificial intelligence, operating on con-
tinuously collected data, could represent [70]. In particular in France, the
collective report entitled AI for Humanity, whose writing was leaded by the
2010 Fields Medal awardee Cedric Villani [119], was the starting point, fol-
lowed with the four french 3AI initiatives around: AI focusing on medicine,
mobility, aeronautics and space, environment, city and nation, human and
social sciences, ... Similar activities saw the light of the day in all the coun-
tries around the world, everywhere, almost simultaneously.
Engineering benefited of that momentum, with different levels on the em-
ploy of the data:

1 First, some applications were essentially or purely based on the employ
of data. This is the case of those applications making use on pattern
recognition (based on data classification), widely employed in diagno-
sis.

2 Dynamic Data Driven Application Systems (DDDAS) represent an inti-
mate dialog between models and data, where data is used for keeping
the models continuously calibrated, whereas the models serve to drive
the data collection [26].

3 In the third case, data is used with learning purposes, to be afterwards
employed to make predictions or anticipate anomalous behaviors.
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In the third item listed above, three levels of learning, depending on the
relative weight of physics and data, can be distinguished:

1 The first learning approach considers essentially data, that is assumed
to be constrained by first principles and the associated variational for-
mulations only. It the most genuine data-driven learning.

2 In the second learning approach, the physics (and more generally all the
existing knowledge) is assimilated during the learning process, given
rise to the so-called physics-informed learning, whose employ is growing
very rapidly.

3 In the third approach, more than solely informing the learning process,
physics augments the learning. For example, the calibrated physics-
based model is enriched with a data-driven model (eventually physics-
informed) for representing the deviation between the observed reality
and the predictions obtained from the calibrated physics-based model.
This third framework, a sort of transfer learning, is called here physics-
augmented learning.

The two remaining main protagonists are data themself, as well as the tech-
niques for quantifying the learned model confidence:

1 What data?; at which scale?; where and when?; which metrics to con-
sider for quantifying, expressing and comparing them?; how transform
the data into knowledge, or how to extract the last from the former?; ...

2 How to verify and validate the learned models?; how to explain and cer-
tify? Engineering remains to be extremely dependent on the confidence
to quantity risks, that must be mastered in the best manner.

As mentioned before repeatedly, because of fundamental or practical reasons,
the considered models (when they exist) do not allow to attain the required ac-
curacy or rapidity in their predictions. Thus, techniques based on the use of data
(solely, informed or augmented by the physics) are becoming appealing alterna-
tives for replacing, enriching or augmenting the existing models. To empower en-
gineering, and therefore, conciliate accuracy and rapidity from the smart use of
physics and data, advanced methodologies focusing on data, learning and verifi-
cation and validation (V&V) must be used, adapted or proposed.

The next sections revisit the just referred three topics: (i) data; (ii) learning; and
(iii) V&V.

2 Methodologies: Data

Our staring point is Data, where the upper case is voluntary used to emphasize the
impressive richness that this word embraces, as discussed in the current section.

2.1 Data and metrics
Data have a double nature: a qualitative essence and a quantitative extension. First,
data exist with respect to a given target, that is, with respect to a given objective.
In this sense, data become goal-oriented. Then, to quantify them, an appropriate
metric is needed. We can visualize such a need by thinking on a ruler to measure
the position of an object in the space, or its dimensions; a balance for measuring
its weight; or a thermometer for measuring its temperature. Until here everything
seems natural, simple and easy.
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The situation becomes more complex as soon as data to be manipulated cannot
be directly represented in a vector space. For example, data representing a man-
ufactured product, could consist in a sort of identity card consisting in turn on
the list of constituents, their percentages, the different processing parameters and
even the name of the employee that produced it. All these informations could be
sorted into a list that will define the product’s identity card. Two different products
become represented by two distinct data. The important issue here is the metric
to be used to compute the distance between both products. It seems obvious that
calculating that distance between two products is much more controversial that
computing the Euclidian distance between two points drawn on a white paper
sheet.

Thus, data cannot exist without a metric for describing and manipulating them,
and when it is not defined a priori, this metric must be learned at the same time
that the classification is carried out. It is the way that most of AI-based classifica-
tion techniques (considered later) proceed.

2.2 Data reduction and intrinsic dimensionality
With a physics and its target both defined, an important issue concerns the fea-
tures to be considered to infer the desired output. The optimal choice can be stated
as follows: no more than the strictly needed, neither less than the required ones.
This is easy to express but difficult to apply.

Removing useless features can be performed by using different techniques. Some
of them are of a statistical nature (analysis of variance, ...), others are based on the
dimensionality of the manifold in which the multidimensional data (assumed to be
expressible in a vector space) is embedded. In the last case, we cite here linear (e.g.
Principal Component Analysis (PCA) [74]) or nonlinear dimensionality reduction,
among them, Locally Linear Embedding (LLE) [100], kernel Principal Component
Analysis (kPCA) [74], local Principal Component Analysis (`-PCA), Multidimen-
sional Scaling (MDS)[74], t-distributed Stochastic Neighbor Embedding (t-SNE)
[81], among others.

The just referred strategies are also known as manifold learning techniques. All
of them aim at removing linear and nonlinear correlations and then, approximat-
ing the intrinsic dimension of the data embedding manifold. There is not a univer-
sal technique for performing nonlinear dimensionality reduction and calculating
the exact intrinsic dimensionality of data. All of them involve a series of hyper-
parameters, assumptions, hypotheses and sometimes technical choices (e.g. the
so-called kernel trick in the kPCA). All of them work well with data expressed
in vector spaces. However, different variants or alternatives exist for addressing
more complex data, involving categorial features, sometimes incomplete, enabling
the discrimination between useful and useless features [30, 31, 51]. Autoencoders
(AE), a particular form of Neural Network (NN) architecture, represent an alter-
native route of performing nonlinear dimensionality reduction [41, 106, 47].

2.3 Combined features
Sometimes, all the features retained for the explanation of a certain target reveal
to be useful. However, they act in a combined manner. Imagine for a while, the
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velocity, density and viscosity of a fluid in a flow. These features can be measured
(different devices exist for accomplishing that task). However, the flow is solely
described from a feature that combines the former three: the Reynolds number.
The last, the most important from the point of view of the resulting flow, can not be
directly measured, but indirectly obtained from the three just referred measurable
features.

Discovering and extracting these combined hyper-features could be of great rel-
evance from the modeling viewpoint, and they are of major relevance when ac-
cessing to knowledge. However, its explicit identification is not an easy and direct
task. Some techniques perform the task, but in a black-box sense, as it is the case
when using the previously introduced AE (autoenccoders).

2.4 Time series
Time series, representing the system response at equivalent conditions, usually
differ if they are compared from their respective values at each time instant. That
is, two time series, even when they describe the same system in similar conditions,
never match perfectly. Thus, they differ even if they resemble in a certain metric
that should be learned. For example, our electrocardiogram measured during two
consecutive minutes will exhibit a resemblance, but certainly both of them are not
identical, thus making a perfect match impossible. A small variation will create a
misalignment needing for metrics less sensible to these effects. The same rationale
applies when comparing two profiles of a rough surface, two images of a foam
taken in two close locations, ... they exhibit a resemblance even if they do not
perfectly match.

Thus, techniques aiming at aligning data were proposed. In the case of time-
series, Dynamic Time Warping, DTW [88, 108] has been successfully applied in
many domains. The theory of optimal transport arose as a response to similar is-
sues [118]. Another route consists of renouncing to align the data, and focussing on
extracting the adequate, goal-oriented descriptors of these complex data, enabling
comparison, clustering, classification and modeling (from non-linear regressions)
[76].

Finally, data-transformation can be performed, to represent it in a more compact
way in a more appropriate space, as for instance the Fourier or wavelet transfor-
mation, or the one base on homology persistence, the so-called TDA –Topological
Data Analysis– revisited in the next section.

2.5 Data representation
As just discussed, sometimes features are associated with observable and measur-
able quantities and qualities, with sophisticated devices making accurate and fast
measurements. However, these features, very pertinent from the point of view of
the technician, are much less pertinent from the point of view of the modeler. It is
important to note that the more features are considered, the higher is the volume
of data needed to accomplish learning tasks.

Sometimes, the complexity of a learned model depends on the chosen observ-
ables. For describing the solar system (aiming at modeling mechanistically is
movement), one can make use of a metrics for locating at each time the planets
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with respect to the Earth (Ptolemy), or the sun (Kepler). Both are valid (no abso-
lute frame exists), but the former leads to a model much more complex to express
than the last. Thus, the complexity of a model strongly and intimately depends on
the description chosen for the data.

Certain models seem to be complex when described in the so-called physical
space (usually the Euclidean space and time). However, with alternative descrip-
tions, data become sparser and then more suitable for modeling purposes. Imagine
for a while a periodic sinus function, whose description needs a certain number of
data (dictated by the Shanon and Niquist representation theorem). Its description
becomes simpler and more compact as soon as it is expressed in the Fourier space.
Many representation spaces exist (wavelets, Fourier, DCT, ...) and their choice is
part of the whole problem solution. This rationale represents the foundations of
compressed sensing (the interested reader can refer to [55] and the references
therein).

As previously mentioned, the learned model complexity depends on the data
description. An adequate manipulation of the data could reduce the nonlinearity
of the learned model (as discussed above in the Ptolemy versus Kepler confronta-
tion). When looking for higher linearity, sometimes the dimensionality increases,
as in the case of the kPCA (without the necessity of making explicit the mapping
because the only need when applying the PCA in the intermediate space –of high
dimension– is having a scalar product, and the Mercer theorem allows computing
the scalar product in the intermediate space from the one calculated at the original
space by means of the so-called kernel trick) [74].

Other valuable transformation lies in the use of the Topological Data Analysis
(TDA), based on the persistence homology, that with the inherent invariances of
topology, becomes an appealing alternative for describing data with huge topol-
ogy content [13, 91]. This is the case of time-series or images of microstructures
(foams, poly-crystals, composite materials, ...) [126, 32, 33, 34]. TDA offers com-
pact and concise metrics able to discriminate complex data from its intrinsic topol-
ogy. Other possibility for addressing such a complex data consists of extracting
some valuable statistical descriptors (statistical moments, pair-correlation, covari-
ogram, ... [114]) on which applying usual learning strategies discussed later [126].

Last but not least, even if most data sets accept a valuable representation in the
form of a list, very common in machine learning, there are more appropriate rep-
resentations taking into account neighborhood, invariances, etc. Images are then
easily convoluted and graphs decomposed in segments and vertex on which the
learning procedures efficiently apply, as discussed later.

2.6 Quality and quantity
After being proved that data can not be dissociated from the envisaged goal, and
that its quantity is a relative concept that depends on many facts and consider-
ations, to complete the picture, the learned model complexity becomes strongly
dependent on all the just referred facts and choices.

Artificial Intelligence (AI) is usually associated to big data. However, in engi-
neering sciences; smart (or useful) is preferred to big. Devices for performing the
measurements with the required volume, accuracy and acquisition rate, are expen-
sive. Performing the measurements becomes very often technically complex (this
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is related to device placement, for instance), with many other difficulties related to
data transfer (mainly in the case of remote sensing), data-storage, data-treatment,
... needing well sized computational infrastructures. It is also important to note
that the optimal datum at the optimal location, remains sometimes unattainable
because of technical issues or even because of security or safety regulations.

It is at that point that the data/knowledge couple becomes a very profitable op-
tion. Until now, we emphasized the fact that data serves to create knowledge, or
for enhancing the existing one. Now, we are proving that existing knowledge al-
lows data becoming smarter. For that purpose, imagine for a while that we are
interested in knowing the temperature at Paris on the first of January, 2022. Based
on the fact of our accumulated experience (knowledge or simply common sense)
we can place a thermometer at the Sorbonne square and register the temperature
early in the morning, at noon and at mid-night. Thus, one thermometer and 3 mea-
surements are enough, whereas in absence on any experience or knowledge, one
could be tempted to put hundreds of thermometers at each street and register the
temperature each millisecond, to finally realize that most of this big data is simply
useless. Thus, in engineering applications, the choice is obvious: smart instead of
big, even if in many cases (e.g. tomography thermography, DLV, ...) the smartest
data remains usually extremely big!

The hybrid framework (called physics-augmented learning later), looks for a
data-driven enrichment of the physics-based model. The nonlinearity being in
general much smaller (most of the nonlinearity is expected to be already explained
by the physics-based model), needs much less data, a real added value of that hy-
brid framework.

Another way of reducing the amount of measurements, consists of discovering
the best locations and times where performing the measurements. These tech-
niques are grouped under the appellation of active learning [109]. In them, the
existing or acquired knowledge is employed to drive the data acquisition. Different
techniques exist, based on the pre-existing knowledge (as in transfer learning), sta-
tistical sensing (with their foundation in the Bayes’ theorem), some ones inspired
from robotics (e.g., SLAM), stochastic learning or those based on information the-
ory and the associated key concept of entropy (in the sense of the information
theory). All of them aim at measuring the minimum amount and most relevant
data.

When focusing on quality, the main aim is not having deterministic data by re-
moving most of its noise, or moving the noise to the lower scales, by significantly
improving the measurement devices with the associated cost. Waiting for mak-
ing it better, the data variability can be addressed by using standard or advanced
filters, widely employed in data assimilation (e.g., Kalman and extended Kalman
filters), or by taking into account the data variability within more adapted stochas-
tic learning settings. The data noise is not the most formidable enemy, the most
dangerous is bias. Outliers can be more easily identified and their impact limited
by simply removing them or by using techniques more robust to their presence
(e.g.,the L1 norm).



Chinesta and Cueto Page 10 of 24

2.7 Grouping and classifying
Data is usually grouped, expecting that a data belonging to a group share some
property with the group members. If European citizens are grouped by national-
ity, as soon as we identify a Spanish citizen we could presuppose that he speaks
Spanish.

The concept is quite simple. However, organizing data in groups in a supervised
or unsupervised manner is much more technical because of the necessity of having
and using a metric to compare data or to evaluate data proximity.

Since data clustering (unsupervised) or classification (supervised) entail a learn-
ing, in a certain sense, both techniques will be described and discussed in the next
section.

2.8 Data augmentation and completion
When data is not abundant enough, data augmentation techniques can be applied.
If some knowledge exists (reduced basis or data manifold) completing or augment-
ing data can be performed easily. Interpolating data in complex nonlinear mani-
folds remains to be a quite technical issue [92]. Data can be augmented by gener-
ating extra-data by using symmetry considerations or other kind of physics-based
knowledge.

Another valuable black-box approach proceeds by combining a data generator
and a data discriminator, with one trying to betray the other. This is the ratio-
nale behind the so-called Generative Adversarial Networks (GAN) [120], where
the data generator allows augmenting the learning process.

3 Methodologies: Learning

With data and all their just mentioned richness available, everything seems ready
to use them to learn the models relating the features with the target. In what fol-
lows, we address three learning modalities, depending on the relative weight of
preexisting knowledge (physics) and data: (i) data-driven learning; (ii) physics-
informed learning; and (iii) physics-augmented learning.

3.1 Data-driven learning
Data-driven learning is mainly based on the use of data. Different techniques are
revisited in what follows.

3.1.1 Clustering et classification
.

Unsupervised clustering proceeds by grouping the data depending on their rel-
ative distance. For that purpose a metric must be available. When considering the
k-means technique [83, 82], as soon as the number of groups is predefined, the
data is grouped in such a manner that a data belonging to a certain group, re-
mains closer to the group’s centre of gravity than to the center of gravity of any
other group.

When the ruler does not exist (e.g., the before mentioned identity cards of man-
ufactured products), the distribution of the data in groups must follow a certain
criterion. For example, the class to which it belongs. So far so good, however, to be
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useful, the border delimiting the different groups must be defined, like the borders
of the different European counties. These borders are the ones separating the data
in the most robust way, in the sense of maximizing the distance from the data to
the bordes. With the purpose of obtaining the best classification, these separators
can be linear or nonlinear, like the nonlinear borders of the European countries.
Now that the map of Europe is defined, if one individual is found in Spain, one
could assume (with a certain risk) that he speak Spanish. This is reasonable from
a probabilistic point of view, but there exists a non-zero probability that our indi-
vidual is simply a tourist than does not speak a single word in Spanish! Obviously,
more safe classification exists for inferring the spoken language.

Numerous techniques for data classification exist: Code to Vector (C2V) [2], Sup-
port Vector Machine (SVM) [25], Decision Trees (DT)[67] or its random forest
counterpart [10], Neural Networks and Deep Neural Networks (DNN) [41], often
convolutional (CNN) when addressing images [116], or Graph Neural Networks
(GNN) [11] when applied on data structured on graphs.

For enhancing the classification performances, the so-called boosting procedures
have been proposed and are nowadays widely and successfully employed [35, 36].
Other techniques at mid-way between the supervised and unsupervised ones are
proving their superiority and then attracting more and more the interest of an-
alysts, in particular the semi-supervised [129, 130] and self-supervised techniques
[73]. It is worth highlighting reinforced learning procedures[61, 90, 111], that are
becoming a major protagonist in AI.

When the target is quantitative and continuous, the resulting models consists of
linear or nonlinear regressions addressed in the next sections.

3.1.2 Linear regression
If for a while we consider data (input and output) sorted in vectors, that for the
sake of simplicity but without loss of generality, are assumed having the same size,
the simplest model consists of simply looking for the linear application (a square
constant matrix) that applied on the input data results in the associated output
data (or its inverse if one prefers). The rang of the resulting learned matrix de-
pends on the intrinsic dimensionality of the manifold in which data is embedded.
An incremental procedure for constructing it, inspired of the Dynamic Mode De-
composition (DMD, described later) was proposed in [98].

3.1.3 Nonlinear regressions
In the nonlinear case different possibilities exist. The simplest ones, based on poly-
nomial approximations, become inefficient in two main situations: (i) when the
polynomial degree increases, needed for describing for example non-polynomial
nonlinearities; and (ii) when the number of features (model parameters) increases.

One possibility for addressing the multi-parametric case consists of using sep-
arated representations at the heart of the so-called Proper Generalized Decom-
position, PGD. That separated representation computes sequentially the approx-
imation involving each parametric dimension (with the other dimensions frozen
within an alternated directions fixed point algorithm). Thus, all the data is avail-
able to solve the problem in each parametric dimension, enabling the use of rich
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enough approximation bases. However, the problem considered globally, becomes
under-determined, and in that case the number of solutions becomes undeter-
mined (infinite). All them describe very accurately the data used in the regression
construction (training data-set), but will provide very poor predictions (overfit-
ting) outside the training dat-set (the so-called test data-set or at any other data
point).

To avoid overfitting phenomena, different regularizations exist. Some consider
adapted basis and their associated collocation points (for instance hierarchical or-
thogonal bases and their associated Gauss-Lobatto nodes in the case of the Sparse
Subspace Learning (SSL) [9]). Others proceed by enriching the approximation se-
quentially while incrementing the polynomial degree [53]; or those making use of
sparse regularizations. The so-called Sparse Identification of Nonlinear Dynamics
(SINDy) regression [12] uses very rich approximation bases (by mixing polynomial
with any other function expected contributing to the target) and then selecting the
sparsest combination of the those functions for explaining the available data. Spar-
sity was combined with separated representations at the heart of the PGD in our
former works to conciliate multi-parametric settings with richness, small amounts
of data, while circumventing overfitting [103]. In that paper, different regulariza-
tions, for instance Elastic-Net, Ridge, Lasso, ..., giving rise to the so-called rsPGD
and s2PGD formulations, were analyzed and compared, as well as their combi-
nation with an anchored-ANOVA formulation [113] for recovering the sensibility
indicators that the analysis of variance provides as well as to better address non-
polynomial nonlinearities [68].

Even if the just discussed techniques perform quite well with reasonable non-
linearities, when the nonlinearities become intense and strongly non-polynomial,
without an a priori knowledge on its character, these techniques fail to perform
correctly in the scarce data limit. In that case the use of NN, and more particu-
larly Deep Neural Networks (associated with so-called deep learning) [41] are the
most appealing alternatives for addressing intense and general nonlinear behav-
iors. The universal approximation theorems, introduced for approximating func-
tions [89] and then extended for approximating functionals and operators, explain
the gain of popularity of these techniques, see [17] and [18] respectively. The gain
in efficiency results at the cost of becoming the predictions less explainable and
the necessity of higher volumes of data for performing the learning.

Other than the standard DNN (having several internal layers of neurons of dif-
ferent widths, both being network hyper-parameters), when the data to be manip-
ulated consists of images, curves or graphs, CNN or GNN introduced before are
preferable.

3.1.4 Dynamical systems
In the context of dynamical systems, one aims at learning the application that al-
lows computing the state variables at a certain time instant, from the knowledge
of the state at the previous time step. Dynamic Mode Decomposition, DMD, com-
putes a matrix (linear model) for that purpose, that is, a matrix (the model) able to
updating (in time) the system state from the current state [104]. The best constant
matrix enabling the representation of all the available data is computed accord-
ingly in general in a least-squares sense. Some constraints can be added during the
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learning process in order to ensure the stability of the resulting time integrator
(related to the spectral radius of the matrix that is being learned) [102].

This rationale can be extended for considering nonlinear models, by assuming
locally linear representations [101], as already employed in model order reduction
techniques involving linear reduced bases. Other more general framework con-
cerns the use of the Koopman operator theory [123].

Finally, the use of NN is also a valuable route, where the so-called residual NN
((rNN) are being successfully employed for integrating nonlinear dynamical sys-
tems [93]. Nonlinear Autoregressive Exogenous NN, NARX, allow taking into con-
sideration longer memory effects [8].

3.1.5 Miscellaneous
To finish this section, we would like to mention two additional learning scenarios.
The first is the one related to the incomplete observation of the system state. The
learned model must take this fact into account.

In computational mechanics, it is usual performing static or dynamic conden-
sation, when trying to express the internal (slave) degrees of freedom dependent
on the master ones (here, the ones that are accessible for observation). It is easy
to prove that in the static and linear case, a condensed model, relating input and
outputs in the region under scrutiny can be defined and learned. Actions apply-
ing in the hidden region are accessible from their effects on the observed region.
The transient case is a bit more technical, but under certain conditions such a
condensed model continues to exist [99], and in the most general case a series of
internal variables can be defined and learned. The use of the so-called recurrent-
NN [50] generalizes the just referred rationale and even extend them to nonlinear
settings.

The second scenario here addressed concerns the case in which different types
of data must be integrated into the learning process. Multi-Modal Learning rep-
resents a very valuable route for defining efficient learning frameworks. The so-
called Boltzmann machines (inspired from statistical mechanics) perform well in
those settings [110].

3.2 Physics-informed learning
The learning procedures just considered were based almost exclusively on data.
However, as soon as some knowledge exists, one is tempted to assimilate it in the
learning process, at the origin of transfer learning techniques [122]. Knowledge on
physics can, sometimes, be introduced in the NN-based learning process through
the adequate definition of the so-called loss functions, whose minimization allows
computing the weights of the different neuron connections.

Moving forward, one could imagine a regression describing the unknown field,
whose space and time evolution is governed by a partial differential equation,
PDE, subjected to the corresponding initial and boundary conditions. Thus, the
PDE residual can be included into the loss function, as well as the residual in the
fulfillment of the initial and boundary conditions. The learning process can be
efficiently performed because of the possibility of taking the derivatives of a NN-
based regression by using automatic differentiation [6]. This rationale is at the one
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present in the so-called Physics Informed Neural Networks, PINN, [95], extended
to the discovery of operators in [80].

A variant consists of enforcing thermodynamic consistency. In the reversible
framework, a regression is associated with the Hamiltonian, whose derivative re-
sults in the time derivative of the state variables. Thus, from data reporting the
time evolution of the state, the free energy and the conservation operator (Hamil-
tonian) are learned, leading to a symplectic integrator. In the most general irre-
versible case, the free energy and the entropy, as well as the conservation and
dissipation operators, are all them learned by subjecting them to some thermo-
dynamic consistency constraints. These techniques are known as Thermodynamic
Informed Neural Networks, TINN, or Structure Preserving NN, SPNN, with a rich
recent literature [39, 42, 7, 45, 46, 84, 128, 75].

In some cases the learning problem is formulated from the differential form of
the GENERIC model [39]. However, variational formulations are also available, as
the one of Herglotz (contact geometry) [117] or the one making use of the Onsager
variational formulation that introduced the so-called Rayleighian [49].

Thus, the PINN operates by replacing the usual finite element-based functional
approximation by a NN-based regression, which is very general, efficient and ro-
bust for describing strongly nonlinear functions, its main advantage. The price to
be paid is the necessity of solving nonlinear optimization problems even when
solving a linear PDE. Its thermodynamic variant allows learning potentials (the
trickiest issue arises when modeling thermo-mechanical systems) while incorpo-
rating any constraint (symmetries, ...).

3.3 Physics-augmented learning and hybrid modeling
Hybrid models consist of two contributions, the one resulting of a physics-based
model, and the data-driven modeling pragmatically the deviation between the
measured physical reality and the physics-based model prediction [23, 101, 86,
3, 102]. The main advantages of the augmented framework is double. First the
possibility of explaining the (usually) most important part of the resulting hybrid
(or augmented) model, the one concerning the physics-based contribution. Sec-
ond, with the deviation much less nonlinear that the observed reality itself (the
physics-based model contains an important part of such nonlinearity), less data
suffices for constructing the data-driven model.

The practical implementation of this simple rationale faces to three main chal-
lenges:

1 The physics-based model must be calibrated (by assimilating the collected
data) and solved at a rate compatible with the physical system evolu-
tion, even faster for anticipating future events. Model Order Reduction
techniques—revisited in the Introduction section—are main protagonists in
enabling real-time physics. These technologies have nowadays acquired at
a proved maturity, and some of them have been integrated into commercial
simulation softwares and computational platforms. Trying to minimize their
intrusiveness, different minimally invasive methodologies were proposed. In
general, these techniques operate by defining first a Design of Experiments,
DoE, then, by computing a high-fidelity solution at the different points of
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that DoE, for, finally, constructing the surrogate (also known as metamodel
or response surface) by using an appropriate regression (whose choice de-
pends on the amount of available data, that at its turn depends on the cost
of each high-fidelity resolution).

2 The data-driven model describing the difference between the measure and
the prediction given by the physics-based model just described, must be cre-
ated and interrogated in real-time.

3 Data are essential, as already mentioned, for calibrating the physics-based
model and for learning the data-driven one. Both procedures could ask for
different kind of data, collected in different locations and times, and hav-
ing different natures (for instance, times series, images, ...) Accurate and fast
data-assimilation techniques are also compulsory, and robust enough for ad-
dressing the data variability as previously discussed.

4 Methodologies: Verification and validation

Making a decision based on a catalog (or dictionary), after recognizing a pattern,
needs and adequate data classification, the construction of a dictionary and its en-
richment, and also techniques for performing efficient searches inside. This pro-
cess is the main one in diagnosis. On the other hand, making a prediction of the
state of a system (prognosis) needs to make use of a model (physics-based, data-
driven or hybrid).

However, the major issue in both actions, diagnosis and prognosis, concerns the
level or degree of confidence. In many domains of engineering, this confidence is
much more than a simple added value. In engineering, most components, struc-
tures and systems must be certified before of being employed to fulfill regulations.

In the case of physics-based models, centuries of science with well stablished
and well experienced models and solution procedures, enabled the requested con-
fidence to ensure the functioning and the risks of a design or decision. However,
when models are learned from data, and solely from data, many questions come
into play: (i) the data considered in the learning process were the adequate and
with the adequate quantity and quality, thus enabling to extract all the richness
present in the physical phenomenon under study?; (ii) Was the sampling vast
enough for covering all the functioning states? This second question is motivated
by the difficulty of data-driven models to extrapolate far from the data that served
to create the model (interpolation is safer than extrapolation).

Other than the previous points concerning the sources, other concern the learn-
ing process itself: was the chosen learning technique the most adequate? For in-
stance, using a linear regression for modeling a nonlinear behavior does not seem
the best choice. Moreover, many regression techniques involve a number of hyper-
parameters to be finely tuned, again from the collected data.

Depending on the confidence granted to the learned model, its predictions could
be used in an automatic way (high degree of confidence) or as simple suggestions
offered to the decision-maker (lower level of confidence).

In the context of the simulation-based engineering, one of its key branches con-
cerns the verification and validation (V&V). The former quantifies the error be-
tween the actual solution and the one produced numerically, and the last quanti-
fies the agreement between the model solution and the real system behavior itself.
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In what concerns the verification, different error indicators and estimators, a priori
and a posteriori, have been proposed. The last are based on the computed solution,
and the former on the model properties (the ones associated to the differential
operators and the considered approximations and discretization). Other than es-
timating the error, confidence intervals can be also derived and even more, with
certified bounds.

However, verification and validation remain much less developed in what con-
cerns learned models. There is a large variety of available learning methods, most
of them operating in a black-box mode, involving a number of hyper-parameters,
that without any a priori knowledge, must be themselves finely tuned from the
available data to maximize the predictive performances. Thus, there are several
sources of inaccuracy, among them: (i) the data, and in particular its alignment
with respect to the goal, quantity, quality, ...; (ii) the accuracy of the considered
learning technique; (iii) the partition of the available data into the two data sets,
the training data-set and the test data-set; (iv) the position of the evaluation point
with respect to the position of the training data-points.

The response to all these questions seems compulsory for gaining confidence on
the AI outcomes. To move beyond the usual performance indicators, based on the
difference between the predictions and the collected data in both data-sets, the
training and the test, the physics-informed and physics-augmented frameworks
offer new possibilities of enhancing confidence.

5 Applications

This section revisits the use of data-driven techniques on different domains: mate-
rials and structures, fluids and flows, processes and couplings, and finally complex
systems. For a more extensive review the interested reader can refer to [28] and the
numerous references therein.

5.1 Data-driven materials and structures
In the context of materials, technologies able to access the finest scales of mate-
rials to perform observations and measurements, combined with the technologies
for assimilating or learning from collected data, have experienced remarkable pro-
gresses, enabling to bridge the different scales in the description of materials. For
that purpose, an efficient dialog between data and models, the last being based on
the physics, on the data or having a hybrid nature, has been the key progresses.

The trickiest issue was and continues to be data itself: what features to con-
sider, how to represent them, how to represent the different chemical elements, the
atomic structure and bonds, the macromolecules conformation with their topology
and the crystallographic structure, the dislocations and other localized defects,
... how to assimilate that data into the models and how to construct data-driven
model from them, among many other questions without a definitive (unique and
general) response [4, 1, 96, 121, 38, 124, 105].

At the mesoscopic scale, far from the atoms and the finest description of the
structure of the matter, but still far from the part, one is interested in describing
the effective behavior of a representative volume of the considered solid material,
and again different approaches are possible and are being widely considered by
the scientific community:



Chinesta and Cueto Page 17 of 24

1 The first is almost based on the collected data, complemented with trusted
first principles (and their associated variational formulations). The collected
data is expected to describe solely the material phenomenological behavior,
without the need of assuming any template or further assumptions, as con-
sidered in the seminal work of M. Ortiz [64], with many others that followed
[65, 66, 29, 14, 44].

2 A second approach considers the collected data to lie on a manifold embed-
ded into the higher-dimensional behavior space. The manifold dimensional-
ity depends on the complexity of the behavior (linear or nonlinear, reversible
or history dependent, ...). As soon as the collected data allows to infer the
manifold structure, then first principles are solved with the data-driven be-
havior manifold [71, 52, 54, 57].

3 A third approach is much more aligned with the physics-informed ratio-
nale. The collected data is used with a number of quite general rules repre-
senting, in a quite general form, the material description, for constructing
the so-called constitutive manifold that intimately embraces data and existing
knowledge [69].

4 Other physics-informed approaches, within a thermodynamical setting, pro-
posed a regression of the free energy, from which the behavior result by
simple differentiation, and the regression is then tuned with respect to the
collected data, while enforcing during the construction as many conditions
as constraints dictated by the existing knowledge (symmetries, objectivity,
among others) [71, 85, 72, 127]. Other physics-informed approaches were
proposed in more complex (dissipative) settings [39, 45, 46].

5 Finally, within the augmented rationale (or hybrid paradigm) the real be-
havior can be assumed represented by a first order one (calibrated at best
from the available data) complemented by an enrichment (or correction) fill-
ing the gap between the collected data and the predictions obtained from
the chosen and calibrated model [40], with again some constraints applying
during the data-driven enrichment model construction (e.g., convexity of the
yield function [56]).

Other works addressed multi-scale problems [78], macrostructural analysis [77],
learning constitutive equations from indirect observations [48] or the plasticity
modeling [87, 48, 43].

Despite of the major progresses recently accomplished, many challenges remain
open and are attracting a lot of interest within the scientific community, among
them, the ones concerning:

• The description and evolution of the so-called internal variables, able to con-
densate at the current time all the effects of the past material history. Some
proposals exist, however, [46].

• The material description at the microscopic scale to take into account the
subjacent physics, that can be impacted by a bad (or too poor) choice of the
descriptors and model features. This point is essential to address the inverse
problem of finding the best atomic or microscopic structure for attaining the
optimal macroscopic properties, at the origin of the so-called materials by
design.
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• At the scale of the structure, a wide topic concern the Structural Health Mon-
itoring, SHM. The loss of performance can be motivated by some amount of
local damage, expected to be identified from the analysis of experimental
data (diagnosis). However, to give more quantitative predictions on present
or future consequences or actions, a model seems a valuable option. The di-
agnosis and prognosis [112, 94] must be accompanied of an effective sensing.
For that purpose, physics-augmented learning (the hybrid modeling ap-
proach) seems to be particularly well adapted. We could assume that the real
structure can be expressed from its undamaged counterpart (assumed well
modeled) complemented by a correction that removes from the undamaged
model the mechanical performances at the location were damage occurs. To
locate and quantify that searched correction, the (local and global) structure
equilibrium, as well as the collected data, suffice for calculating the data-
driven physics-informed model correction.

• In the case of very large structures, the model can not retain all the details. A
resolution level able to represent all the structural details will be numerically
untreatable, and by coarsening its representation (as usually carried out in
practice), the effects of the details are lost. The Grail consists of enriching the
model, without increasing its size or resolution, for accurately representing
the collected data. In that case, as the model should be enriched everywhere
within the hybrid modeling approach, the correction will become too rich
with respect to the usually scarce, available data. When the structure is sub-
jected to loads living in a certain reduced subspace, the structural problem
can be formulated in a reduced space, and there, the enrichment becomes
local and few data suffice.

5.2 Data-driven fluids and flows
Concerning fluids, we find first the complex rheology associated to the so-called
Non-Newtonian fluids, whose behavior, in general nonlinear, also depends on a se-
ries of conformational coordinates (also known as configurational), whose number
and time evolution have to be determined (modeled). As these fluids are composed
of entangled macro-molecules, or consists of concentrated particle suspensions,
the specificities for describing them, for correlating these fine description with the
resulting mesoscopic properties, resembles to the discussion we just addressed
concerning the data-driven description of solid materials.

Fluids, even the ones with the simplest rheology, linear (Newtonian) fluids, are
faced to other difficulties as the incompressibility, also found in some classes of
solid materials and meta-materials, and the nonlinear advective term at the origin
of turbulence. The main consequences being:

• The need to employ appropriate discretization schemes with respect to the
advective terms and with respect to the mixed formulations (to address the
fluid incompressibility or the non-Newtonian rheology).

• The necessity to describe turbulence throughout all the scales at which its
effects manifest.

• The model change: the elliptic Stokes model (linear and elliptic) at low
Reynolds number whose only difficulty comes from the incompressibility
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constraint. The Navier-Stokes, NS, model at higher Reynolds numbers, where
the advective effects must be addressed, and then, after a certain critical
Reynolds number, turbulence comes into play. Finally, the NS model degen-
erates into the compressible Euler model where discontinuities (shocks) can
appear, needing for adequate numerical schemes for capturing and resolving
them.

• The strongly nonlinear couplings in presence of phase change, chemical re-
actions, combustion, ...

All these difficulties entail extremely fine discretizations (in space and time),
challenging the most powerful computing platforms. It is for that reason that ma-
chine learning techniques are attracting the more and more interest, without the
aim of being exhaustive:

• To model the complex rheology from the use of any machine learning proce-
dure (data-driven, physics-informed or physics-augmented), operating more
at the fluid scale than at the one of the flow.

• To discover or tune discretization schemes with the optimal properties (sta-
bility and accuracy).

• To model and describe turbulence. In that sense, a hybrid approach could
assume a first order model and enrich it (from a data-driven correction) to
better represent the experimental findings.

• To enrich coarser representations within the hybrid approach for conciliating
accuracy and effectiveness.

• To construct (internal or external) flow (aerodynamic or hydrodynamic) sur-
rogates with respect to a number of features (geometry, inflow velocity, ...
), and then, including them in the optimization loop or in any application
needing real-time flow evaluations.

Some valuable references covering the topics previously discussed are [79, 5, 59,
131, 97, 60, 107].

5.3 Data-driven processes and couplings
Processes transform matter in structures, properties into performance. Processes
involve solids and fluids, structures (e.g., stamping), flows (e.g. injection or extru-
sion) and all the physics with the associated couplings. Thus, a process becomes a
multi-parametric transfer function that groups all the parameters characterizing
the incoming materiel with all the ones that are characteristic of the process itself.

Here, one usually looks for a function that expresses the final, targeted perfor-
mance as a function of a number of features, with the aim of discovering the best
material/process couple associated with the optimal performances, enabling per-
formance by design. For that purpose, the different data clustering and classifica-
tion, and the different data-driven (informed or not) regressions are being widely
employed.

In general, most modeling approaches remain quite coarse-grained and lack of
generality. Relating the oven temperature to the time evolution of the temperature
of a thermally treated part, can not be generalized to a part with different size or
geometry for example. To enhance generality, the data features must be enriched
or/and the learning process informed or augmented.
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To the just referred difficulties, we should add the ones coming from the multi-
physics coupling: electromagnetic forming, induction or micro-waves based pro-
cesses, thermal treatments (heating or tempering), chemical (e.g. reactive resin
transfer moulding), mechanical (vibrations, ultrasounds, shoot penning, ...) or the
ones coming from the fact of considering multi-physics performances (thermal,
acoustic, damping, ...) Mastering all the connections is crucial for inverting the
design arrow, enabling materials and performances by design.

There is an exponential increase in the number of publications reporting that
modeling route, in many technology domains: machining and drilling [16, 63, 24],
additive manufacturing [132], reactive extrusion [58, 15], induction hardening
[27], chemical reactions [125], among many others.

5.4 Data-driven complex systems of systems

Complex systems of systems represent one of the most challenging scenarios. The
system size, entanglements, the variability and uncertainty propagating far from
its source, the presence of emergent behaviors, chaotic dynamics, etc., make it
difficult to proceed with either fully data-driven techniques (not enough data) or
physics-based model (too deterministic and unable to cover large systems while
keeping the right degree of resolution).

The use of physics-informed and physics-augmented learning procedures com-
bined with some physics-based model of components or system parts, and fully
data-driven model of the other parts, where no model or knowledge exist, seems a
valuable option for succeeding their modeling.

This framework is expected contributing to enhanced smarts grids, smart cities
and nations, smart industry (including the economic ecosystem), mobility net-
works, ... that will constitute without any doubt the next technological revolution.

6 Conclusions

In this short review we have revisited the main methodologies available to acquire
knowledge from data, the ones making use of data almost exclusively, and the
ones incorporating physics and knowledge in different ways, by informing or by
augmenting the learning process.

The three main protagonists have been revisited: data with its amazing richness,
machine learning procedures, and the ones enabling to gain confidence on data-
driven designs and decisions.

In the second part of the paper, we have revisited four major application do-
mains, by referring to some existing works, and highlighting some remaining ma-
jor challenges.

As Winston Churchill once said in another, very different context: Now this is
not the end. It is not even the beginning of the end. But it is, perhaps, the end of the
beginning.
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