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Abstract

This work offers a discussion on how computational mechanics and physics-
informed machine learning can be integrated in the process of sensing, under-
standing, and reasoning of physical phenomena. A foundation in physics can
leverage interpretability, data efficiency, and generalization of the sought models
for the dynamics of complex physical systems. Consequently, this synergy results
in promising approaches to develop world models that are capable for perform-
ing accurate and reliable simulations (reasoning) in low-data regimes. Among
the possible alternative formulations, we highlight how thermodynamics offers a
general framework to construct inductive biases, demonstrating its potential in
applications where physics-consistent predictions are essential.

Keywords: Physics perception, Inductive biases, Thermodynamics machine learning,
Augmented intelligence, Hybrid twins
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1 Introduction

The recent appearance of chat bots based on the employ of Large Language Models
(LLMs) is having a profound impact in the way citizens see artificial intelligence and its
capabilities [1]. However, these systems exhibit severe limitations in aspects related to
the construction of world models, despite some claims on the contrary [2]. Particularly
true with regard to the construction of physical world models, there is now a consensus
that, for an artificial intelligence to be able to understand the surrounding world, it is
necessary to

� explain and understand what we see,
� imagine things we could see but haven not yet,
� problem solving and planning actions,
� build new models as we learn more about the world,

(cf. [3] and references therein). Cognition does not only consist in merely observing
the world, but also in actively creating our perception of the surrounding reality. Our
sense of reality is affected by our beliefs and intentions and, simultaneously, is limited
by our knowledge and understanding of the world [4] [5]. The ability to sense and
understand the physics of the environment is known as physical scene understanding.
Through computer simulation, this discipline aims thus to provide machines with the
basic capabilities of physical understanding [6]: (1) interpretation of the environment,
(2) physics prediction, and (3) learning of newly observed phenomena.

The first task (“understand” what the machine sees, through computer vision, of
course) is often referred to as machine perception, which is one of the main pillars
of human cognition [3] [7]. To this end, the artificial intelligence must be able to
construct a model during runtime—or, at least, to be able to update an existing one,
as stated in the fourth bullet above—based on the data coming from its exploration
of the surroundings.

The second bullet is related to prognosis: forecast what the future will look like,
“reasoning”. The interest on the development of learned simulators to this end is
growing [8] [9] [10]. As a result, computer simulation may be the way to develop next-
generation intelligent and autonomous systems capable of operating in any unknown
and complex real-world scenario [11] [12].

In this context, it would be impossible for a person to cope with all the informa-
tion they consume without using some type of knowledge bypass that favors making
decisions, the growth of personal knowledge, and an adequate selection of what will
be remembered [13].

This issue also applies to artificial intelligence. An excessive amount of information
leads to the curse of big data, where the treatment of information becomes challenging
and overwhelming. Without bias shortcuts, learning is deeply conditioned by data
quality issues, and interpretation can be impractical [14].

In this work, we will disclose human perception and its approximation with arti-
ficial intelligence, which aims to replicate human cognition. We will analyze how
physics-informed machine learning leads to a more efficient understanding of the
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physics of reality. In addition, we will expose the benefits of the development of aug-
mented perception systems where additional hidden physical quantities of interest can
be streamed [15] [16].

The possible applications of this type of artificial intelligence exceeds the possibil-
ity of developing embodied intelligences able to cope with the physical world. From
an industrial point of view, for instance, the possibility of developing cognitive digi-
tal twins is of utmost interest [17] [18]. Beyond artificial intelligence, the interest of
augmented intelligence is out of question [19].

2 Background

Within human cognition processes, physical scene understanding consists in perform-
ing predictions of real world dynamics. Based on our previously acquired knowledge,
both forces acting upon objects and their consequences can be estimated. Theories on
cognitive learning attribute this skill to experience [20]. Human learning is conceived
then as a continuous on-the-loop process that gathers data obtained from experimen-
tation. Based on this statement, several studies in computational cognitive science
show proofs of the correlations between computational and machine learning processes
and how people approximate physics principles [21] [22] [23].

The physics perception cycle is presented in Fig.1. There is a connection between
cognition and reality through our senses, where data is perceived and interpreted.
With the inferred knowledge about the state of the scenario, predictions are done
with our beliefs of physics. In this step, one can add a learning bias to constraint the
beliefs of the learnt physics, e.g., the existence of gravity. As predictions are made, the
loop corrects and enriches by comparing the results with the ground truth to improve
future predictions.

Physics perception can be split into several pieces that together create the desired
physics engine. Knowledge inference puts emphasis in the data acquisition phase and
interpretation of data [24]. Object recognition and tracking [25] [26], inference of physi-
cal states from images [27], or property estimation [28] [29] are some of the development
paths of these group of techniques.

With this information, the system enters into the prediction stage [30][31]. This
has been one of the most prolific fields since the rise of deep learning. In a range of
methods that go from purely data-driven to completely knowledge-driven approxima-
tions, several solutions have aroused trying to replicate human physics abstraction
[32][9] [33] [34]. Currently, one of the main challenges is to perform enrichment and
correction of physics when there is a deviation from reality due to changes in the
physics context [35] [18]. These systems must be implemented in active independent
machine systems for action recognition and planning, human interaction [36] [37], and
reinforcement learning [38] [39].

This review offers a vision mainly focused on one of the main targets of this field:
the abstraction and rich understating of physics for simulation and correction of the
forecast of the dynamical process. This work is structured as follows. In a general-to-
specific composition, Section 3 provides an overview on the most recent developments
and approaches in data interpretation and motion prediction. Section 4 dives into the
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Fig. 1 Physics understanding loop for machine systems. Real measurements s0, . . . , sn are the infor-
mation available to perform both predictions and enrichment of the physics engine. The data is
perceived and interpreted to enter a simulation loop constrained by some imposed inductive biases.
Then, the prediction, and (possibly) some additional hidden variables are displayed. The result is
compared with measurable quantities for correction.

use of thermodynamics-based inductive biases through the stages of physics percep-
tion. Section 5 analyses next challenges in the field and, finally, Section 6 offers a
summary of the main conclusions that arise from this review.

3 Simulation as a tool for physics perception

We consider one or more target objects, which are tracked in a series of RGB-D
images. While rigid objects can be reconstructed very accurately by using a moving
RGB camera, deformable objects render the problem ill-posed, since these cameras
record only one snapshot of the deformed object per frame. Therefore, the interest of
using RGB-D cameras, able to provide with two different perspectives of the object at
each time instant—very much like the human eyes work—is of great interest [40]. The
goal is, on one hand, to obtain a rich understanding of the dynamics of the object(s),
which moves across the scene and interacts with the environment, and, on the other,
to predict its future states.

Perception systems are to be trained on a sequence of these RGB-D images where
the dynamical features of the object (physical and dynamical properties) must be
estimated. To this end, the physics perception engine must synthesize the available
information, and transform it to augmented information of the object that can be used
for more elevated purposes.
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Machine learning will be the tool for learning a map from the visual and sensored
inputs to the outputs. In this work, we will focus on data-driven approaches, and
especially those based on deep neural networks.

In this setting, physics-based simulations are the means for developing and test-
ing physics perception systems. Simulation is understood as the approximation of
dynamic systems to replicate the behavior of both machine and environment in time,
which results in a hybrid twin of reality. Black-box (physics-free) simulation is hence
an unreliable approach for decision making: only trustworthy and interpretable results
must be used, and this is achieved only if the simulation relies on physics. Nonethe-
less, physics-based simulation can be employed in several manners depending on the
objective of the work.

3.1 Interpretation of the scene

The connection between real and virtual environments is made through the under-
standing, interpretation, and reconstruction of the surroundings from data acquired
from diverse types of equipment, i.e. sensors and cameras. With this information,
machines can perform both credible and physically valid scene reconstructions with
which to predict future interactions between the target object and the environment.
Hence, inferring latent representations of physics from data is the first step for the
development of scene understanding algorithms. One of the applications of computer
vision is the distillation of such physical knowledge from images and sensors. This
capacity enables the actual awareness and understanding of the present objects and
their interaction [41]. Figure 2 shows the pinhole approximation to project 3D informa-
tion to 2D images, which is used to recover depth information. Projection correlation
is described by

p = A[R|t]Pw,
where Pw is the 3D point that is to be projected to the 2D image plane, A the matrix of
intrinsic parameters of the camera, and R and t the rotation and translation matrices
respectively to reference the position of the camera to an initial coordinate system in
the 3D space. The intrinsic parameters A stablish a correlation between the camera
coordinate system and the image coordinate system

p = APc =

fx 0 Cx
0 fy Cy
0 0 1

Xc

Yc
Zc

 .
The camera is described by the focal lenght fx and fy, and the center of the coordinate
system of the image plane Cx, Cy.

Images and depth reconstruction is the information usually used in perception
systems. Works oriented towards property prediction, such as material analysis, learn
the main features of objects from this information to propose problem-specific models
[42] [43]. In [44], authors propose a Bayesian Optimization approach to learn the
properties of liquids from videos. They perform common manipulation tasks, such as
stirring and pouring, comparing the reality with simulation based on the predicted
properties. Other works focus on the perception of position and velocity fields from
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Fig. 2 Pinhole camera scheme. Projection from 3D to 2D.

images and sensors. [45] makes use of recurrent neural networks to link observed
measurements with deformation states in soft robotics. Although fluids are the most
difficult setting to be perceived, several techniques arise to reconstruct fluid volumes
[46][47][26].

A different approach to learning state representations is to work with latent, or low-
dimensional, manifolds, where physical attributes are embedded. From this manifold
one can extract correlations to perform dynamics simulation. Several works combine
analytical models with latent representations to perform an interpretation of sensed
data and perform dynamical forecast [48] [49] [50] [51]. Kandukuri and coworkers [28]
infer physical properties through self-supervised learning, and use transformers [52]
for dynamics prediction.

One of the main difficulties that needs to be addressed in this type of approaches
is the reconstruction of dynamical states from partial information. On the one hand
we find reconstruction issues of information fields from sparse measurements. Purely
data-driven deep learning is an appealing option for such task [53][54] [55]. However,
most recent approaches rely on geometric or inductive biases to fulfill the compliance
of the solution. Graph Neural Networks are a novel framework for these developments.
In [56], the authors make use of graph neural networks to exploit the geometrical
knowledge of the domain for information recovery. Authors in [57] employ a bayesian
approach to account for the sparsity and noise of the measurements guided by the
fluid governing equations, i.e. Navier Stokes. Gappy POD is also a popular approach
for field reconstruction [58] [59][60] [61], especially in robot planning [62] [63] and fluid
dynamics studies [64] [65]. Finally, super-resolution [66] is a growing field, specially in
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fluid dynamics [67][68] [69] and image reconstruction and enhancement [70] [71] [72],
with potentially interesting applications for physics perception assemblies.

On the other hand, other works focus on the recovery of information of internal
variables required to perform physically consistent approximations [47] [73] [74] [75]
[53]. [76] and [77], for instance, include observed information (displacements and forces
for the former, and fluid measurements for the latter) into a physically sound model to
extract hidden, unmeasured, information. Also, works based on neural networks, such
as Erichson et al. [78], show increasingly good performance for information recovery.
In [79], the authors proposed a scheme based on Gated Recurrent Units (GRUs) to
connect partial information of the free surface of fluids with the latent representation
of the full dynamics. In a somehow similar spirit, Sun et al. reconstruct dynamical
systems with partial information through the use of recurrent neural networks to
recover missed information from the history analysis of data [80]. In spite of not being
based on RNNs, Antonova et al. obtain the state information of a sequence of images
by representing the deformed object’s shape as a distribution embedding [81].

3.2 Computational reasoning about physical events: forecasted
dynamics

Physics-free techniques look for motion correlations [82] [83] and feature extraction
(position, distance and velocity fields) [84] [85] [86] to construct simulators from video
sequences. Usually, the best performance approaches rely on Recurrent Neural Net-
works, such as LSTM [87] [88] [89] [90]. A step forward is the inclusion of human biases.
For instance, [91] succeeds at learning general physics principles with a recurrent
state space model (RSSM) [92] by imposing development as stochastic optimization
and development as complexity constraints, which are hypotheses of human cognition
learning. In spite of its good results, it does not implicitly fulfill any physics princi-
ple. In contrast, the inclusion of physics priors has demonstrated to foster the general
comprehension and interpretation of any event [93] [94] [95].

There are several phenomena that are particularly complex in the context of
physics perception. This is, for instance, the case of contact [96] [97] [98]. Contact is
widely present in physics perception since objects are in continuous interaction with
the surrounding scene. In Strecke et al., the authors propose an approach to face
contact based on signed distance functions for differentiable physics simulation [99].
More recently, Hernandez et al. employ a Port-metriplectic formalism, a thermody-
namics consistent framework for open systems that takes into account the possibility
of analysing different objects in interaction [100].

Differentiable formulations are a popular approach in motion learning and planning
[28]. This technique consists in incorporating physical equations of the phenomenon
under study, with a chosen discretization, in the Deep Learning algorithm [101] [102]
[103]. In other words, the networks are trained together with a numerical simulator
instead of incorporating a residual physics loss. Li et al. [34] use particle-based inter-
action networks to learn the physics engine at a particle level of description, and
use graph theory to propagate the interactions among the particles. From the same
authors, [51] performs Visual Reasoning with Differentiable Physics (VRDP), which
consists in learning together visual interpretation and reasoning, language concepts
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and properties of the objects involved in the simulations to perform the predictions. In
this case, the simulator is phrased for rigid bodies to model, among others, collision.

In contrast, physics-informed machine learning directly includes general knowledge
about the physics leading the evolution of a system to guide the learning process [104]
[105]. This is done by the imposition of physics priors, or biases, to penalize those
results that deviate from the fulfillment of the physics, in the case that the governing
equations are known—something that is not always the case—[14]. As a result, the
network learns more general, interpretable, consistent, and accurate representations
of the dynamics for intuitive physics [106] [48] [107] [108]. These constraints can be
fulfilled in hard or soft manners [109]. Hard constraints are restrictions that the method
must fulfill [110] [111] [112] [113]. In [114], for instance, authors impose momentum
conservation for learning fluid dynamics. This is done by a modification of the kernels
of convolutional neural networks through a correlation between the internal forces and
the residual positions.

However, soft constraints are the most commonly chosen approach. Contrary to
hard constraints, soft constraints include the fulfillment of a restriction as a weighted
penalty in the loss function [115]. One popular case is the use of Physics Informed
neural networks (PINNs) [116], which include an additional term in the loss from the
evaluation of the fulfilment of the PDE that describes the phenomenon under study
and the interaction across environments [117] [118]. The latest trends, such as Huang
et al. [119], combine Graph Neural Networks and ODEs to work over unstructured
domains and partial observations of the physical domain for physics perception, such
as spring motion and walking forecast.

In spite of its popularity in the computational community, PINNs are not an
extended technique in physics perception given that, usually, the governing PDE is
considered unknown. Hence, a different framework is required to perform the approx-
imation to dynamical systems with neural networks by the imposition of specific
structures that ensure the fulfillment of the physics laws of reality [120]. If the prob-
lem formulation is onservative, and therefore can be approximated as a Hamiltonian
system, this formalism can be applied as a restriction to guide the training process
[121][122] [123] [124].

Nevertheless, for dissipative, non-reversible systems, Hamiltonian formulations
must be modified accordingly. Thermodynamic frameworks appear in this circum-
stance to provide an interpretable and general solution [125] [126] [127] [128]. Masi et
al. [129] impose the compliance of the first and second laws of thermodynamics pre-
sented as PDEs through automatic differentiation. However, this method is based on
the knowledge of internal variables required for the description of the thermodynamic
state of the material, as is also the case in [130]. By using the Generalized Osanger
Principle, Yu et al.[131] developed a learning scheme that describes the evolution of a
system in terms of its energy and entropy potentials. The Generalized Osanger Prin-
ciple is optimized for data-driven inference using a Runge-Kutta scheme. Huang et al
present a similar approach [132] which, instead, performs optimization by minimizing
the Rayleighian [133], an alternative formulation of this principle.
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The two last mentioned approaches are basically based on the learning of two
potentials—instead of one, the Hamiltonian—that account for the reversible and irre-
versible part of the dynamics. This takes the form of a metriplectic formulation
since both metric and symplectic parts are present [134]. With the same spirit, the
GENERIC formalism (General Equation for Non-Equilibrium Reversible-Irreversible
Coupling) posses a metriplectic structure accompanied by the so-called degeneracy
conditions to fulfill the first and second principles of thermodynamics [135]. Several
successful works have been developed under the umbrella of GENERIC given its flex-
ibility to be applied to either dissipative or conservative phenomena [136] [137] [10]
[138], also for physics perception [79] and augmented reality [139]. Hernandez et al.
combined the use of GENERIC as an inductive bias, and graph networks as geometrical
biases, demonstrating the versatility of this approach [140].

In Section 4 we dive deep into the GENERIC formalism, given its importance in
the development of an inductive bias that ensures thermodynamic correctness in the
reasoning process.

3.3 Continuous learning

In the introduction above, we have highlighted that a crucial aspect for a system to be
able to understand the physics of the surrounding environment is to be able to refine
the models as it learns from observation. Hence, simulators and perception systems
require a fine-tuning step to adapt to evolving environments and previously unseen
situations [141] [142] [108] [143] [35]. TuneNet [144] performs parameter update with
one-shot observations in perception systems. This is done by learning a network on
pairs of simulations with known parameter differences. Lutter et al. [145] employ Deep
Lagrangian Networks (DeLaN) to learn on-the-go the underlying dynamics with sym-
metry preserving networks, showing better performance than black-box based domain
adaptation.

Techniques globally coined as Imitation Learning learn from observed demonstra-
tions [146]. Generative Adversarial Imitation Learning, GAIL, employs generative
adversarial networks (GANs) to train a discriminator that can discriminate between
previously learnt and new trajectories of the system in phase space, to enrich the
simulation loop [147]. In the same spirit, Chen et al. include differentiable physics
simulators to update the policies to substitute the GAN discriminator [148].

As an obvious application of this rationale, hybrid twins (also known as cogni-
tive twins) combine previous knowledge with new data [17] [149]. The original model
may not account for complex effects, subtle dynamics, o environment changes, and
the approximation is to be enriched with new data [106] [150]. In [18], the authors
presented a hybrid twin that performs the correction of the strain prediction of a
viscous-hyperelastic beam from sparse observations.

Transfer learning is an ad-hoc technique to perform adaptation [151]. If one approx-
imation has properly learned generic features of the phenomenon, the new simulator
just has to perform a fine-tuning of a few parameters, enabling correction with low-
data regimes and partial measurements. This technique has been used in manifold
adaptation for model order reduction [152], and dynamics correction [153] [154] [155]
[156].
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4 Thermodynamics-informed perception of physical
phenomena

It goes without saying that the laws of thermodynamics apply to any known physical
phenomenon, since they provide fundamental principles and laws governing the behav-
ior of macroscopic systems at the most general level of description, that of invariant
quantities. As a result, they constitute a very convenient framework to guide the scene
understanding process from a computational perspective.

Considering the three steps of physical scene understanding, we propose a frame-
work based on thermodynamics to reconstruct visual information, perform learned
simulations [8], and achieve active adaptation and correction. We chose as a proof
of concept to physics perception the sloshing dynamics of a general fluid, given its
nonlinearity and complexity, along with its practical interest for embodied systems
manipulating fluids. The proposed system will carry out perception in a continuous
loop, integrating perception, reasoning and correction. To this end, we consider a glass
of glycerine as a starting point of the system proposed (viscosity µ = 0.950 Ns/m2

and density ρ = 1261 kg/m3).
Our perception system consist of the following steps:

1. The process starts by learning a mapping from partial visual measurements to
a representation of the full dynamical state of the fluid. Note that the RGB-D
camera is able to see the free surface of fluid only, it does not register any infor-
mation concerning velocities (other than the one of the glass), stresses, etc. These
measurements will therefore be correlated to a low dimensional manifold where
the information is embedded. In addition, this reduced order representation of the
dynamics will enable realtime simulation.

2. Then, a learned simulator is trained: instead of simply assimilate the data to a
known governing equation, we propose a neural network that learns the operators
of our thermodynamics framework at each time step.

3. Finally, a correction algorithm is proposed to build the hybrid twin that corrects,
if necessary, the learnt model. This completes the perception loop.

4.1 Reconstruction of the perceived dynamics

The proposed machine learning strategy is based on the fulfillment of the principles
of the thermodynamics. For this reason, we must be able to characterize the ther-
modynamic state of the system under study by means of an appropriate selection of
state variables. However, the main drawback of this description is the impossibility of
measuring some of these variables, i.e. internal (phenomenological) variables, by using
commodity computer vision means.

In the absence of necessary experimental information, the system is first trained
with synthetic data. To this end, the sloshing fluids are approximated with Smooth
Particle Hydrodynamics [157], which is a convenient framework for fluid simulation
in free surface settings. In addition, this level of description is shared with human
thinking [158]. Bates et al. performed a study to analize human liquid reasoning to
build a computational analogy. This work resulted in demonstrating that participants’
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predictions matched those performed with computational models built upon particle
interactions in a coarse grained level. Thus, the use of this type of description is
justifyed. . To fully describe the energy of the system we require information about
the position p, velocity v, internal energy e, and stresses τ for each particle at each
time step to characterize the dynamical evolution of the system [159]. A database is
prepared with computational simulations where we have access to the whole set of
state variables required for a thermodynamics-informed description of the motion of
the fluid. Then, this state will be reconstructed from partial measurements of the free
surface.

We follow an approach based on latent physical representations, in which we learn a
reduced representation of the sloshing dynamics. We make use of model order reduction
techniques based on deep-learning for efficient compression. As a result, we not only
obtain a latent representation of the phenomenon, but also foster the inductive learning
process in this space and achieve realtime performance of the calculations [160].

We choose a stacked sparse autoencoder (AE) that learns a compressed represen-
tation of each state variable individually. The sparsity term will work similarly to the
energy criteria in Proper Orthogonal Decompositions: it will penalize the activation
of layers in the bottleneck to only have those that include most of the information,
providing additional compression. The learning process is thus guided by the loss:

LAE =
1

N

N∑
i=1

(si − ŝi)
2 + λreg

N∑
i=1

|xi| ,

which consists in the evaluation of the Mean Squared Error of the reconstruction of
the full system and a L1-norm to account for the sparsity (this is equivalent to the
well-known Occam’s razor or parsimonious approximation [161]). The second term in
the loss is weighted to give more importance to the reconstruction error.

Once the dynamical features are embedded on a low dimensional manifold, we
propose extracting the dynamic features related to the evolution of the free surface
by studying the history of its motion. To achieve this, we suggest utilizing a recurrent
neural network (RNN) that correlates a reduced-order manifold where the features of
the slosh are embedded with partial measurements of the free surface.

RNNs learn from sequences of information rather than individual snapshots. Tra-
ditional RNNs often face challenges such as vanishing and exploding gradients when
applied to complex problems [162]. In this case, we propose the use of GRUs [163],
which are more complex architectures that incorporate additional information flows
to preserve long-term correlations and prevent the network from learning short-term
information. The fundamental feature of GRUs is the hidden state (hn), which rep-
resents a summary of the features identified in previous sequences of the batch of
snapshots. Provided that ordinary, fully-connected neural networks functions read as:

xn = σ(W n × xn−1 + bn),
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Fig. 3 Sketch of the proposed perception system. The encoder first learns a mapping ψ from the high-
resolution synthetic data to a low dimensional manifold, and reconstructs the full state by applying
an approximate inverse ϕ. Then, during runtime, since the camera is able to obtain only a portion
of the data, highlighted in red, xn, the embedding ψ is substituted by a new one ψ′, that operates
on partial data only. This limitation is overcome by storing sequences of partial data xn−t, . . . ,xn.
These feed a recurrent neural network that extracts information from the recent history of the fluid.

where x represents the input and output of the layer, W the weight, b the bias, and σ
the activation function, the scheme of recurrent neural networks is expressed as follows:

xn = σ(W xn
× xn−1 + Uxn

× hn−1 + bxn
),

rn = σ(W rn
× xn−1 + Urn

× hn−1 + brn
),

h̃n = σ(W hn
× xn−1 + rn ×Uhn

× hn−1 + bhn
),

hn = xn · hn−1 + (1− xn)h̃n.

The layer functions include the hidden state hn−1, and its corresponding weights
U , to calculate the output of the layer. The scheme includes a forget gate rn, which
consists in the short-term, not important features, of the history. With the output of
the layer and the reset information, the new hidden state is calculated to pass to the
next layer.

We perform a from-many-to-one projection from a sequence of snapshots to a
vector in the low dimensional manifold that compresses the dynamical information of
the dynamical state we seek. In our case, the GRUs input comprises a sequence of
vertical and horizontal positions of selected points on the free surface of the liquid. We
track these points in real images from binary, black and white, frames. We train the
mapping ψ′ with a computational database of sloshing liquids. By tracking particles
belonging to the free surface we interpolate a uniform point distribution to compare
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the free surface of different snapshots,

LGRU =
1

Nsnap

Nsnap∑
n=1

(xn − x̂n)2.

The proposed architecture is therefore a sequence of GRU layers joined to a fully
connected layer to achieve the desired projection. The network is trained with a mean
squared error loss (MSE) that evaluates the accuracy of the mapping by comparing
the predicted low-dimensional state and the ground truth.

4.2 Physics forecast with the learned simulators

The simulation framework proposed is also constrained by thermodynamic principles,
not only to estimate dynamical features of the system, but to forecast future states in
the interaction with the environment. The use of this physics constraint will trigger
interpretability and generalization of the sloshing dynamics, preparing the simulation
engine for future adaptation. This framework, however, required some internal state
variables for its development. Hence, we propose to work in the low-dimensional man-
ifold learnt from a full-dynamics dataset, which has been correlated to evaluations of
the free-surface, to perform physically sound simulations. With this information it is
possible to build the proposed thermodynamically-consistent framework.

Dissipative effects substantially dominate real-world systems. As indicated by the
fluctuation dissipation theorem [164], here it is where entropy caused by the lack of
knowledge arises. Then, a metriplectic framework can learn also the dissipation that
underlies the data in the learning algorithm [165] to ensure the conservation of key
variables (mass and momentum) and the thermodynamic feasibility of the system’s
evolution. The thermodynamic framework presented by GENERIC [166] was employed
for describing the temporal evolution of a system with respect to the evolution of its
energy and entropy. The GENERIC formulation is defined with the following structure:

dz

dt
= L∇E + M∇S.

Here, z represents the set of state variables used to describe the evolution of the
dynamics. In the case of applying model order reduction, this vector will correspond to
the one representing the reduced order state and we will denote the set of macroscopic
variables by s, as in Fig. 3. E(z) and S(z) are the energy and entropy of the system.
L(z) and M(z) stand for the Poisson and friction matrices respectively. The structure-
preserving scheme must ensure that L(z) is skew-symmetric and M(z) is symmetric
positive semidefinite. In addition the degeneracy conditions must be fulfilled to ensure
that the entropy S does not contribute to the conservation of energy, and E is not
involved in the production of entropy:

L∇S = M∇E = 0.
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Fig. 4 Structure-preserving Neural Network. A set of fully connected layers learns the GENERIC
operators as the output of the network to perform learned simulation through integration in time of
the state of the system.

Structure-preserving neural networks (SPNN) embed GENERIC in a deep learning
architecture to reveal the value of the main elements of equation [10] [138]. In this
framework, the discretized gradients of energy and entropy are targets of the network
optimization. For this purpose, a forward-Euler discretization of GENERIC is applied:

zn+1 = zn + ∆t (LnDEn + MnDSn) ,

constrained by the degeneracy conditions:

LnDSn = 0, MnDEn = 0, (1)

Although L and M are generally known in the literature, they are unknown in the
low-dimensional latent manifold where we perform the simulation of the dynamics.
Therefore, the network learns L,M,DEn,DSn from data. This is represented in Fig. 4.
The neural network is trained upon a weighed loss that includes an evaluation of the
reconstruction of the dynamics Lmse

SPNN and the penalization imposed by the degeneracy

conditions Ldeg
SPNN:

Lmse
SPNN =

1

Nsnap

Nsnap∑
n=1

(zn+1 − ẑn+1)2,

Ldeg
SPNN =

1

Nsnap

Nsnap∑
i=1

(LnDSn)2 + (MnDEn)2,

LSPNN = λmse
SPNNLmse

SPNN + Ldeg
SPNN.

4.3 Transfer learning for active learning

The initial model of the fluid slosh is to be trained on one single liquid. Specifically, it
has been designed to correctly simulate the physics of glycerine based on a set of high
resolution synthetic data. From this knowledge, the physics perception system must
be able to perceive a new liquid and still infer this new behavior so as to perform
accurate predictions. The dynamics of the new liquid must be recovered and learned
from the measurements of the free surface xn ⊂ sn performed by the camera. Here,
sn ∈ S represents the set of state variables that describe the full dynamics, and S its
state space.
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Fig. 5 Hybrid twin algorithm for the adaptation to new physics. The network as a whole adapts to
the new data by fine-tuning only part of the layers, highlighted in green. The result of the integration
algorithm is compared with the ground truth liquid by evaluating the reconstruction of the free
surface in time. As a result the twin adapts when it detects any deviation between the prediction and
the ground truth.

The proposed thermodynamics-informed correction algorithm achieves an adapta-
tion of the hybrid twin of a liquid (which corresponds in this case to glycerine) to fit
the new perceived physics. For this purpose, a technique based on transfer learning
is applied. The premise of this approach is that the prediction algorithm, thanks to
the thermodynamic biases, has learned some basic patterns of the slosh that will be
shared by any liquid we study. Given the scarce data provided by the camera for learn-
ing the new liquid, this knowledge is to be preserved. This is achieved using transfer
learning: the network already prepared will be retrained in a few selected layers to use
the previously acquired knowledge of the slosh and only perform fine-tuning to the
new liquid due to the different perceived properties. The correction is performed with
the Mean Squared Error, that evaluates the accuracy of the reconstruction of the free
surface. This loss is complemented, again, by the fulfillment of the degeneracy condi-
tions established in the GENERIC formalism, to ensure that the changes belong to a
thermodynamics admisible regime:

Lcorrection = λ
1

Nsnap

Nsnap∑
n=1

(xn+1 − x̂n+1)2 +
1

N

∑
N

(
∥LnDEn∥2 + ∥MnDSn∥2

)
.

4.4 Results

The source model has been trained according to the parameters of Table 1 for learning
computational glycerine and assembling the main parts of the algorithm. This is the
source model of the hybrid twin, the starting point to learn and adapt to unknown
liquids.
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Algorithm 1 Hybrid twin

Require: Free surface xn ∈ X, full state sn ∈ S, source model πθ
Ensure: Next state sn+1

for Iterations do
for n = 1 to N sequences do

Encode zn ← ϕGRU(xn);
Compute SPNN an ← πθ(zn), with an = [Ln,Mn,DEn,DSn];
Determine next integration step ẑn+1 ← ∆t(LnDEn + MnDSn) + zn;
Decode ŝn+1 ← ψ(ẑn+1);

end for
Extract free surface of ŝn+1;
Compute loss Lcorrection;
Update πθ;

end for
return Optimized hybrid twin πθ

Learning
rate

Weight
decay

# Hidden
layers

Size
hidden
layers

Input
size

Output
Size

Weight Epochs

AE q 1e-4 1e-6 2 120 6402 20 2000 10000
AE v 1e-4 1e-5 4 200 6402 20 2000 10000
AE e 1e-4 1e-5 3 40 2134 10 2000 10000
AE σ 1e-4 1e-5 3 200 2134 20 2000 10000
AE τ 1e-3 1e-6 3 200 6402 20 2000 10000
SPNN 1e-3 1e-5 13 195 13 195 1000 5000
GRU
Recurrent
layers

1e-3 1e-5
3 26 16 × 42

13 - 10000
GRU
Fully
connected
layers

1 13 26

Table 1 Training parameters of the source model

The correction is performed by comparing the predictions with new video record-
ings. Experiments have been made with four different liquids: water, beer, gazpacho
(traditional Spanish tomato soup) and honey. Water and beer are less viscous than
glycerine. Hence, with them the algorithm proves its efficacy to adapt to liquids that
are out of the motion range of the original twin. In contrast, gazpacho and honey and
more viscous (some mild non-Newtonian behavior could be expected for gazpacho,
which is a suspension). As a result, the algorithm must learn that higher forces are
required to start the motion of these liquids. These recordings are made with a stereo
camera to have the pixel depth map of the points of the image. Fig. 6 illustrates how
data about the position of the free surface have been acquired. The RGBD frames are
converted to binary, black and white, images, where it is possible to track the free
surface of the liquid due to the color gradient that appears in this transition.
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Fig. 6 Data processing transformations. The starting point is a collection of RGB-D images, which
are first converted to gray scale, and then binarized. Frames in the black and white are used to detect
and track the free surface from the gradient that appears in the phase transition. Given that the
depth map of the image is provided, the projection to cartesian coordinates can be done.

Activated layers for adaptation

GRU
Recurrent layers 1 last layer
Fully connected layers 1 last layer

SPNN 5 last layers

Table 2 Layers activated for correction in the hybrid twin

When a systematic, biased, deviation of predictions from the observed reality is
detected, only a few layers of the networks that are part of the algorithm activate for
the fine-tuning to the new dynamics perceived. Table 2 details the layers activated for
correction for each of the networks.

Two recordings of each liquid were made: the first for training and correction,
and the second for testing the efficacy of the adaptation. Each recording is about 8
seconds long. This fact enables to evaluate in the accuracy of hybrid twin in the long
term. As shown in Fig. 7, the relative error of the reconstruction of the motion of
each liquid decreases after correction. We have compared the predicted free surface,
that describes the fluid motion, with the ground truth from videos. The probability
density functions show that the relative error greatly decreases after correction for all
the liquids. In addition, there is less dispersion in the error values after adaptation.
This is also represented in the boxplots. The mean error is lower for the predictions
after adaptation. These conclusions are also applicable for the test recording. It is
worth noting that this is new data that is uncorrelated with the training recordings.

A comparison of the reconstruction of the free surface before and after correction is
presented in Fig. 8. Maximum slosh height is one of the targets in intelligent robotics
control to perform tasks efficiently (i.e., to avoid liquid spillage). Water initially shows
greater deviation than honey since it is less viscous than glycerine and the slosh height
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Fig. 7 Probability density function of relative errors combined with boxplots of the error distribu-
tions.

is greater than that of the source liquid. After correction, absolute errors decrease
from up to 8 mm to 1 mm. Also, amplitude and frequency of the slosh improves.

The right hand side of Fig. 8 shows the final output of the hybrid twin. The
physics scene understating system does not only provide the reconstruction of the
whole fluid volume and its motion, but also some (possibly phenomenological, internal)
variables such as stresses, that were reconstructed thanks to the thermodynamics
framework. This set of variables cannot be evaluated with real liquids since they cannot
be measured with a standard RGBD camera. However, the algorithm ensured that
the adaptation and the reconstruction of these variables is physically consistent.

5 Next challenges in physics perception

5.1 Knowledge acquisition

Physics perception imitates human physics learning and understanding. However, the
correlations and patterns acquired are more accessible in machine systems. Performing
interpretation and appropriate analysis could lead to a deeper understating, or knowl-
edge discovery, of complex physics. That is the case, for instance, of non-Newtonian
fluids [167]. Symbolic descriptions obtained through symbolic learning could not only
be used as a validation tool for the simulation algorithm learnt. It could unveil new
characteristics in real systems for smart data processing [168].

5.2 Physics-informed computer vision

In spite of the good performance of computer vision algorithms due to the use of
large databases, the results usually lack interpretability and physical meaning [169].
Conversely, the use of physics-informed machine learning enables to build robust
and functional computer vision systems based in fundamental laws [170] [171]. These
physics priors can be applied in the acquisition and pre-processing of data, model
design and training, and inference. A detailed review of these applications can be found
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Fig. 8 Results of fluid motion prediction. Top, a comparison of liquid motion prediction with ground
truth before and after correction is shown. Bottom, the hybrid twin outputs additional information
related to the learned fluid slosh dynamics on top of the reconstruction of the fluid volume and its
motion.

in [172] . Their application in perception and physical knowledge discovery (veloc-
ity fields, material properties etc.) might be of great impact to complement scene
understanding.

19



5.3 General AI

In spite of the advances in physical scene understating, the developed applications are
categorized into narrow, or specialized, AI. General AI (AGI) is considered the next
step to be achieved in artificial intelligence developments. Here, machine systems are
supposed to imitate human cognition independently and show a wide spectrum of high-
level intellectual skills. This paradigm of learning entails a great abstraction, which a
capacity of learning that current machine systems do not posses. [173]. Reinforcement
Learning is seen as a possible path to create intelligent systems that can independently
enrich themselves to reach evolving goals [174]. Regardless of whether it has real
potential to deal with the great scope of the AGI proposal, it is certain that its
combination with the physically sound stated techniques could lead to a more efficient
learning of the desired policies.

6 Conclusion

Physical scene understanding imitates human cognition skills that make possible to
acquire general concepts about physics, such as properties, interactions, and behav-
iors of objects to predict dynamics and interact with reality. As a key aspect of
machine intelligence, physical scene understating predominantly involves systems that
learn from data. Physics is thus an essential asset to acquired high quality knowledge
in machine systems. Physics-infused machine learning is present in data interpreta-
tion, learning, and adaptation. Data interpretation is strongly influenced by physics
to project data to new representations that represent features of the dynamics and
reconstruct fields of data and, more specifically, internal variables required for devel-
oping interpretable simulation. Also, inductive biases are widely present in dynamics
learning for approximating dynamics prediction, in the development or adaptation
phases, from data. Since mathematical descriptions such as PDEs are sometimes not
considered, inaccurate, or unknown, more general approaches can lead not only to the
approximation of a wider variety of phenomena, but also to the discovery of new knowl-
edge about the physics of reality. These approaches include inductive biases based on
symmetries and basic laws of physics that must be fulfilled. These approaches that
belong to thermodynamic frameworks can be applied to conservative and dissipative
systems indistinctly. However, considering the noise and uncertainties of the mea-
surements, these frameworks are greatly appealing for learning real dynamics. This
statement has been demonstrated within a thermodynamics-aware application based
on the GENERIC formalism. A physics scene understating engine capable of learn-
ing the physics of previously unseen liquids is provided, imitating the adaptability of
human cognition. In addition, physics-informed constraints trigger its applicability to
augmented intelligence. Not only the motion and volume of previously unseen fluid
is provided. The system outputs a physically sound prediction of immeasurable state
variable as additional information for machine systems or potential users that can be
used in complex decision-making scenarios.
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